Displaying 1 - 27 of 27
-
Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2021). Structure-(in)dependent interpretation of phrases in humans and LSTMs. In Proceedings of the Society for Computation in Linguistics (SCiL 2021) (pp. 459-463).
Abstract
In this study, we compared the performance of a long short-term memory (LSTM) neural network to the behavior of human participants on a language task that requires hierarchically structured knowledge. We show that humans interpret ambiguous noun phrases, such as second blue ball, in line with their hierarchical constituent structure. LSTMs, instead, only do
so after unambiguous training, and they do not systematically generalize to novel items. Overall, the results of our simulations indicate that a model can behave hierarchically without relying on hierarchical constituent structure.Additional information
full text via ScholarWorks@UMass Amherst -
Healthy Brain Study Consortium, Aarts, E., Akkerman, A., Altgassen, M., Bartels, R., Beckers, D., Bevelander, K., Bijleveld, E., Blaney Davidson, E., Boleij, A., Bralten, J., Cillessen, T., Claassen, J., Cools, R., Cornelissen, I., Dresler, M., Eijsvogels, T., Faber, M., Fernández, G., Figner, B., Fritsche, M. and 67 moreHealthy Brain Study Consortium, Aarts, E., Akkerman, A., Altgassen, M., Bartels, R., Beckers, D., Bevelander, K., Bijleveld, E., Blaney Davidson, E., Boleij, A., Bralten, J., Cillessen, T., Claassen, J., Cools, R., Cornelissen, I., Dresler, M., Eijsvogels, T., Faber, M., Fernández, G., Figner, B., Fritsche, M., Füllbrunn, S., Gayet, S., Van Gelder, M. M. H. J., Van Gerven, M., Geurts, S., Greven, C. U., Groefsema, M., Haak, K., Hagoort, P., Hartman, Y., Van der Heijden, B., Hermans, E., Heuvelmans, V., Hintz, F., Den Hollander, J., Hulsman, A. M., Idesis, S., Jaeger, M., Janse, E., Janzing, J., Kessels, R. P. C., Karremans, J. C., De Kleijn, W., Klein, M., Klumpers, F., Kohn, N., Korzilius, H., Krahmer, B., De Lange, F., Van Leeuwen, J., Liu, H., Luijten, M., Manders, P., Manevska, K., Marques, J. P., Matthews, J., McQueen, J. M., Medendorp, P., Melis, R., Meyer, A. S., Oosterman, J., Overbeek, L., Peelen, M., Popma, J., Postma, G., Roelofs, K., Van Rossenberg, Y. G. T., Schaap, G., Scheepers, P., Selen, L., Starren, M., Swinkels, D. W., Tendolkar, I., Thijssen, D., Timmerman, H., Tutunji, R., Tuladhar, A., Veling, H., Verhagen, M., Verkroost, J., Vink, J., Vriezekolk, V., Vrijsen, J., Vyrastekova, J., Van der Wal, S., Willems, R. M., & Willemsen, A. (2021). Protocol of the Healthy Brain Study: An accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context. PLoS One, 16(12): e0260952. doi:10.1371/journal.pone.0260952.
Abstract
The endeavor to understand the human brain has seen more progress in the last few decades than in the previous two millennia. Still, our understanding of how the human brain relates to behavior in the real world and how this link is modulated by biological, social, and environmental factors is limited. To address this, we designed the Healthy Brain Study (HBS), an interdisciplinary, longitudinal, cohort study based on multidimensional, dynamic assessments in both the laboratory and the real world. Here, we describe the rationale and design of the currently ongoing HBS. The HBS is examining a population-based sample of 1,000 healthy participants (age 30-39) who are thoroughly studied across an entire year. Data are collected through cognitive, affective, behavioral, and physiological testing, neuroimaging, bio-sampling, questionnaires, ecological momentary assessment, and real-world assessments using wearable devices. These data will become an accessible resource for the scientific community enabling the next step in understanding the human brain and how it dynamically and individually operates in its bio-social context. An access procedure to the collected data and bio-samples is in place and published on https://www.healthybrainstudy.nl/en/data-and-methods.
https://www.trialregister.nl/trial/7955Additional information
supplementary material -
Heyselaar, E., Peeters, D., & Hagoort, P. (2021). Do we predict upcoming speech content in naturalistic environments? Language, Cognition and Neuroscience, 36(4), 440-461. doi:10.1080/23273798.2020.1859568.
Abstract
The ability to predict upcoming actions is a hallmark of cognition. It remains unclear, however, whether the predictive behaviour observed in controlled lab environments generalises to rich, everyday settings. In four virtual reality experiments, we tested whether a well-established marker of linguistic prediction (anticipatory eye movements) replicated when increasing the naturalness of the paradigm by means of immersing participants in naturalistic scenes (Experiment 1), increasing the number of distractor objects (Experiment 2), modifying the proportion of predictable noun-referents (Experiment 3), and manipulating the location of referents relative to the joint attentional space (Experiment 4). Robust anticipatory eye movements were observed for Experiments 1–3. The anticipatory effect disappeared, however, in Experiment 4. Our findings suggest that predictive processing occurs in everyday communication if the referents are situated in the joint attentional space. Methodologically, our study confirms that ecological validity and experimental control may go hand-in-hand in the study of human predictive behaviour.Additional information
plcp_a_1859568_sm1317.docx plcp_a_1859568_sm1318.pdf plcp_a_1859568_sm1319.docx -
Misersky, J., Slivac, K., Hagoort, P., & Flecken, M. (2021). The State of the Onion: Grammatical aspect modulates object representation during event comprehension. Cognition, 214: 104744. doi:10.1016/j.cognition.2021.104744.
Abstract
The present ERP study assessed whether grammatical aspect is used as a cue in online event comprehension, in particular when reading about events in which an object is visually changed. While perfective aspect cues holistic event representations, including an event's endpoint, progressive aspect highlights intermediate phases of an event. In a 2 × 3 design, participants read SVO sentences describing a change-of-state event (e.g., to chop an onion), with grammatical Aspect manipulated (perfective “chopped” vs progressive “was chopping”). Thereafter, they saw a Picture of an object either having undergone substantial state-change (SC; a chopped onion), no state-change (NSC; an onion in its original state) or an unrelated object (U; a cactus, acting as control condition). Their task was to decide whether the object in the Picture was mentioned in the sentence. We focused on N400 modulation, with ERPs time-locked to picture onset. U pictures elicited an N400 response as expected, suggesting detection of categorical mismatches in object type. For SC and NSC pictures, a whole-head follow-up analysis revealed a P300, implying people were engaged in detailed evaluation of pictures of matching objects. SC pictures received most positive responses overall. Crucially, there was an interaction of Aspect and Picture: SC pictures resulted in a higher amplitude P300 after sentences in the perfective compared to the progressive. Thus, while the perfective cued for a holistic event representation, including the resultant state of the affected object (i.e., the chopped onion) constraining object representations online, the progressive defocused event completion and object-state change. Grammatical aspect thus guided online event comprehension by cueing the visual representation(s) of an object's state. -
Preisig, B., Riecke, L., Sjerps, M. J., Kösem, A., Kop, B. R., Bramson, B., Hagoort, P., & Hervais-Adelman, A. (2021). Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration. Proceedings of the National Academy of Sciences of the United States of America, 118(7): e2015488118. doi:10.1073/pnas.2015488118.
Abstract
Brain connectivity plays a major role in the encoding, transfer, and
integration of sensory information. Interregional synchronization
of neural oscillations in the γ-frequency band has been suggested
as a key mechanism underlying perceptual integration. In a recent
study, we found evidence for this hypothesis showing that the
modulation of interhemispheric oscillatory synchrony by means of
bihemispheric high-density transcranial alternating current stimulation
(HD-TACS) affects binaural integration of dichotic acoustic features.
Here, we aimed to establish a direct link between oscillatory
synchrony, effective brain connectivity, and binaural integration.
We experimentally manipulated oscillatory synchrony (using bihemispheric
γ-TACS with different interhemispheric phase lags) and
assessed the effect on effective brain connectivity and binaural integration
(as measured with functional MRI and a dichotic listening
task, respectively). We found that TACS reduced intrahemispheric
connectivity within the auditory cortices and antiphase (interhemispheric
phase lag 180°) TACS modulated connectivity between the
two auditory cortices. Importantly, the changes in intra- and interhemispheric
connectivity induced by TACS were correlated with
changes in perceptual integration. Our results indicate that γ-band
synchronization between the two auditory cortices plays a functional
role in binaural integration, supporting the proposed role
of interregional oscillatory synchrony in perceptual integration.Additional information
Supporting Information Data have been deposited in di.dccn.DSC_3011204.02_657 -
Slivac, K., Hervais-Adelman, A., Hagoort, P., & Flecken, M. (2021). Linguistic labels cue biological motion perception and misperception. Scientific Reports, 11: 17239. doi:10.1038/s41598-021-96649-1.
Abstract
Linguistic labels exert a particularly strong top-down influence on perception. The potency of this influence has been ascribed to their ability to evoke category-diagnostic features of concepts. In doing this, they facilitate the formation of a perceptual template concordant with those features, effectively biasing perceptual activation towards the labelled category. In this study, we employ a cueing paradigm with moving, point-light stimuli across three experiments, in order to examine how the number of biological motion features (form and kinematics) encoded in lexical cues modulates the efficacy of lexical top-down influence on perception. We find that the magnitude of lexical influence on biological motion perception rises as a function of the number of biological motion-relevant features carried by both cue and target. When lexical cues encode multiple biological motion features, this influence is robust enough to mislead participants into reporting erroneous percepts, even when a masking level yielding high performance is used. -
Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In T. Sakamoto (
Ed. ), Communicating skills of intention (pp. 259-291). Tokyo: Hituzi Syobo. -
Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In A. S. Meyer, L. Wheeldon, & A. Krott (
Eds. ), Automaticity and control in language processing (pp. 243-270). Hove: Psychology Press. -
Hagoort, P., & Van Berkum, J. J. A. (2007). Beyond the sentence given. Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 362, 801-811.
Abstract
A central and influential idea among researchers of language is that our language faculty is organized according to Fregean compositionality, which states that the meaning of an utterance is a function of the meaning of its parts and of the syntactic rules by which these parts are combined. Since the domain of syntactic rules is the sentence, the implication of this idea is that language interpretation takes place in a two-step fashion. First, the meaning of a sentence is computed. In a second step, the sentence meaning is integrated with information from prior discourse, world knowledge, information about the speaker and semantic information from extra-linguistic domains such as co-speech gestures or the visual world. Here, we present results from recordings of event-related brain potentials that are inconsistent with this classical two-step model of language interpretation. Our data support a one-step model in which knowledge about the context and the world, concomitant information from other modalities, and the speaker are brought to bear immediately, by the same fast-acting brain system that combines the meanings of individual words into a message-level representation. Underlying the one-step model is the immediacy assumption, according to which all available information will immediately be used to co-determine the interpretation of the speaker's message. Functional magnetic resonance imaging data that we collected indicate that Broca's area plays an important role in semantic unification. Language comprehension involves the rapid incorporation of information in a 'single unification space', coming from a broader range of cognitive domains than presupposed in the standard two-step model of interpretation. -
Hald, L. A., Steenbeek-Planting, E. G., & Hagoort, P. (2007). The interaction of discourse context and world knowledge in online sentence comprehension: Evidence from the N400. Brain Research, 1146, 210-218. doi:10.1016/j.brainres.2007.02.054.
Abstract
In an ERP experiment we investigated how the recruitment and integration of world knowledge information relate to the integration of information within a current discourse context. Participants were presented with short discourse contexts which were followed by a sentence that contained a critical word that was correct or incorrect based on general world knowledge and the supporting discourse context, or was more or less acceptable based on the combination of general world knowledge and the specific local discourse context. Relative to the critical word in the correct world knowledge sentences following a neutral discourse, all other critical words elicited an N400 effect that began at about 300 ms after word onset. However, the magnitude of the N400 effect varied in a way that suggests an interaction between world knowledge and discourse context. The results indicate that both world knowledge and discourse context have an effect on sentence interpretation, but neither overrides the other. -
Ozyurek, A., Willems, R. M., Kita, S., & Hagoort, P. (2007). On-line integration of semantic information from speech and gesture: Insights from event-related brain potentials. Journal of Cognitive Neuroscience, 19(4), 605-616. doi:10.1162/jocn.2007.19.4.605.
Abstract
During language comprehension, listeners use the global semantic representation from previous sentence or discourse context to immediately integrate the meaning of each upcoming word into the unfolding message-level representation. Here we investigate whether communicative gestures that often spontaneously co-occur with speech are processed in a similar fashion and integrated to previous sentence context in the same way as lexical meaning. Event-related potentials were measured while subjects listened to spoken sentences with a critical verb (e.g., knock), which was accompanied by an iconic co-speech gesture (i.e., KNOCK). Verbal and/or gestural semantic content matched or mismatched the content of the preceding part of the sentence. Despite the difference in the modality and in the specificity of meaning conveyed by spoken words and gestures, the latency, amplitude, and topographical distribution of both word and gesture mismatches are found to be similar, indicating that the brain integrates both types of information simultaneously. This provides evidence for the claim that neural processing in language comprehension involves the simultaneous incorporation of information coming from a broader domain of cognition than only verbal semantics. The neural evidence for similar integration of information from speech and gesture emphasizes the tight interconnection between speech and co-speech gestures. -
De Ruiter, J. P., Noordzij, M. L., Newman-Norlund, S., Hagoort, P., & Toni, I. (2007). On the origins of intentions. In P. Haggard, Y. Rossetti, & M. Kawato (
Eds. ), Sensorimotor foundations of higher cognition (pp. 593-610). Oxford: Oxford University Press. -
Snijders, T. M., Kooijman, V., Cutler, A., & Hagoort, P. (2007). Neurophysiological evidence of delayed segmentation in a foreign language. Brain Research, 1178, 106-113. doi:10.1016/j.brainres.2007.07.080.
Abstract
Previous studies have shown that segmentation skills are language-specific, making it difficult to segment continuous speech in an unfamiliar language into its component words. Here we present the first study capturing the delay in segmentation and recognition in the foreign listener using ERPs. We compared the ability of Dutch adults and of English adults without knowledge of Dutch (‘foreign listeners’) to segment familiarized words from continuous Dutch speech. We used the known effect of repetition on the event-related potential (ERP) as an index of recognition of words in continuous speech. Our results show that word repetitions in isolation are recognized with equivalent facility by native and foreign listeners, but word repetitions in continuous speech are not. First, words familiarized in isolation are recognized faster by native than by foreign listeners when they are repeated in continuous speech. Second, when words that have previously been heard only in a continuous-speech context re-occur in continuous speech, the repetition is detected by native listeners, but is not detected by foreign listeners. A preceding speech context facilitates word recognition for native listeners, but delays or even inhibits word recognition for foreign listeners. We propose that the apparent difference in segmentation rate between native and foreign listeners is grounded in the difference in language-specific skills available to the listeners. -
Wassenaar, M., & Hagoort, P. (2007). Thematic role assignment in patients with Broca's aphasia: Sentence-picture matching electrified. Neuropsychologia, 45(4), 716-740. doi:10.1016/j.neuropsychologia.2006.08.016.
Abstract
An event-related brain potential experiment was carried out to investigate on-line thematic role assignment during sentence–picture matching in patients with Broca's aphasia. Subjects were presented with a picture that was followed by an auditory sentence. The sentence either matched the picture or mismatched the visual information depicted. Sentences differed in complexity, and ranged from simple active semantically irreversible sentences to passive semantically reversible sentences. ERPs were recorded while subjects were engaged in sentence–picture matching. In addition, reaction time and accuracy were measured. Three groups of subjects were tested: Broca patients (N = 10), non-aphasic patients with a right hemisphere (RH) lesion (N = 8), and healthy aged-matched controls (N = 15). The results of this study showed that, in neurologically unimpaired individuals, thematic role assignment in the context of visual information was an immediate process. This in contrast to patients with Broca's aphasia who demonstrated no signs of on-line sensitivity to the picture–sentence mismatches. The syntactic contribution to the thematic role assignment process seemed to be diminished given the reduction and even absence of P600 effects. Nevertheless, Broca patients showed some off-line behavioral sensitivity to the sentence–picture mismatches. The long response latencies of Broca's aphasics make it likely that off-line response strategies were used. -
Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322-2333. doi:10.1093/cercor/bhl141.
Abstract
Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system. -
Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.
Abstract
Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action. -
Aleman, A., Formisano, E., Koppenhagen, H., Hagoort, P., De Haan, E. H. F., & Kahn, R. S. (2005). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words. Cerebral Cortex, 15(2), 221-228. doi:10.1093/cercor/bhh124.
Abstract
We hypothesized that areas in the temporal lobe that have been implicated in the phonological processing of spoken words would also be activated during the generation and phonological processing of imagined speech. We tested this hypothesis using functional magnetic resonance imaging during a behaviorally controlled task of metrical stress evaluation. Subjects were presented with bisyllabic words and had to determine the alternation of strong and weak syllables. Thus, they were required to discriminate between weak-initial words and strong-initial words. In one condition, the stimuli were presented auditorily to the subjects (by headphones). In the other condition the stimuli were presented visually on a screen and subjects were asked to imagine hearing the word. Results showed activation of the supplementary motor area, inferior frontal gyrus (Broca's area) and insula in both conditions. In the superior temporal gyrus (STG) and in the superior temporal sulcus (STS) strong activation was observed during the auditory (perceptual) condition. However, a region located in the posterior part of the STS/STG also responded during the imagery condition. No activation of this same region of the STS was observed during a control condition which also involved processing of visually presented words, but which required a semantic decision from the subject. We suggest that processing of metrical stress, with or without auditory input, relies in part on cortical interface systems located in the posterior part of STS/STG. These results corroborate behavioral evidence regarding phonological loop involvement in auditory–verbal imagery. -
Bastiaansen, M. C. M., Van der Linden, M., Ter Keurs, M., Dijkstra, T., & Hagoort, P. (2005). Theta responses are involved in lexico-semantic retrieval during language processing. Journal of Cognitive Neuroscience, 17, 530-541. doi:10.1162/0898929053279469.
Abstract
Oscillatory neuronal dynamics, observed in the human electroencephalogram (EEG) during language processing, have been related to the dynamic formation of functionally coherent networks that serve the role of integrating the different sources of information needed for understanding the linguistic input. To further explore the functional role of oscillatory synchrony during language processing, we quantified event-related EEG power changes induced by the presentation of open-class (OC) words and closed-class (CC) words in a wide range of frequencies (from 1 to 30 Hz), while subjects read a short story. Word presentation induced three oscillatory components: a theta power increase (4–7 Hz), an alpha power decrease (10–12 Hz), and a beta power decrease (16–21 Hz). Whereas the alpha and beta responses showed mainly quantitative differences between the two word classes, the theta responses showed qualitative differences between OC words and CC words: A theta power increase was found over left temporal areas for OC words, but not for CC words. The left temporal theta increase may index the activation of a network involved in retrieving the lexical–semantic properties of the OC items. -
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416-423. doi:10.1016/j.tics.2005.07.004.
Abstract
In speaking and comprehending language, word information is retrieved from memory and combined into larger units (unification). Unification operations take place in parallel at the semantic, syntactic and phonological levels of processing. This article proposes a new framework that connects psycholinguistic models to a neurobiological account of language. According to this proposal the left inferior frontal gyrus (LIFG) plays an important role in unification. Research in other domains of cognition indicates that left prefrontal cortex has the necessary neurobiological characteristics for its involvement in the unification for language. I offer here a psycholinguistic perspective on the nature of language unification and the role of LIFG. -
-
Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (
Eds. ), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO. -
Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (
Ed. ), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum. -
Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants' word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116. doi:10.1016/j.cogbrainres.2004.12.009.
Abstract
Children begin to talk at about age one. The vocabulary they need to do so must be built on perceptual evidence and, indeed, infants begin to recognize spoken words long before they talk. Most of the utterances infants hear, however, are continuous, without pauses between words, so constructing a vocabulary requires them to decompose continuous speech in order to extract the individual words. Here, we present electrophysiological evidence that 10-month-old infants recognize two-syllable words they have previously heard only in isolation when these words are presented anew in continuous speech. Moreover, they only need roughly the first syllable of the word to begin doing this. Thus, prelinguistic infants command a highly efficient procedure for segmentation and recognition of spoken words in the absence of an existing vocabulary, allowing them to tackle effectively the problem of bootstrapping a lexicon out of the highly variable, continuous speech signals in their environment. -
De Lange, F. P., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Meer, J. W. M., & Toni, I. (2005). Gray matter volume reduction in the chronic fatigue syndrome. NeuroImage, 26, 777-781. doi:10.1016/j.neuroimage.2005.02.037.
Abstract
The chronic fatigue syndrome (CFS) is a disabling disorder of unknown etiology. The symptomatology of CFS (central fatigue, impaired concentration, attention and memory) suggests that this disorder could be related to alterations at the level of the central nervous system. In this study, we have used an automated and unbiased morphometric technique to test whether CFS patients display structural cerebral abnormalities. We mapped structural cerebral morphology and volume in two cohorts of CFS patients (in total 28 patients) and healthy controls (in total 28 controls) from high-resolution structural magnetic resonance images, using voxel-based morphometry. Additionally, we recorded physical activity levels to explore the relation between severity of CFS symptoms and cerebral abnormalities. We observed significant reductions in global gray matter volume in both cohorts of CFS patients, as compared to matched control participants. Moreover, the decline in gray matter volume was linked to the reduction in physical activity, a core aspect of CFS. These findings suggest that the central nervous system plays a key role in the pathophysiology of CFS and point to a new objective and quantitative tool for clinical diagnosis of this disabling disorder. -
De Lange, F. P., Hagoort, P., & Toni, I. (2005). Neural topography and content of movement representations. Journal of Cognitive Neuroscience, 17(1), 97-112. doi:10.1162/0898929052880039.
Abstract
We have used implicit motor imagery to investigate the neural correlates of motor planning independently from actual movements. Subjects were presented with drawings of left or right hands and asked to judge the hand laterality, regardless of the stimulus rotation from its upright orientation. We paired this task with a visual imagery control task, in which subjects were presented with typographical characters and asked to report whether they saw a canonical letter or its mirror image, regardless of its rotation. We measured neurovascular activity with fast event-related fMRI, distinguishing responses parametrically related to motor imagery from responses evoked by visual imagery and other task-related phenomena. By quantifying behavioral and neurovascular correlates of imagery on a trial-by-trial basis, we could discriminate between stimulusrelated, mental rotation-related, and response-related neural activity. We found that specific portions of the posterior parietal and precentral cortex increased their activity as a function of mental rotation only during the motor imagery task. Within these regions, the parietal cortex was visually responsive, whereas the dorsal precentral cortex was not. Response- but not rotation-related activity was found around the left central sulcus (putative primary motor cortex) during both imagery tasks. Our study provides novel evidence on the topography and content of movement representations in the human brain. During intended action, the posterior parietal cortex combines somatosensory and visuomotor information, whereas the dorsal premotor cortex generates the actual motor plan, and the primary motor cortex deals with movement execution. We discuss the relevance of these results in the context of current models of action planning. -
Van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467. doi:10.1037/0278-7393.31.3.443.
Abstract
The authors examined whether people can use their knowledge of the wider discourse rapidly enough to anticipate specific upcoming words as a sentence is unfolding. In an event-related brain potential (ERP) experiment, subjects heard Dutch stories that supported the prediction of a specific noun. To probe whether this noun was anticipated at a preceding indefinite article, stories were continued with a gender-marked adjective whose suffix mismatched the upcoming noun's syntactic gender. Prediction-inconsistent adjectives elicited a differential ERP effect, which disappeared in a no-discourse control experiment. Furthermore, in self-paced reading, prediction-inconsistent adjectives slowed readers down before the noun. These findings suggest that people can indeed predict upcoming words in fluent discourse and, moreover, that these predicted words can immediately begin to participate in incremental parsing operations. -
Wassenaar, M., & Hagoort, P. (2005). Word-category violations in patients with Broca's aphasia: An ERP study. Brain and Language, 92, 117-137. doi:10.1016/j.bandl.2004.05.011.
Abstract
An event-related brain potential experiment was carried out to investigate on-line syntactic processing in patients with Broca’s aphasia. Subjects were visually presented with sentences that were either syntactically correct or contained violations of word-category. Three groups of subjects were tested: Broca patients (N=11), non-aphasic patients with a right hemisphere (RH) lesion (N=9), and healthy aged-matched controls (N=15). Both control groups appeared sensitive to the violations of word-category as shown by clear P600/SPS effects. The Broca patients displayed only a very reduced and delayed P600/SPS effect. The results are discussed in the context of a lexicalist parsing model. It is concluded that Broca patients are hindered to detect on-line violations of word-category, if word class information is incomplete or delayed available.
Share this page