Displaying 1 - 66 of 66
-
Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain's language network: Syntactic ambiguity resolution after TMS to the IFG and MTG. Journal of Cognitive Neuroscience, 25(10), 1664-1677. doi:10.1162/jocn_a_00430.
Abstract
The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG is involved in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to a control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension. -
Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4: 416. doi:10.3389/fpsyg.2013.00416.
Abstract
A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions. -
Hagoort, P., & Poeppel, D. (2013). The infrastructure of the language-ready brain. In M. A. Arbib (
Ed. ), Language, music, and the brain: A mysterious relationship (pp. 233-255). Cambridge, MA: MIT Press.Abstract
This chapter sketches in very general terms the cognitive architecture of both language comprehension and production, as well as the neurobiological infrastructure that makes the human brain ready for language. Focus is on spoken language, since that compares most directly to processing music. It is worth bearing in mind that humans can also interface with language as a cognitive system using sign and text (visual) as well as Braille (tactile); that is to say, the system can connect with input/output processes in any sensory modality. Language processing consists of a complex and nested set of subroutines to get from sound to meaning (in comprehension) or meaning to sound (in production), with remarkable speed and accuracy. The fi rst section outlines a selection of the major constituent operations, from fractionating the input into manageable units to combining and unifying information in the construction of meaning. The next section addresses the neurobiological infrastructure hypothesized to form the basis for language processing. Principal insights are summarized by building on the notion of “brain networks” for speech–sound processing, syntactic processing, and the construction of meaning, bearing in mind that such a neat three-way subdivision overlooks important overlap and shared mechanisms in the neural architecture subserving language processing. Finally, in keeping with the spirit of the volume, some possible relations are highlighted between language and music that arise from the infrastructure developed here. Our characterization of language and its neurobiological foundations is necessarily selective and brief. Our aim is to identify for the reader critical questions that require an answer to have a plausible cognitive neuroscience of language processing. -
Hagoort, P., & Meyer, A. S. (2013). What belongs together goes together: the speaker-hearer perspective. A commentary on MacDonald's PDC account. Frontiers in Psychology, 4: 228. doi:10.3389/fpsyg.2013.00228.
Abstract
First paragraph:
MacDonald (2013) proposes that distributional properties of language and processing biases in language comprehension can to a large extent be attributed to consequences of the language production process. In essence, the account is derived from the principle of least effort that was formulated by Zipf, among others (Zipf, 1949; Levelt, 2013). However, in Zipf's view the outcome of the least effort principle was a compromise between least effort for the speaker and least effort for the listener, whereas MacDonald puts most of the burden on the production process. -
Holler, J., Schubotz, L., Kelly, S., Schuetze, M., Hagoort, P., & Ozyurek, A. (2013). Here's not looking at you, kid! Unaddressed recipients benefit from co-speech gestures when speech processing suffers. In M. Knauff, M. Pauen, I. Sebanz, & I. Wachsmuth (
Eds. ), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 2560-2565). Austin, TX: Cognitive Science Society. Retrieved from http://mindmodeling.org/cogsci2013/papers/0463/index.html.Abstract
In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from these different modalities, and how perceived communicative intentions, often signaled through visual signals, such as eye
gaze, may influence this processing. We address this question by simulating a triadic communication context in which a
speaker alternated her gaze between two different recipients. Participants thus viewed speech-only or speech+gesture
object-related utterances when being addressed (direct gaze) or unaddressed (averted gaze). Two object images followed
each message and participants’ task was to choose the object that matched the message. Unaddressed recipients responded significantly slower than addressees for speech-only
utterances. However, perceiving the same speech accompanied by gestures sped them up to a level identical to
that of addressees. That is, when speech processing suffers due to not being addressed, gesture processing remains intact and enhances the comprehension of a speaker’s message -
Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.
Abstract
The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills. -
Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.
Abstract
In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.Additional information
Kirstensen_Cer_Cor_Suppl_Mat.doc -
Meyer, A. S., & Hagoort, P. (2013). What does it mean to predict one's own utterances? [Commentary on Pickering & Garrod]. Behavioral and Brain Sciences, 36, 367-368. doi:10.1017/S0140525X12002786.
Abstract
Many authors have recently highlighted the importance of prediction for language comprehension. Pickering & Garrod (P&G) are the first to propose a central role for prediction in language production. This is an intriguing idea, but it is not clear what it means for speakers to predict their own utterances, and how prediction during production can be empirically distinguished from production proper. -
Peeters, D., Chu, M., Holler, J., Ozyurek, A., & Hagoort, P. (2013). Getting to the point: The influence of communicative intent on the kinematics of pointing gestures. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (
Eds. ), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 1127-1132). Austin, TX: Cognitive Science Society.Abstract
In everyday communication, people not only use speech but
also hand gestures to convey information. One intriguing
question in gesture research has been why gestures take the
specific form they do. Previous research has identified the
speaker-gesturer’s communicative intent as one factor
shaping the form of iconic gestures. Here we investigate
whether communicative intent also shapes the form of
pointing gestures. In an experimental setting, twenty-four
participants produced pointing gestures identifying a referent
for an addressee. The communicative intent of the speakergesturer
was manipulated by varying the informativeness of
the pointing gesture. A second independent variable was the
presence or absence of concurrent speech. As a function of their communicative intent and irrespective of the presence of speech, participants varied the durations of the stroke and the post-stroke hold-phase of their gesture. These findings add to our understanding of how the communicative context influences the form that a gesture takes.Additional information
http://mindmodeling.org/cogsci2013/papers/0219/index.html -
Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.
Abstract
Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.Additional information
Segaert_Supplementary_data_2013.docx -
Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.
Abstract
Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects. -
Stolk, A., Verhagen, L., Schoffelen, J.-M., Oostenveld, R., Blokpoel, M., Hagoort, P., van Rooij, I., & Tonia, I. (2013). Neural mechanisms of communicative innovation. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14574-14579. doi:10.1073/pnas.1303170110.
Abstract
Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.Additional information
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303170110/-/DCSupplemental -
Thompson-Schill, S., Hagoort, P., Dominey, P. F., Honing, H., Koelsch, S., Ladd, D. R., Lerdahl, F., Levinson, S. C., & Steedman, M. (2013). Multiple levels of structure in language and music. In M. A. Arbib (
Ed. ), Language, music, and the brain: A mysterious relationship (pp. 289-303). Cambridge, MA: MIT Press.Abstract
A forum devoted to the relationship between music and language begins with an implicit assumption: There is at least one common principle that is central to all human musical systems and all languages, but that is not characteristic of (most) other domains. Why else should these two categories be paired together for analysis? We propose that one candidate for a common principle is their structure. In this chapter, we explore the nature of that structure—and its consequences for psychological and neurological processing mechanisms—within and across these two domains. -
Van Leeuwen, T. M., Hagoort, P., & Händel, B. F. (2013). Real color captures attention and overrides spatial cues in grapheme-color synesthetes but not in controls. Neuropsychologia, 51(10), 1802-1813. doi:10.1016/j.neuropsychologia.2013.06.024.
Abstract
Grapheme-color synesthetes perceive color when reading letters or digits. We investigated oscillatory brain signals of synesthetes vs. controls using magnetoencephalography. Brain oscillations specifically in the alpha band (∼10 Hz) have two interesting features: alpha has been linked to inhibitory processes and can act as a marker for attention. The possible role of reduced inhibition as an underlying cause of synesthesia, as well as the precise role of attention in synesthesia is widely discussed. To assess alpha power effects due to synesthesia, synesthetes as well as matched controls viewed synesthesia-inducing graphemes, colored control graphemes, and non-colored control graphemes while brain activity was recorded. Subjects had to report a color change at the end of each trial which allowed us to assess the strength of synesthesia in each synesthete. Since color (synesthetic or real) might allocate attention we also included an attentional cue in our paradigm which could direct covert attention. In controls the attentional cue always caused a lateralization of alpha power with a contralateral decrease and ipsilateral alpha increase over occipital sensors. In synesthetes, however, the influence of the cue was overruled by color: independent of the attentional cue, alpha power decreased contralateral to the color (synesthetic or real). This indicates that in synesthetes color guides attention. This was confirmed by reaction time effects due to color, i.e. faster RTs for the color side independent of the cue. Finally, the stronger the observed color dependent alpha lateralization, the stronger was the manifestation of synesthesia as measured by congruency effects of synesthetic colors on RTs. Behavioral and imaging results indicate that color induces a location-specific, automatic shift of attention towards color in synesthetes but not in controls. We hypothesize that this mechanism can facilitate coupling of grapheme and color during the development of synesthesia. -
Wagensveld, B., Van Alphen, P. M., Segers, E., Hagoort, P., & Verhoeven, L. (2013). The neural correlates of rhyme awareness in preliterate and literate children. Clinical Neurophysiology, 124, 1336-1345. doi:10.1016/j.clinph.2013.01.022.
Abstract
Objective Most rhyme awareness assessments do not encompass measures of the global similarity effect (i.e., children who are able to perform simple rhyme judgments get confused when presented with globally similar non-rhyming pairs). The present study examines the neural nature of this effect by studying the N450 rhyme effect. Methods Behavioral and electrophysiological responses of Dutch pre-literate kindergartners and literate second graders were recorded while they made rhyme judgments of word pairs in three conditions; phonologically rhyming (e.g., wijn-pijn), overlapping non-rhyming (e.g., pen-pijn) and unrelated non-rhyming pairs (e.g., boom-pijn). Results Behaviorally, both groups had difficulty judging overlapping but not rhyming and unrelated pairs. The neural data of second graders showed overlapping pairs were processed in a similar fashion as unrelated pairs; both showed a more negative deflection of the N450 component than rhyming items. Kindergartners did not show a typical N450 rhyme effect. However, some other interesting ERP differences were observed, indicating preliterates are sensitive to rhyme at a certain level. Significance Rhyme judgments of globally similar items rely on the same process as rhyme judgments of rhyming and unrelated items. Therefore, incorporating a globally similar condition in rhyme assessments may lead to a more in-depth measure of early phonological awareness skills. Highlights Behavioral and electrophysiological responses were recorded while (pre)literate children made rhyme judgments of rhyming, overlapping and unrelated words. Behaviorally both groups had difficulty judging overlapping pairs as non-rhyming while overlapping and unrelated neural patterns were similar in literates. Preliterates show a different pattern indicating a developing phonological system. -
Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2013). ERP evidence on the interaction between information structure and emotional salience of words. Cognitive, Affective and Behavioral Neuroscience, 13, 297-310. doi:10.3758/s13415-012-0146-2.
Abstract
Both emotional words and words focused by information structure can capture attention. This study examined the interplay between emotional salience and information structure in modulating attentional resources in the service of integrating emotional words into sentence context. Event-related potentials (ERPs) to affectively negative, neutral, and positive words, which were either focused or nonfocused in question–answer pairs, were evaluated during sentence comprehension. The results revealed an early negative effect (90–200 ms), a P2 effect, as well as an effect in the N400 time window, for both emotional salience and information structure. Moreover, an interaction between emotional salience and information structure occurred within the N400 time window over right posterior electrodes, showing that information structure influences the semantic integration only for neutral words, but not for emotional words. This might reflect the fact that the linguistic salience of emotional words can override the effect of information structure on the integration of words into context. The interaction provides evidence for attention–emotion interactions at a later stage of processing. In addition, the absence of interaction in the early time window suggests that the processing of emotional information is highly automatic and independent of context. The results suggest independent attention capture systems of emotional salience and information structure at the early stage but an interaction between them at a later stage, during the semantic integration of words. -
Wang, L., Zhu, Z., Bastiaansen, M. C. M., Hagoort, P., & Yang, Y. (2013). Recognizing the emotional valence of names: An ERP study. Brain and Language, 125, 118-127. doi:10.1016/j.bandl.2013.01.006.
Abstract
Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional valence only for nouns. This might reflect automatic attention directed towards emotional stimuli. The absence of such an effect for names supports the notion that the emotional meaning carried by names is accessed after word recognition and person identification. In addition, both names with negative valence and emotional nouns elicited late positive effects, which have been associated with evaluation of emotional significance. This positive effect started earlier for nouns than for names, but with similar durations. Our results suggest that distinct neural systems are involved in the retrieval of names’ and nouns’ emotional meaning. -
Brouwer, G. J., Tong, F., Hagoort, P., & Van Ee, R. (2009). Perceptual incongruence influences bistability and cortical activation. Plos One, 4(3): e5056. doi:10.1371/journal.pone.0005056.
Abstract
We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry). Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A) were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict. -
Casasanto, D., Willems, R. M., & Hagoort, P. (2009). Body-specific representations of action verbs: Evidence from fMRI in right- and left-handers. In N. Taatgen, & H. Van Rijn (
Eds. ), Proceedings of the 31st Annual Meeting of the Cognitive Science Society (pp. 875-880). Austin: Cognitive Science Society.Abstract
According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating our own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis (Casasanto, 2009), we used fMRI to compare premotor activity correlated with action verb understanding in right- and left-handers. Right-handers preferentially activated left premotor cortex during lexical decision on manual action verbs (compared with non-manual action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body-specific: Right and left-handers, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings. -
Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (
Eds. ), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.Abstract
This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production -
Folia, V., Forkstam, C., Hagoort, P., & Petersson, K. M. (2009). Language comprehension: The interplay between form and content. In N. Taatgen, & H. van Rijn (
Eds. ), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 1686-1691). Austin, TX: Cognitive Science Society.Abstract
In a 2x2 event-related FMRI study we find support for the idea that the inferior frontal cortex, centered on Broca’s region and its homologue, is involved in constructive unification operations during the structure-building process in parsing for comprehension. Tentatively, we provide evidence for a role of the dorsolateral prefrontal cortex centered on BA 9/46 in the control component of the language system. Finally, the left temporo-parietal cortex, in the vicinity of Wernicke’s region, supports the interaction between the syntax of gender agreement and sentence-level semantics. -
Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (
Eds. ), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press. -
Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (
Eds. ), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.Abstract
This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language. -
Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (
Ed. ), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.Abstract
Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification. -
Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (
Ed. ), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij. -
Hagoort, P., & Levelt, W. J. M. (2009). The speaking brain. Science, 326(5951), 372-373. doi:10.1126/science.1181675.
Abstract
How does intention to speak become the action of speaking? It involves the generation of a preverbal message that is tailored to the requirements of a particular language, and through a series of steps, the message is transformed into a linear sequence of speech sounds (1, 2). These steps include retrieving different kinds of information from memory (semantic, syntactic, and phonological), and combining them into larger structures, a process called unification. Despite general agreement about the steps that connect intention to articulation, there is no consensus about their temporal profile or the role of feedback from later steps (3, 4). In addition, since the discovery by the French physician Pierre Paul Broca (in 1865) of the role of the left inferior frontal cortex in speaking, relatively little progress has been made in understanding the neural infrastructure that supports speech production (5). One reason is that the characteristics of natural language are uniquely human, and thus the neurobiology of language lacks an adequate animal model. But on page 445 of this issue, Sahin et al. (6) demonstrate, by recording neuronal activity in the human brain, that different kinds of linguistic information are indeed sequentially processed within Broca's area. -
Kooijman, V., Hagoort, P., & Cutler, A. (2009). Prosodic structure in early word segmentation: ERP evidence from Dutch ten-month-olds. Infancy, 14, 591 -612. doi:10.1080/15250000903263957.
Abstract
Recognizing word boundaries in continuous speech requires detailed knowledge of the native language. In the first year of life, infants acquire considerable word segmentation abilities. Infants at this early stage in word segmentation rely to a large extent on the metrical pattern of their native language, at least in stress-based languages. In Dutch and English (both languages with a preferred trochaic stress pattern), segmentation of strong-weak words develops rapidly between 7 and 10 months of age. Nevertheless, trochaic languages contain not only strong-weak words but also words with a weak-strong stress pattern. In this article, we present electrophysiological evidence of the beginnings of weak-strong word segmentation in Dutch 10-month-olds. At this age, the ability to combine different cues for efficient word segmentation does not yet seem to be completely developed. We provide evidence that Dutch infants still largely rely on strong syllables, even for the segmentation of weak-strong words. -
Koten Jr., J. W., Wood, G., Hagoort, P., Goebel, R., Propping, P., Willmes, K., & Boomsma, D. I. (2009). Genetic contribution to variation in cognitive function: An fMRI study in twins. Science, 323(5922), 1737-1740. doi:10.1126/science.1167371.
Abstract
Little is known about the genetic contribution to individual differences in neural networks subserving cognition function. In this functional magnetic resonance imaging (fMRI) twin study, we found a significant genetic influence on brain activation in neural networks supporting digit working memory tasks. Participants activating frontal-parietal networks responded faster than individuals relying more on language-related brain networks.There were genetic influences on brain activation in language-relevant brain circuits that were atypical for numerical working memory tasks as such. This suggests that differences in cognition might be related to brain activation patterns that differ qualitatively among individuals. -
De Lange, F. P., Koers, A., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Meer, J. W. M., & Toni, I. (2009). Reply to: "Can CBT substantially change grey matter volume in chronic fatigue syndrome" [Letter to the editor]. Brain, 132(6), e111. doi:10.1093/brain/awn208.
-
De Lange, F., Bleijenberg, G., Van der Meer, J. W. M., Hagoort, P., & Toni, I. (2009). Reply: Change in grey matter volume cannot be assumed to be due to cognitive behavioural therapy [Letter to the editor]. Brain, 132(7), e120. doi:10.1093/brain/awn359.
-
De Lange, F. P., Knoop, H., Bleijenberg, G., Van der Meer, J. W. M., Hagoort, P., & Toni, I. (2009). The experience of fatigue in the brain [Letter to the editor]. Psychological Medicine, 39, 523-524. doi:10.1017/S0033291708004844.
-
Menenti, L., Petersson, K. M., Scheeringa, R., & Hagoort, P. (2009). When elephants fly: Differential sensitivity of right and left inferior frontal gyri to discourse and world knowledge. Journal of Cognitive Neuroscience, 21, 2358-2368. doi:10.1162/jocn.2008.21163.
Abstract
Both local discourse and world knowledge are known to influence sentence processing. We investigated how these two sources of information conspire in language comprehension. Two types of critical sentences, correct and world knowledge anomalies, were preceded by either a neutral or a local context. The latter made the world knowledge anomalies more acceptable or plausible. We predicted that the effect of world knowledge anomalies would be weaker for the local context. World knowledge effects have previously been observed in the left inferior frontal region (Brodmann's area 45/47). In the current study, an effect of world knowledge was present in this region in the neutral context. We also observed an effect in the right inferior frontal gyrus, which was more sensitive to the discourse manipulation than the left inferior frontal gyrus. In addition, the left angular gyrus reacted strongly to the degree of discourse coherence between the context and critical sentence. Overall, both world knowledge and the discourse context affect the process of meaning unification, but do so by recruiting partly different sets of brain areas. -
Newman-Norlund, S. E., Noordzij, M. L., Newman-Norlund, R. D., Volman, I. A., De Ruiter, J. P., Hagoort, P., & Toni, I. (2009). Recipient design in tacit communication. Cognition, 111, 46-54. doi:10.1016/j.cognition.2008.12.004.
Abstract
The ability to design tailored messages for specific listeners is an important aspect of
human communication. The present study investigates whether a mere belief about an
addressee’s identity influences the generation and production of a communicative message in
a novel, non-verbal communication task. Participants were made to believe they were playing a game with a child or an adult partner, while a confederate acted as both child
and adult partners with matched performance and response times. The participants’ belief
influenced their behavior, spending longer when interacting with the presumed child
addressee, but only during communicative portions of the game, i.e. using time as a tool
to place emphasis on target information. This communicative adaptation attenuated with
experience, and it was related to personality traits, namely Empathy and Need for Cognition
measures. Overall, these findings indicate that novel nonverbal communicative interactions
are selected according to a socio-centric perspective, and they are strongly
influenced by participants’ traits. -
Noordzij, M., Newman-Norlund, S. E., De Ruiter, J. P., Hagoort, P., Levinson, S. C., & Toni, I. (2009). Brain mechanisms underlying human communication. Frontiers in Human Neuroscience, 3:14. doi:10.3389/neuro.09.014.2009.
Abstract
Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities. -
Pijnacker, J., Geurts, B., Van Lambalgen, M., Kan, C. C., Buitelaar, J. K., & Hagoort, P. (2009). Defeasible reasoning in high-functioning adults with autism: Evidence for impaired exception-handling. Neuropsychologia, 47, 644-651. doi:10.1016/j.neuropsychologia.2008.11.011.
Abstract
While autism is one of the most intensively researched psychiatric disorders, little is known about reasoning skills of people with autism. The focus of this study was on defeasible inferences, that is inferences that can be revised in the light of new information. We used a behavioral task to investigate (a) conditional reasoning and (b) the suppression of conditional inferences in high-functioning adults with autism. In the suppression task a possible exception was made salient which could prevent a conclusion from being drawn. We predicted that the autism group would have difficulties dealing with such exceptions because they require mental flexibility to adjust to the context, which is often impaired in autism. The findings confirm our hypothesis that high-functioning adults with autism have a specific difficulty with exception-handling during reasoning. It is suggested that defeasible reasoning is also involved in other cognitive domains. Implications for neural underpinnings of reasoning and autism are discussed. -
Pijnacker, J., Hagoort, P., Buitelaar, J., Teunisse, J.-P., & Geurts, B. (2009). Pragmatic inferences in high-functioning adults with autism and Asperger syndrome. Journal of Autism and Developmental Disorders, 39(4), 607-618. doi:10.1007/s10803-008-0661-8.
Abstract
Although people with autism spectrum disorders (ASD) often have severe problems with pragmatic aspects of language, little is known about their pragmatic reasoning. We carried out a behavioral study on highfunctioning adults with autistic disorder (n = 11) and Asperger syndrome (n = 17) and matched controls (n = 28) to investigate whether they are capable of deriving scalar implicatures, which are generally considered to be pragmatic inferences. Participants were presented with underinformative sentences like ‘‘Some sparrows are birds’’. This sentence is logically true, but pragmatically inappropriate if the scalar implicature ‘‘Not all sparrows are birds’’ is derived. The present findings indicate that the combined ASD group was just as likely as controls to derive scalar implicatures, yet there was a difference between participants with autistic disorder and Asperger syndrome, suggesting a potential differentiation between these disorders in pragmatic reasoning. Moreover, our results suggest that verbal intelligence is a constraint for task performance in autistic disorder but not in Asperger syndrome. -
Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 44, 1224-1238. doi:10.1016/j.neuroimage.2008.08.041.
Abstract
PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta
power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in
regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task. -
Snijders, T. M., Vosse, T., Kempen, G., Van Berkum, J. J. A., Petersson, K. M., & Hagoort, P. (2009). Retrieval and unification of syntactic structure in sentence comprehension: An fMRI study using word-category ambiguity. Cerebral Cortex, 19, 1493-1503. doi:10.1093/cercor/bhn187.
Abstract
Sentence comprehension requires the retrieval of single word information from long-term memory, and the integration of this information into multiword representations. The current functional magnetic resonance imaging study explored the hypothesis that the left posterior temporal gyrus supports the retrieval of lexical-syntactic information, whereas left inferior frontal gyrus (LIFG) contributes to syntactic unification. Twenty-eight subjects read sentences and word sequences containing word-category (noun–verb) ambiguous words at critical positions. Regions contributing to the syntactic unification process should show enhanced activation for sentences compared to words, and only within sentences display a larger signal for ambiguous than unambiguous conditions. The posterior LIFG showed exactly this predicted pattern, confirming our hypothesis that LIFG contributes to syntactic unification. The left posterior middle temporal gyrus was activated more for ambiguous than unambiguous conditions (main effect over both sentences and word sequences), as predicted for regions subserving the retrieval of lexical-syntactic information from memory. We conclude that understanding language involves the dynamic interplay between left inferior frontal and left posterior temporal regions. -
Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Kan, C. C., Tendolkar, I., & Hagoort, P. (2009). Neural correlates of pragmatic language comprehension in autism disorders. Brain, 132, 1941-1952. doi:10.1093/brain/awp103.
Abstract
Difficulties with pragmatic aspects of communication are universal across individuals with autism spectrum disorders (ASDs). Here we focused on an aspect of pragmatic language comprehension that is relevant to social interaction in daily life: the integration of speaker characteristics inferred from the voice with the content of a message. Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of the integration of voice-based inferences about the speaker’s age, gender or social background, and sentence content in adults with ASD and matched control participants. Relative to the control group, the ASD group showed increased activation in right inferior frontal gyrus (RIFG; Brodmann area 47) for speakerincongruent sentences compared to speaker-congruent sentences. Given that both groups performed behaviourally at a similar level on a debriefing interview outside the scanner, the increased activation in RIFG for the ASD group was interpreted as being compensatory in nature. It presumably reflects spill-over processing from the language dominant left hemisphere due to higher task demands faced by the participants with ASD when integrating speaker characteristics and the content of a spoken sentence. Furthermore, only the control group showed decreased activation for speaker-incongruent relative to speaker-congruent sentences in right ventral medial prefrontal cortex (vMPFC; Brodmann area 10), including right anterior cingulate cortex (ACC; Brodmann area 24/32). Since vMPFC is involved in self-referential processing related to judgments and inferences about self and others, the absence of such a modulation in vMPFC activation in the ASD group possibly points to atypical default self-referential mental activity in ASD. Our results show that in ASD compensatory mechanisms are necessary in implicit, low-level inferential processes in spoken language understanding. This indicates that pragmatic language problems in ASD are not restricted to high-level inferential processes, but encompass the most basic aspects of pragmatic language processing. -
Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van den Brink, D., Buitelaar, J. K., & Hagoort, P. (2009). Unification of speaker and meaning in language comprehension: An fMRI study. Journal of Cognitive Neuroscience, 21, 2085-2099. doi:10.1162/jocn.2008.21161.
Abstract
When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the inferior frontal gyrus bilaterally (BA 45/47) during listening to sentences whose meaning was incongruent with inferred speaker characteristics. Furthermore, our results showed an overlap in brain regions involved in unification of speaker-related information and those used for the unification of semantic and world knowledge information [inferior frontal gyrus bilaterally (BA 45/47) and left middle temporal gyrus (BA 21)]. These findings provide evidence for a shared neural unification system for linguistic and extralinguistic sources of information and extend the existing knowledge about the role of inferior frontal cortex as a crucial component for unification during language comprehension. -
Uddén, J., Araújo, S., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2009). A matter of time: Implicit acquisition of recursive sequence structures. In N. Taatgen, & H. Van Rijn (
Eds. ), Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society (pp. 2444-2449).Abstract
A dominant hypothesis in empirical research on the evolution of language is the following: the fundamental difference between animal and human communication systems is captured by the distinction between regular and more complex non-regular grammars. Studies reporting successful artificial grammar learning of nested recursive structures and imaging studies of the same have methodological shortcomings since they typically allow explicit problem solving strategies and this has been shown to account for the learning effect in subsequent behavioral studies. The present study overcomes these shortcomings by using subtle violations of agreement structure in a preference classification task. In contrast to the studies conducted so far, we use an implicit learning paradigm, allowing the time needed for both abstraction processes and consolidation to take place. Our results demonstrate robust implicit learning of recursively embedded structures (context-free grammar) and recursive structures with cross-dependencies (context-sensitive grammar) in an artificial grammar learning task spanning 9 days. Keywords: Implicit artificial grammar learning; centre embedded; cross-dependency; implicit learning; context-sensitive grammar; context-free grammar; regular grammar; non-regular grammar -
Wang, L., Hagoort, P., & Yang, Y. (2009). Semantic illusion depends on information structure: ERP evidence. Brain Research, 1282, 50-56. doi:10.1016/j.brainres.2009.05.069.
Abstract
Next to propositional content, speakers distribute information in their utterances in such a way that listeners can make a distinction between new (focused) and given (non-focused) information. This is referred to as information structure. We measured event-related potentials (ERPs) to explore the role of information structure in semantic processing. Following different questions in wh-question-answer pairs (e.g. What kind of vegetable did Ming buy for cooking today? /Who bought the vegetables for cooking today?), the answer sentences (e.g., Ming bought eggplant/beef to cook today.) contained a critical word, which was either semantically appropriate (eggplant) or inappropriate (beef), and either focus or non-focus. The results showed a full N400 effect only when the critical words were in focus position. In non-focus position a strongly reduced N400 effect was observed, in line with the well-known semantic illusion effect. The results suggest that information structure facilitates semantic processing by devoting more resources to focused information. -
Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3: 39, pp. 39. doi:10.3389/neuro.09.039.2009.
Abstract
If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009). During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions. -
Willems, R. M., & Hagoort, P. (2009). Broca's region: Battles are not won by ignoring half of the facts. Trends in Cognitive Sciences, 13(3), 101. doi:10.1016/j.tics.2008.12.001.
-
Willems, R. M., Ozyurek, A., & Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage, 47, 1992-2004. doi:10.1016/j.neuroimage.2009.05.066.
Abstract
Several studies indicate that both posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and left inferior frontal gyrus (LIFG) are involved in integrating information from different modalities. Here we investigated the respective roles of these two areas in integration of action and language information. We exploited the fact that the semantic relationship between language and different forms of action (i.e. co-speech gestures and pantomimes) is radically different. Speech and co-speech gestures are always produced together, and gestures are not unambiguously understood without speech. On the contrary, pantomimes are not necessarily produced together with speech and can be easily understood without speech. We presented speech together with these two types of communicative hand actions in matching or mismatching combinations to manipulate semantic integration load. Left and right pSTS/MTG were only involved in semantic integration of speech and pantomimes. Left IFG on the other hand was involved in integration of speech and co-speech gestures as well as of speech and pantomimes. Effective connectivity analyses showed that depending upon the semantic relationship between language and action, LIFG modulates activation levels in left pSTS.
This suggests that integration in pSTS/MTG involves the matching of two input streams for which there is a relatively stable common object representation, whereas integration in LIFG is better characterized as the on-line construction of a new and unified representation of the input streams. In conclusion, pSTS/MTG and LIFG are differentially involved in multimodal integration, crucially depending upon the semantic relationship between the input streams.Additional information
Supplementary table S1 -
Willems, R. M., & Hagoort, P. (2009). Hand preference influences neural correlates of action observation. Brain Research, 1269, 90-104. doi:10.1016/j.brainres.2009.02.057.
Abstract
It has been argued that we map observed actions onto our own motor system. Here we added to this issue by investigating whether hand preference influences the neural correlates of action observation of simple, essentially meaningless hand actions. Such an influence would argue for an intricate neural coupling between action production and action observation, which goes beyond effects of motor repertoire or explicit motor training, as has been suggested before. Indeed, parts of the human motor system exhibited a close coupling between action production and action observation. Ventral premotor and inferior and superior parietal cortices showed differential activation for left- and right-handers that was similar during action production as well as during action observation. This suggests that mapping observed actions onto the observer's own motor system is a core feature of action observation - at least for actions that do not have a clear goal or meaning. Basic differences in the way we act upon the world are not only reflected in neural correlates of action production, but can also influence the brain basis of action observation. -
Baggio, G., Van Lambalgen, M., & Hagoort, P. (2008). Computing and recomputing discourse models: An ERP study. Journal of Memory and Language, 59, 36-53. doi:10.1016/j.jml.2008.02.005.
Abstract
While syntactic reanalysis has been extensively investigated in psycholinguistics, comparatively little is known about reanalysis in the semantic domain. We used event-related brain potentials (ERPs) to keep track of semantic processes involved in understanding short narratives such as ‘The girl was writing a letter when her friend spilled coffee on the paper’. We hypothesize that these sentences are interpreted in two steps: (1) when the progressive clause is processed, a discourse model is computed in which the goal state (a complete letter) is predicted to hold; (2) when the subordinate clause is processed, the initial representation is recomputed to the effect that, in the final discourse structure, the goal state is not satisfied. Critical sentences evoked larger sustained anterior negativities (SANs) compared to controls, starting around 400 ms following the onset of the sentence-final word, and lasting for about 400 ms. The amplitude of the SAN was correlated with the frequency with which participants, in an offline probe-selection task, responded that the goal state was not attained. Our results raise the possibility that the brain supports some form of non-monotonic recomputation to integrate information which invalidates previously held assumptions. -
Bastiaansen, M. C. M., Oostenveld, R., Jensen, O., & Hagoort, P. (2008). I see what you mean: Theta power increases are involved in the retrieval of lexical semantic information. Brain and Language, 106(1), 15-28. doi:10.1016/j.bandl.2007.10.006.
Abstract
An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects performed a visual lexical decision task while their EEG was recorded. We compared the EEG responses to nouns with either visual semantic properties (VIS, referring to colors and shapes) or with auditory semantic properties (AUD, referring to sounds). A time–frequency analysis of the EEG revealed power increases in the theta (4–7 Hz) and lower-beta (13–18 Hz) frequency bands, and an early power increase and subsequent decrease for the alpha (8–12 Hz) band. In the theta band we observed a double dissociation: temporal electrodes showed larger theta power increases in the AUD condition, while occipital leads showed larger theta responses in the VIS condition. The results support the notion that semantic representations are stored in functional networks with a topography that reflects the semantic properties of the stored items, and provide further evidence that oscillatory brain dynamics in the theta frequency range are functionally related to the retrieval of lexical semantic information. -
Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145, 132-150. doi:10.1196/annals.1416.012.
Abstract
Several studies have reported an association between dyslexia and implicit learning deficits. It has been suggested that the weakness in implicit learning observed in dyslexic individuals may be related to sequential processing and implicit sequence learning. In the present article, we review the current literature on implicit learning and dyslexia. We describe a novel, forced-choice structural "mere exposure" artificial grammar learning paradigm and characterize this paradigm in normal readers in relation to the standard grammaticality classification paradigm. We argue that preference classification is a more optimal measure of the outcome of implicit acquisition since in the preference version participants are kept completely unaware of the underlying generative mechanism, while in the grammaticality version, the subjects have, at least in principle, been informed about the existence of an underlying complex set of rules at the point of classification (but not during acquisition). On the basis of the "mere exposure effect," we tested the prediction that the development of preference will correlate with the grammaticality status of the classification items. In addition, we examined the effects of grammaticality (grammatical/nongrammatical) and associative chunk strength (ACS; high/low) on the classification tasks (preference/grammaticality). Using a balanced ACS design in which the factors of grammaticality (grammatical/nongrammatical) and ACS (high/low) were independently controlled in a 2 × 2 factorial design, we confirmed our predictions. We discuss the suitability of this task for further investigation of the implicit learning characteristics in dyslexia. -
Hagoort, P. (2008). Should psychology ignore the language of the brain? Current Directions in Psychological Science, 17(2), 96-101. doi:10.1111/j.1467-8721.2008.00556.x.
Abstract
Claims that neuroscientific data do not contribute to our understanding of psychological functions have been made recently. Here I argue that these criticisms are solely based on an analysis of functional magnetic resonance imaging (fMRI) studies. However, fMRI is only one of the methods in the toolkit of cognitive neuroscience. I provide examples from research on event-related brain potentials (ERPs) that have contributed to our understanding of the cognitive architecture of human language functions. In addition, I provide evidence of (possible) contributions from fMRI measurements to our understanding of the functional architecture of language processing. Finally, I argue that a neurobiology of human language that integrates information about the necessary genetic and neural infrastructures will allow us to answer certain questions that are not answerable if all we have is evidence from behavior. -
Hagoort, P. (2008). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 1055-1069. doi:10.1098/rstb.2007.2159.
Abstract
This paper focuses on what electrical and magnetic recordings of human brain activity reveal about spoken language understanding. Based on the high temporal resolution of these recordings, a fine-grained temporal profile of different aspects of spoken language comprehension can be obtained. Crucial aspects of speech comprehension are lexical access, selection and semantic integration. Results show that for words spoken in context, there is no ‘magic moment’ when lexical selection ends and semantic integration begins. Irrespective of whether words have early or late recognition points, semantic integration processing is initiated before words can be identified on the basis of the acoustic information alone. Moreover, for one particular event-related brain potential (ERP) component (the N400), equivalent impact of sentence- and discourse-semantic contexts is observed. This indicates that in comprehension, a spoken word is immediately evaluated relative to the widest interpretive domain available. In addition, this happens very quickly. Findings are discussed that show that often an unfolding word can be mapped onto discourse-level representations well before the end of the word. Overall, the time course of the ERP effects is compatible with the view that the different information types (lexical, syntactic, phonological, pragmatic) are processed in parallel and influence the interpretation process incrementally, that is as soon as the relevant pieces of information are available. This is referred to as the immediacy principle. -
Li, X., Hagoort, P., & Yang, Y. (2008). Event-related potential evidence on the influence of accentuation in spoken discourse comprehension in Chinese. Journal of Cognitive Neuroscience, 20(5), 906-915. doi:10.1162/jocn.2008.20512.
Abstract
In an event-related potential experiment with Chinese discourses as material, we investigated how and when accentuation influences spoken discourse comprehension in relation to the different information states of the critical words. These words could either provide new or old information. It was shown that variation of accentuation influenced the amplitude of the N400, with a larger amplitude for accented than deaccented words. In addition, there was an interaction between accentuation and information state. The N400 amplitude difference between accented and deaccented new information was smaller than that between accented and deaccented old information. The results demonstrate that, during spoken discourse comprehension, listeners rapidly extract the semantic consequences of accentuation in relation to the previous discourse context. Moreover, our results show that the N400 amplitude can be larger for correct (new,accented words) than incorrect (new, deaccented words) information. This, we argue, proves that the N400 does not react to semantic anomaly per se, but rather to semantic integration load, which is higher for new information. -
Hagoort, P., Ramsey, N. F., & Jensen, O. (2008). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (
Eds. ), Het brein te kijk: Verkenning van de cognitieve neurowetenschap (pp. 41-75). Amsterdam: Harcourt Assessment. -
Hagoort, P. (2008). Mijn omweg naar de filosofie. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 100(4), 303-310.
-
Hagoort, P. (2008). Über Broca, Gehirn und Bindung. In Jahrbuch 2008: Tätigkeitsberichte der Institute. München: Generalverwaltung der Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/306524/forschungsSchwerpunkt1?c=166434.
Abstract
Beim Sprechen und beim Sprachverstehen findet man die Wortbedeutung im Gedächtnis auf und kombiniert sie zu größeren Einheiten (Unifikation). Solche Unifikations-Operationen laufen auf unterschiedlichen Ebenen der Sprachverarbeitung ab. In diesem Beitrag wird ein Rahmen vorgeschlagen, in dem psycholinguistische Modelle mit neurobiologischer Sprachbetrachtung in Verbindung gebracht werden. Diesem Vorschlag zufolge spielt der linke inferiore frontale Gyrus (LIFG) eine bedeutende Rolle bei der Unifi kation -
Kho, K. H., Indefrey, P., Hagoort, P., Van Veelen, C. W. M., Van Rijen, P. C., & Ramsey, N. F. (2008). Unimpaired sentence comprehension after anterior temporal cortex resection. Neuropsychologia, 46(4), 1170-1178. doi:10.1016/j.neuropsychologia.2007.10.014.
Abstract
Functional imaging studies have demonstrated involvement of the anterior temporal cortex in sentence comprehension. It is unclear, however, whether the anterior temporal cortex is essential for this function.We studied two aspects of sentence comprehension, namely syntactic and prosodic comprehension in temporal lobe epilepsy patients who were candidates for resection of the anterior temporal lobe. Methods: Temporal lobe epilepsy patients (n = 32) with normal (left) language dominance were tested on syntactic and prosodic comprehension before and after removal of the anterior temporal cortex. The prosodic comprehension test was also compared with performance of healthy control subjects (n = 47) before surgery. Results: Overall, temporal lobe epilepsy patients did not differ from healthy controls in syntactic and prosodic comprehension before surgery. They did perform less well on an affective prosody task. Post-operative testing revealed that syntactic and prosodic comprehension did not change after removal of the anterior temporal cortex. Discussion: The unchanged performance on syntactic and prosodic comprehension after removal of the anterior temporal cortex suggests that this area is not indispensable for sentence comprehension functions in temporal epilepsy patients. Potential implications for the postulated role of the anterior temporal lobe in the healthy brain are discussed. -
De Lange, F. P., Koers, A., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Meer, J. W. M., & Toni, I. (2008). Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain, 131, 2172-2180. doi:10.1093/brain/awn140.
Abstract
Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an effective behavioural intervention for CFS, which combines a rehabilitative approach of a graded increase in physical activity with a psychological approach that addresses thoughts and beliefs about CFS which may impair recovery. Here, we test the hypothesis that cerebral atrophy may be a reversible state that can ameliorate with successful CBT. We have quantified cerebral structural changes in 22 CFS patients that underwent CBT and 22 healthy control participants. At baseline, CFS patients had significantly lower grey matter volume than healthy control participants. CBT intervention led to a significant improvement in health status, physical activity and cognitive performance. Crucially, CFS patients showed a significant increase in grey matter volume, localized in the lateral prefrontal cortex. This change in cerebral volume was related to improvements in cognitive speed in the CFS patients. Our findings indicate that the cerebral atrophy associated with CFS is partially reversed after effective CBT. This result provides an example of macroscopic cortical plasticity in the adult human brain, demonstrating a surprisingly dynamic relation between behavioural state and cerebral anatomy. Furthermore, our results reveal a possible neurobiological substrate of psychotherapeutic treatment. -
Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca's aphasia. Aphasiology, 22(7/8), 776-789. doi:10.1080/02687030701803804.
Abstract
Background: Growing evidence for overlap in the syntactic processing of language and music in non-brain-damaged individuals leads to the question of whether aphasic individuals with grammatical comprehension problems in language also have problems processing structural relations in music.
Aims: The current study sought to test musical syntactic processing in individuals with Broca's aphasia and grammatical comprehension deficits, using both explicit and implicit tasks.
Methods & Procedures: Two experiments were conducted. In the first experiment 12 individuals with Broca's aphasia (and 14 matched controls) were tested for their sensitivity to grammatical and semantic relations in sentences, and for their sensitivity to musical syntactic (harmonic) relations in chord sequences. An explicit task (acceptability judgement of novel sequences) was used. The second experiment, with 9 individuals with Broca's aphasia (and 12 matched controls), probed musical syntactic processing using an implicit task (harmonic priming).
Outcomes & Results: In both experiments the aphasic group showed impaired processing of musical syntactic relations. Control experiments indicated that this could not be attributed to low-level problems with the perception of pitch patterns or with auditory short-term memory for tones.
Conclusions: The results suggest that musical syntactic processing in agrammatic aphasia deserves systematic investigation, and that such studies could help probe the nature of the processing deficits underlying linguistic agrammatism. Methodological suggestions are offered for future work in this little-explored area. -
Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242-251. doi:10.1016/j.ijpsycho.2007.05.017.
Abstract
We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2–9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity. -
Toni, I., De Lange, F. P., Noordzij, M. L., & Hagoort, P. (2008). Language beyond action. Journal of Physiology, 102, 71-79. doi:10.1016/j.jphysparis.2008.03.005.
Abstract
The discovery of mirror neurons in macaques and of a similar system in humans has provided a new and fertile neurobiological ground for rooting a variety of cognitive faculties. Automatic sensorimotor resonance has been invoked as the key elementary process accounting for disparate (dys)functions, like imitation, ideomotor apraxia, autism, and schizophrenia. In this paper, we provide a critical appraisal of three of these claims that deal with the relationship between language and the motor system. Does language comprehension require the motor system? Was there an evolutionary switch from manual gestures to speech as the primary mode of language? Is human communication explained by automatic sensorimotor resonances? A positive answer to these questions would open the tantalizing possibility of bringing language and human communication within the fold of the motor system. We argue that the available empirical evidence does not appear to support these claims, and their theoretical scope fails to account for some crucial features of the phenomena they are supposed to explain. Without denying the enormous importance of the discovery of mirror neurons, we highlight the limits of their explanatory power for understanding language and communication. -
Uddén, J., Folia, V., Forkstam, C., Ingvar, M., Fernández, G., Overeem, S., Van Elswijk, G., Hagoort, P., & Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 69-78. doi:10.1016/j.brainres.2008.05.070.
Abstract
The human capacity to implicitly acquire knowledge of structured sequences has recently been investigated in artificial grammar learning using functional magnetic resonance imaging. It was found that the left inferior frontal cortex (IFC; Brodmann's area (BA) 44/45) was related to classification performance. The objective of this study was to investigate whether the IFC (BA 44/45) is causally related to classification of artificial syntactic structures by means of an off-line repetitive transcranial magnetic stimulation (rTMS) paradigm. We manipulated the stimulus material in a 2 × 2 factorial design with grammaticality status and local substring familiarity as factors. The participants showed a reliable effect of grammaticality on classification of novel items after 5days of exposure to grammatical exemplars without performance feedback in an implicit acquisition task. The results show that rTMS of BA 44/45 improves syntactic classification performance by increasing the rejection rate of non-grammatical items and by shortening reaction times of correct rejections specifically after left-sided stimulation. A similar pattern of results is observed in FMRI experiments on artificial syntactic classification. These results suggest that activity in the inferior frontal region is causally related to artificial syntax processing. -
Van Berkum, J. J. A., Van den Brink, D., Tesink, C. M. J. Y., Kos, M., & Hagoort, P. (2008). The neural integration of speaker and message. Journal of Cognitive Neuroscience, 20(4), 580-591. doi:10.1162/jocn.2008.20054.
Abstract
When do listeners take into account who the speaker is? We asked people to listen to utterances whose content sometimes did not match inferences based on the identity of the speaker (e.g., “If only I looked like Britney Spears” in a male voice, or “I have a large tattoo on my back” spoken with an upper-class accent). Event-related brain responses revealed that the speaker's identity is taken into account as early as 200–300 msec after the beginning of a spoken word, and is processed by the same early interpretation mechanism that constructs sentence meaning based on just the words. This finding is difficult to reconcile with standard “Gricean” models of sentence interpretation in which comprehenders initially compute a local, context-independent meaning for the sentence (“semantics”) before working out what it really means given the wider communicative context and the particular speaker (“pragmatics”). Because the observed brain response hinges on voice-based and usually stereotype-dependent inferences about the speaker, it also shows that listeners rapidly classify speakers on the basis of their voices and bring the associated social stereotypes to bear on what is being said. According to our event-related potential results, language comprehension takes very rapid account of the social context, and the construction of meaning based on language alone cannot be separated from the social aspects of language use. The linguistic brain relates the message to the speaker immediately.Additional information
VanBerkum2008-speakerandmessageitems-speakercoded.pdf -
Van Heuven, W. J. B., Schriefers, H., Dijkstra, T., & Hagoort, P. (2008). Language conflict in the bilingual brain. Cerebral Cortex, 18(11), 2706-2716. doi:10.1093/cercor/bhn030.
Abstract
The large majority of humankind is more or less fluent in 2 or even more languages. This raises the fundamental question how the language network in the brain is organized such that the correct target language is selected at a particular occasion. Here we present behavioral and functional magnetic resonance imaging data showing that bilingual processing leads to language conflict in the bilingual brain even when the bilinguals’ task only required target language knowledge. This finding demonstrates that the bilingual brain cannot avoid language conflict, because words from the target and nontarget languages become automatically activated during reading. Importantly, stimulus-based language conflict was found in brain regions in the LIPC associated with phonological and semantic processing, whereas response-based language conflict was only found in the pre-supplementary motor area/anterior cingulate cortex when language conflict leads to response conflicts. -
Willems, R. M., Ozyurek, A., & Hagoort, P. (2008). Seeing and hearing meaning: ERP and fMRI evidence of word versus picture integration into a sentence context. Journal of Cognitive Neuroscience, 20, 1235-1249. doi:10.1162/jocn.2008.20085.
Abstract
Understanding language always occurs within a situational context and, therefore, often implies combining streams of information from different domains and modalities. One such combination is that of spoken language and visual information, which are perceived together in a variety of ways during everyday communication. Here we investigate whether and how words and pictures differ in terms of their neural correlates when they are integrated into a previously built-up sentence context. This is assessed in two experiments looking at the time course (measuring event-related potentials, ERPs) and the locus (using functional magnetic resonance imaging, fMRI) of this integration process. We manipulated the ease of semantic integration of word and/or picture to a previous sentence context to increase the semantic load of processing. In the ERP study, an increased semantic load led to an N400 effect which was similar for pictures and words in terms of latency and amplitude. In the fMRI study, we found overlapping activations to both picture and word integration in the left inferior frontal cortex. Specific activations for the integration of a word were observed in the left superior temporal cortex. We conclude that despite obvious differences in representational format, semantic information coming from pictures and words is integrated into a sentence context in similar ways in the brain. This study adds to the growing insight that the language system incorporates (semantic) information coming from linguistic and extralinguistic domains with the same neural time course and by recruitment of overlapping brain areas. -
Willems, R. M., Oostenveld, R., & Hagoort, P. (2008). Early decreases in alpha and gamma band power distinguish linguistic from visual information during spoken sentence comprehension. Brain Research, 1219, 78-90. doi:10.1016/j.brainres.2008.04.065.
Abstract
Language is often perceived together with visual information. This raises the question on how the brain integrates information conveyed in visual and/or linguistic format during spoken language comprehension. In this study we investigated the dynamics of semantic integration of visual and linguistic information by means of time-frequency analysis of the EEG signal. A modified version of the N400 paradigm with either a word or a picture of an object being semantically incongruous with respect to the preceding sentence context was employed. Event-Related Potential (ERP) analysis showed qualitatively similar N400 effects for integration of either word or picture. Time-frequency analysis revealed early specific decreases in alpha and gamma band power for linguistic and visual information respectively. We argue that these reflect a rapid context-based analysis of acoustic (word) or visual (picture) form information. We conclude that although full semantic integration of linguistic and visual information occurs through a common mechanism, early differences in oscillations in specific frequency bands reflect the format of the incoming information and, importantly, an early context-based detection of its congruity with respect to the preceding language context -
Li, X., Yang, Y., & Hagoort, P. (2008). Pitch accent and lexical tone processing in Chinese discourse comprehension: An ERP study. Brain Research, 1222, 192-200. doi:10.1016/j.brainres.2008.05.031.
Abstract
In the present study, event-related brain potentials (ERP) were recorded to investigate the role of pitch accent and lexical tone in spoken discourse comprehension. Chinese was used as material to explore the potential difference in the nature and time course of brain responses to sentence meaning as indicated by pitch accent and to lexical meaning as indicated by tone. In both cases, the pitch contour of critical words was varied. The results showed that both inconsistent pitch accent and inconsistent lexical tone yielded N400 effects, and there was no interaction between them. The negativity evoked by inconsistent pitch accent had the some topography as that evoked by inconsistent lexical tone violation, with a maximum over central–parietal electrodes. Furthermore, the effect for the combined violations was the sum of effects for pure pitch accent and pure lexical tone violation. However, the effect for the lexical tone violation appeared approximately 90 ms earlier than the effect of the pitch accent violation. It is suggested that there might be a correspondence between the neural mechanism underlying pitch accent and lexical meaning processing in context. They both reflect the integration of the current information into a discourse context, independent of whether the current information was sentence meaning indicated by accentuation, or lexical meaning indicated by tone. In addition, lexical meaning was processed earlier than sentence meaning conveyed by pitch accent during spoken language processing.
Share this page