Displaying 1 - 24 of 24
-
Arana, S., Marquand, A., Hulten, A., Hagoort, P., & Schoffelen, J.-M. (2020). Sensory modality-independent activation of the brain network for language. The Journal of Neuroscience, 40(14), 2914-2924. doi:10.1523/JNEUROSCI.2271-19.2020.
Abstract
The meaning of a sentence can be understood, whether presented in written or spoken form. Therefore it is highly probable that brain processes supporting language comprehension are at least partly independent of sensory modality. To identify where and when in the brain language processing is independent of sensory modality, we directly compared neuromagnetic brain signals of 200 human subjects (102 males) either reading or listening to sentences. We used multiset canonical correlation analysis to align individual subject data in a way that boosts those aspects of the signal that are common to all, allowing us to capture word-by-word signal variations, consistent across subjects and at a fine temporal scale. Quantifying this consistency in activation across both reading and listening tasks revealed a mostly left hemispheric cortical network. Areas showing consistent activity patterns include not only areas previously implicated in higher-level language processing, such as left prefrontal, superior & middle temporal areas and anterior temporal lobe, but also parts of the control-network as well as subcentral and more posterior temporal-parietal areas. Activity in this supramodal sentence processing network starts in temporal areas and rapidly spreads to the other regions involved. The findings do not only indicate the involvement of a large network of brain areas in supramodal language processing, but also indicate that the linguistic information contained in the unfolding sentences modulates brain activity in a word-specific manner across subjects. -
Casasanto, D., Casasanto, L. S., Gijssels, T., & Hagoort, P. (2020). The Reverse Chameleon Effect: Negative social consequences of anatomical mimicry. Frontiers in Psychology, 11: 1876. doi:10.3389/fpsyg.2020.01876.
Abstract
Bodily mimicry often makes the mimickee have more positive feelings about the mimicker. Yet, little is known about the causes of mimicry’s social effects. When people mimic each other’s bodily movements face to face, they can either adopt a mirrorwise perspective (moving in the same absolute direction) or an anatomical perspective (moving in the same direction relative to their own bodies). Mirrorwise mimicry maximizes visuo-spatial similarity between the mimicker and mimickee, whereas anatomical mimicry maximizes the similarity in the states of their motor systems. To compare the social consequences of visuo-spatial and motoric similarity, we asked participants to converse with an embodied virtual agent (VIRTUO), who mimicked their head movements either mirrorwise, anatomically, or not at all. Compared to participants who were not mimicked, those who were mimicked mirrorwise tended to rate VIRTUO more positively, but those who were mimicked anatomically rated him more negatively. During face-to-face conversation, mirrorwise and anatomical mimicry have opposite social consequences. Results suggest that visuo-spatial similarity between mimicker and mimickee, not similarity in motor system activity, gives rise to the positive social effects of bodily mimicry. -
Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.
Abstract
Language processing involves the ability to store and integrate pieces of
information in working memory over short periods of time. According to
the dominant view, information is maintained through sustained, elevated
neural activity. Other work has argued that short-term synaptic facilitation
can serve as a substrate of memory. Here, we propose an account where
memory is supported by intrinsic plasticity that downregulates neuronal
firing rates. Single neuron responses are dependent on experience and we
show through simulations that these adaptive changes in excitability pro-
vide memory on timescales ranging from milliseconds to seconds. On this
account, spiking activity writes information into coupled dynamic variables
that control adaptation and move at slower timescales than the membrane
potential. From these variables, information is continuously read back into
the active membrane state for processing. This neuronal memory mech-
anism does not rely on persistent activity, excitatory feedback, or synap-
tic plasticity for storage. Instead, information is maintained in adaptive
conductances that reduce firing rates and can be accessed directly with-
out cued retrieval. Memory span is systematically related to both the time
constant of adaptation and baseline levels of neuronal excitability. Inter-
ference effects within memory arise when adaptation is long-lasting. We
demonstrate that this mechanism is sensitive to context and serial order
which makes it suitable for temporal integration in sequence processing
within the language domain. We also show that it enables the binding of
linguistic features over time within dynamic memory registers. This work
provides a step towards a computational neurobiology of language. -
Hagoort, P. (2020). Taal. In O. Van den Heuvel, Y. Van der Werf, B. Schmand, & B. Sabbe (
Eds. ), Leerboek neurowetenschappen voor de klinische psychiatrie (pp. 234-239). Amsterdam: Boom Uitgevers. -
Heidlmayr, K., Weber, K., Takashima, A., & Hagoort, P. (2020). No title, no theme: The joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. Cortex, 130, 111-126. doi:10.1016/j.cortex.2020.04.035.
Abstract
Speakers and listeners usually interact in larger discourses than single words or even single sentences. The goal of the present study was to identify the neural bases reflecting how the mental representation of the situation denoted in a multi-sentence discourse (situation model) is constructed and shared between speakers and listeners. An fMRI study using a variant of the ambiguous text paradigm was designed. Speakers (n=15) produced ambiguous texts in the scanner and listeners (n=27) subsequently listened to these texts in different states of ambiguity: preceded by a highly informative, intermediately informative or no title at all. Conventional BOLD activation analyses in listeners, as well as inter-subject correlation analyses between the speakers’ and the listeners’ hemodynamic time courses were performed. Critically, only the processing of disambiguated, coherent discourse with an intelligible situation model representation involved (shared) activation in bilateral lateral parietal and medial prefrontal regions. This shared spatiotemporal pattern of brain activation between the speaker and the listener suggests that the process of memory retrieval in medial prefrontal regions and the binding of retrieved information in the lateral parietal cortex constitutes a core mechanism underlying the communication of complex conceptual representations.Additional information
supplementary data -
Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & De Lange, F. P. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, 11: 321. doi:10.1038/s41467-019-13996-4.
Abstract
Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions.Additional information
Supplementary information -
Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences. -
Kösem, A., Bosker, H. R., Jensen, O., Hagoort, P., & Riecke, L. (2020). Biasing the perception of spoken words with transcranial alternating current stimulation. Journal of Cognitive Neuroscience, 32(8), 1428-1437. doi:10.1162/jocn_a_01579.
Abstract
Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception (Kösem et al. 2018). We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating
current stimulation (tACS) at distinct oscillatory frequencies (3 Hz and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words
were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and
therewith how speech is perceptually sampled, leading to a perceptual over- or underestimation of the vowel’s duration. Whereas results from Experiment 1 did not confirm this prediction, results from experiment 2 suggested a small effect of tACS frequency on target word
perception: Faster tACS lead to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in experiment 1 vs. experiment 2, suggesting that the
impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations
might be a prerequisite for tACS to be effective.Additional information
Data availability -
Preisig, B., Sjerps, M. J., Hervais-Adelman, A., Kösem, A., Hagoort, P., & Riecke, L. (2020). Bilateral gamma/delta transcranial alternating current stimulation affects interhemispheric speech sound integration. Journal of Cognitive Neuroscience, 32(7), 1242-1250. doi:10.1162/jocn_a_01498.
Abstract
Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency. -
Takashima, A., Konopka, A. E., Meyer, A. S., Hagoort, P., & Weber, K. (2020). Speaking in the brain: The interaction between words and syntax in sentence production. Journal of Cognitive Neuroscience, 32(8), 1466-1483. doi:10.1162/jocn_a_01563.
Abstract
This neuroimaging study investigated the neural infrastructure of sentence-level language production. We compared brain activation patterns, as measured with BOLD-fMRI, during production of sentences that differed in verb argument structures (intransitives, transitives, ditransitives) and the lexical status of the verb (known verbs or pseudoverbs). The experiment consisted of 30 mini-blocks of six sentences each. Each mini-block started with an example for the type of sentence to be produced in that block. On each trial in the mini-blocks, participants were first given the (pseudo-)verb followed by three geometric shapes to serve as verb arguments in the sentences. Production of sentences with known verbs yielded greater activation compared to sentences with pseudoverbs in the core language network of the left inferior frontal gyrus, the left posterior middle temporalgyrus, and a more posterior middle temporal region extending into the angular gyrus, analogous to effects observed in language comprehension. Increasing the number of verb arguments led to greater activation in an overlapping left posterior middle temporal gyrus/angular gyrus area, particularly for known verbs, as well as in the bilateral precuneus. Thus, producing sentences with more complex structures using existing verbs leads to increased activation in the language network, suggesting some reliance on memory retrieval of stored lexical–syntactic information during sentence production. This study thus provides evidence from sentence-level language production in line with functional models of the language network that have so far been mainly based on single-word production, comprehension, and language processing in aphasia. -
Tan, Y., & Hagoort, P. (2020). Catecholaminergic modulation of semantic processing in sentence comprehension. Cerebral Cortex, 30(12), 6426-6443. doi:10.1093/cercor/bhaa204.
Abstract
Catecholamine (CA) function has been widely implicated in cognitive functions that are tied to the prefrontal cortex and striatal areas. The present study investigated the effects of methylphenidate, which is a CA agonist, on the electroencephalogram (EEG) response related to semantic processing using a double-blind, placebo-controlled, randomized, crossover, within-subject design. Forty-eight healthy participants read semantically congruent or incongruent sentences after receiving 20-mg methylphenidate or a placebo while their brain activity was monitored with EEG. To probe whether the catecholaminergic modulation is task-dependent, in one condition participants had to focus on comprehending the sentences, while in the other condition, they only had to attend to the font size of the sentence. The results demonstrate that methylphenidate has a task-dependent effect on semantic processing. Compared to placebo, when semantic processing was task-irrelevant, methylphenidate enhanced the detection of semantic incongruence as indexed by a larger N400 amplitude in the incongruent sentences; when semantic processing was task-relevant, methylphenidate induced a larger N400 amplitude in the semantically congruent condition, which was followed by a larger late positive complex effect. These results suggest that CA-related neurotransmitters influence language processing, possibly through the projections between the prefrontal cortex and the striatum, which contain many CA receptors. -
Bastiaansen, M. C. M., & Hagoort, P. (2003). Event-induced theta responses as a window on the dynamics of memory. Cortex, 39(4-5), 967-972. doi:10.1016/S0010-9452(08)70873-6.
Abstract
An important, but often ignored distinction in the analysis of EEG signals is that between evoked activity and induced activity. Whereas evoked activity reflects the summation of transient post-synaptic potentials triggered by an event, induced activity, which is mainly oscillatory in nature, is thought to reflect changes in parameters controlling dynamic interactions within and between brain structures. We hypothesize that induced activity may yield information about the dynamics of cell assembly formation, activation and subsequent uncoupling, which may play a prominent role in different types of memory operations. We then describe a number of analysis tools that can be used to study the reactivity of induced rhythmic activity, both in terms of amplitude changes and of phase variability.
We briefly discuss how alpha, gamma and theta rhythms are thought to be generated, paying special attention to the hypothesis that the theta rhythm reflects dynamic interactions between the hippocampal system and the neocortex. This hypothesis would imply that studying the reactivity of scalp-recorded theta may provide a window on the contribution of the hippocampus to memory functions.
We review studies investigating the reactivity of scalp-recorded theta in paradigms engaging episodic memory, spatial memory and working memory. In addition, we review studies that relate theta reactivity to processes at the interface of memory and language. Despite many unknowns, the experimental evidence largely supports the hypothesis that theta activity plays a functional role in cell assembly formation, a process which may constitute the neural basis of memory formation and retrieval. The available data provide only highly indirect support for the hypothesis that scalp-recorded theta yields information about hippocampal functioning. It is concluded that studying induced rhythmic activity holds promise as an additional important way to study brain function. -
Hagoort, P., Wassenaar, M., & Brown, C. M. (2003). Syntax-related ERP-effects in Dutch. Cognitive Brain Research, 16(1), 38-50. doi:10.1016/S0926-6410(02)00208-2.
Abstract
In two studies subjects were required to read Dutch sentences that in some cases contained a syntactic violation, in other cases a semantic violation. All syntactic violations were word category violations. The design excluded differential contributions of expectancy to influence the syntactic violation effects. The syntactic violations elicited an Anterior Negativity between 300 and 500 ms. This negativity was bilateral and had a frontal distribution. Over posterior sites the same violations elicited a P600/SPS starting at about 600 ms. The semantic violations elicited an N400 effect. The topographic distribution of the AN was more frontal than the distribution of the classical N400 effect, indicating that the underlying generators of the AN and the N400 are, at least to a certain extent, non-overlapping. Experiment 2 partly replicated the design of Experiment 1, but with differences in rate of presentation and in the distribution of items over subjects, and without semantic violations. The word category violations resulted in the same effects as were observed in Experiment 1, showing that they were independent of some of the specific parameters of Experiment 1. The discussion presents a tentative account of the functional differences in the triggering conditions of the AN and the P600/SPS. -
Hagoort, P., Wassenaar, M., & Brown, C. M. (2003). Real-time semantic compensation in patients with agrammatic comprehension: Electrophysiological evidence for multiple-route plasticity. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4340-4345. doi:10.1073/pnas.0230613100.
Abstract
To understand spoken language requires that the brain provides rapid access to different kinds of knowledge, including the sounds and meanings of words, and syntax. Syntax specifies constraints on combining words in a grammatically well formed manner. Agrammatic patients are deficient in their ability to use these constraints, due to a lesion in the perisylvian area of the languagedominant hemisphere. We report a study on real-time auditory sentence processing in agrammatic comprehenders, examining
their ability to accommodate damage to the language system. We recorded event-related brain potentials (ERPs) in agrammatic comprehenders, nonagrammatic aphasics, and age-matched controls. When listening to sentences with grammatical violations, the agrammatic aphasics did not show the same syntax-related ERP effect as the two other subject groups. Instead, the waveforms of the agrammatic aphasics were dominated by a meaning-related ERP effect, presumably reflecting their attempts to achieve understanding by the use of semantic constraints. These data demonstrate that although agrammatic aphasics are impaired in their ability to exploit syntactic information in real time, they can reduce the consequences of a syntactic deficit by exploiting a semantic route. They thus provide evidence for the compensation of a syntactic deficit by a stronger reliance on another route in mapping
sound onto meaning. This is a form of plasticity that we refer to as multiple-route plasticity. -
Hagoort, P. (2003). De verloving tussen neurowetenschap en psychologie. In K. Hilberdink (
Ed. ), Interdisciplinariteit in de geesteswetenschappen (pp. 73-81). Amsterdam: KNAW. -
Hagoort, P. (2003). Die einzigartige, grösstenteils aber unbewusste Fähigkeit der Menschen zu sprachlicher Kommunikation. In G. Kaiser (
Ed. ), Jahrbuch 2002-2003 / Wissenschaftszentrum Nordrhein-Westfalen (pp. 33-46). Düsseldorf: Wissenschaftszentrum Nordrhein-Westfalen. -
Hagoort, P. (2003). Functional brain imaging. In W. J. Frawley (
Ed. ), International encyclopedia of linguistics (pp. 142-145). New York: Oxford University Press. -
Hagoort, P. (2003). How the brain solves the binding problem for language: A neurocomputational model of syntactic processing. NeuroImage, 20(suppl. 1), S18-S29. doi:10.1016/j.neuroimage.2003.09.013.
Abstract
Syntax is one of the components in the architecture of language processing that allows the listener/reader to bind single-word information into a unified interpretation of multiword utterances. This paper discusses ERP effects that have been observed in relation to syntactic processing. The fact that these effects differ from the semantic N400 indicates that the brain honors the distinction between semantic and syntactic binding operations. Two models of syntactic processing attempt to account for syntax-related ERP effects. One type of model is serial, with a first phase that is purely syntactic in nature (syntax-first model). The other type of model is parallel and assumes that information immediately guides the interpretation process once it becomes available. This is referred to as the immediacy model. ERP evidence is presented in support of the latter model. Next, an explicit computational model is proposed to explain the ERP data. This Unification Model assumes that syntactic frames are stored in memory and retrieved on the basis of the spoken or written word form input. The syntactic frames associated with the individual lexical items are unified by a dynamic binding process into a structural representation that spans the whole utterance. On the basis of a meta-analysis of imaging studies on syntax, it is argued that the left posterior inferior frontal cortex is involved in binding syntactic frames together, whereas the left superior temporal cortex is involved in retrieval of the syntactic frames stored in memory. Lesion data that support the involvement of this left frontotemporal network in syntactic processing are discussed. -
Hagoort, P. (2003). Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. Journal of Cognitive Neuroscience, 15(6), 883-899. doi:10.1162/089892903322370807.
Abstract
This study investigated the effects of combined semantic and syntactic violations in relation to the effects of single semantic and single syntactic violations on language-related event-related brain potential (ERP) effects (N400 and P600/ SPS). Syntactic violations consisted of a mismatch in grammatical gender or number features of the definite article and the noun in sentence-internal or sentence-final noun phrases (NPs). Semantic violations consisted of semantically implausible adjective–noun combinations in the same NPs. Combined syntactic and semantic violations were a summation of these two respective violation types. ERPs were recorded while subjects read the sentences with the different types of violations and the correct control sentences. ERP effects were computed relative to ERPs elicited by the sentence-internal or sentence-final nouns. The size of the N400 effect to the semantic violation was increased by an additional syntactic violation (the syntactic boost). In contrast, the size of the P600/ SPS to the syntactic violation was not affected by an additional semantic violation. This suggests that in the absence of syntactic ambiguity, the assignment of syntactic structure is independent of semantic context. However, semantic integration is influenced by syntactic processing. In the sentence-final position, additional global processing consequences were obtained as a result of earlier violations in the sentence. The resulting increase in the N400 amplitude to sentence-final words was independent of the nature of the violation. A speeded anomaly detection task revealed that it takes substantially longer to detect semantic than syntactic anomalies. These results are discussed in relation to the latency and processing characteristics of the N400 and P600/SPS effects. Overall, the results reveal an asymmetry in the interplay between syntax and semantics during on-line sentence comprehension. -
De Lange, F. P., Hagoort, P., & Toni, I. (2003). Differential fronto-parietal contributions to visual and motor imagery. NeuroImage, 19(2), e2094-e2095.
Abstract
Mental imagery is a cognitive process crucial to human reasoning. Numerous studies have characterized specific
instances of this cognitive ability, as evoked by visual imagery (VI) or motor imagery (MI) tasks. However, it
remains unclear which neural resources are shared between VI and MI, and which are exclusively related to MI.
To address this issue, we have used fMRI to measure human brain activity during performance of VI and MI
tasks. Crucially, we have modulated the imagery process by manipulating the degree of mental rotation necessary
to solve the tasks. We focused our analysis on changes in neural signal as a function of the degree of mental
rotation in each task. -
Swaab, T., Brown, C. M., & Hagoort, P. (2003). Understanding words in sentence contexts: The time course of ambiguity resolution. Brain and Language, 86(2), 326-343. doi:10.1016/S0093-934X(02)00547-3.
Abstract
Spoken language comprehension requires rapid integration of information from multiple linguistic sources. In the present study we addressed the temporal aspects of this integration process by focusing on the time course of the selection of the appropriate meaning of lexical ambiguities (“bank”) in sentence contexts. Successful selection of the contextually appropriate meaning of the ambiguous word is dependent upon the rapid binding of the contextual information in the sentence to the appropriate meaning of the ambiguity. We used the N400 to identify the time course of this binding process. The N400 was measured to target words that followed three types of context sentences. In the concordant context, the sentence biased the meaning of the sentence-final ambiguous word so that it was related to the target. In the discordant context, the sentence context biased the meaning so that it was not related to the target. In the unrelated control condition, the sentences ended in an unambiguous noun that was unrelated to the target. Half of the concordant sentences biased the dominant meaning, and the other half biased the subordinate meaning of the sentence-final ambiguous words. The ISI between onset of the target word and offset of the sentence-final word of the context sentence was 100 ms in one version of the experiment, and 1250 ms in the second version. We found that (i) the lexically dominant meaning is always partly activated, independent of context, (ii) initially both dominant and subordinate meaning are (partly) activated, which suggests that contextual and lexical factors both contribute to sentence interpretation without context completely overriding lexical information, and (iii) strong lexical influences remain present for a relatively long period of time. -
Van Berkum, J. J. A., Zwitserlood, P., Hagoort, P., & Brown, C. M. (2003). When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Cognitive Brain Research, 17(3), 701-718. doi:10.1016/S0926-6410(03)00196-4.
Abstract
In two ERP experiments, we assessed the impact of discourse-level information on the processing of an unfolding spoken sentence. Subjects listened to sentences like Jane told her brother that he was exceptionally quick/slow, designed such that the alternative critical words were equally acceptable within the local sentence context. In Experiment 1, these sentences were embedded in a discourse that rendered one of the critical words anomalous (e.g. because Jane’s brother had in fact done something very quickly). Relative to the coherent alternative, these discourse-anomalous words elicited a standard N400 effect that started at 150–200 ms after acoustic word onset. Furthermore, when the same sentences were heard in isolation in Experiment 2, the N400 effect disappeared. The results demonstrate that our listeners related the unfolding spoken words to the wider discourse extremely rapidly, after having heard the first two or three phonemes only, and in many cases well before the end of the word. In addition, the identical nature of discourse- and sentence-dependent N400 effects suggests that from the perspective of the word-elicited comprehension process indexed by the N400, the interpretive context delineated by a single unfolding sentence and a larger discourse is functionally identical. -
Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (
Eds. ), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter. -
Van Berkum, J. J. A., Brown, C. M., Hagoort, P., & Zwitserlood, P. (2003). Event-related brain potentials reflect discourse-referential ambiguity in spoken language comprehension. Psychophysiology, 40(2), 235-248. doi:10.1111/1469-8986.00025.
Abstract
In two experiments, we explored the use of event-related brain potentials to selectively track the processes that establish reference during spoken language comprehension. Subjects listened to stories in which a particular noun phrase like "the girl" either uniquely referred to a single referent mentioned in the earlier discourse, or ambiguously referred to two equally suitable referents. Referentially ambiguous nouns ("the girl" with two girls introduced in the discourse context) elicited a frontally dominant and sustained negative shift in brain potentials, emerging within 300–400 ms after acoustic noun onset. The early onset of this effect reveals that reference to a discourse entity can be established very rapidly. Its morphology and distribution suggest that at least some of the processing consequences of referential ambiguity may involve an increased demand on memory resources. Furthermore, because this referentially induced ERP effect is very different from that of well-known ERP effects associated with the semantic (N400) and syntactic (e.g., P600/SPS) aspects of language comprehension, it suggests that ERPs can be used to selectively keep track of three major processes involved in the comprehension of an unfolding piece of discourse.
Share this page