Displaying 1 - 48 of 48
-
Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.
Abstract
It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language. -
Coopmans, C. W., De Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology of Language, 3(3), 386-412. doi:10.1162/nol_a_00070.
Abstract
Recent research has established that cortical activity “tracks” the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.Additional information
supplementary information -
Dai, B., McQueen, J. M., Terporten, R., Hagoort, P., & Kösem, A. (2022). Distracting Linguistic Information Impairs Neural Tracking of Attended Speech. Current Research in Neurobiology, 3: 100043. doi:10.1016/j.crneur.2022.100043.
Abstract
Listening to speech is difficult in noisy environments, and is even harder when the interfering noise consists of intelligible speech as compared to unintelligible sounds. This suggests that the competing linguistic information interferes with the neural processing of target speech. Interference could either arise from a degradation of the neural representation of the target speech, or from increased representation of distracting speech that enters in competition with the target speech. We tested these alternative hypotheses using magnetoencephalography (MEG) while participants listened to a target clear speech in the presence of distracting noise-vocoded speech. Crucially, the distractors were initially unintelligible but became more intelligible after a short training session. Results showed that the comprehension of the target speech was poorer after training than before training. The neural tracking of target speech in the delta range (1–4 Hz) reduced in strength in the presence of a more intelligible distractor. In contrast, the neural tracking of distracting signals was not significantly modulated by intelligibility. These results suggest that the presence of distracting speech signals degrades the linguistic representation of target speech carried by delta oscillations. -
Giglio, L., Ostarek, M., Weber, K., & Hagoort, P. (2022). Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cerebral Cortex, 32(7), 1405-1418. doi:10.1093/cercor/bhab287.
Abstract
The neurobiology of sentence production has been largely understudied compared to the neurobiology of sentence comprehension, due to difficulties with experimental control and motion-related artifacts in neuroimaging. We studied the neural response to constituents of increasing size and specifically focused on the similarities and differences in the production and comprehension of the same stimuli. Participants had to either produce or listen to stimuli in a gradient of constituent size based on a visual prompt. Larger constituent sizes engaged the left inferior frontal gyrus (LIFG) and middle temporal gyrus (LMTG) extending to inferior parietal areas in both production and comprehension, confirming that the neural resources for syntactic encoding and decoding are largely overlapping. An ROI analysis in LIFG and LMTG also showed that production elicited larger responses to constituent size than comprehension and that the LMTG was more engaged in comprehension than production, while the LIFG was more engaged in production than comprehension. Finally, increasing constituent size was characterized by later BOLD peaks in comprehension but earlier peaks in production. These results show that syntactic encoding and parsing engage overlapping areas, but there are asymmetries in the engagement of the language network due to the specific requirements of production and comprehension.Additional information
supplementary material -
Hagoort, P. (2022). Reasoning and the brain. In M. Stokhof, & K. Stenning (
Eds. ), Rules, regularities, randomness. Festschrift for Michiel van Lambalgen (pp. 83-85). Amsterdam: Institute for Logic, Language and Computation. -
Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., & De Lange, F. P. (2022). A hierarchy of linguistic predictions during natural language comprehension. Proceedings of the National Academy of Sciences of the United States of America, 119(32): e2201968119. doi:10.1073/pnas.2201968119.
Abstract
Understanding spoken language requires transforming ambiguous acoustic streams into a hierarchy of representations, from phonemes to meaning. It has been suggested that the brain uses prediction to guide the interpretation of incoming input. However, the role of prediction in language processing remains disputed, with disagreement about both the ubiquity and representational nature of predictions. Here, we address both issues by analyzing brain recordings of participants listening to audiobooks, and using a deep neural network (GPT-2) to precisely quantify contextual predictions. First, we establish that brain responses to words are modulated by ubiquitous predictions. Next, we disentangle model-based predictions into distinct dimensions, revealing dissociable neural signatures of predictions about syntactic category (parts of speech), phonemes, and semantics. Finally, we show that high-level (word) predictions inform low-level (phoneme) predictions, supporting hierarchical predictive processing. Together, these results underscore the ubiquity of prediction in language processing, showing that the brain spontaneously predicts upcoming language at multiple levels of abstraction.Additional information
supporting information -
Hoeksema, N., Hagoort, P., & Vernes, S. C. (2022). Piecing together the building blocks of the vocal learning bat brain. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 294-296). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Huizeling, E., Arana, S., Hagoort, P., & Schoffelen, J.-M. (2022). Lexical frequency and sentence context influence the brain’s response to single words. Neurobiology of Language, 3(1), 149-179. doi:10.1162/nol_a_00054.
Abstract
Typical adults read remarkably quickly. Such fast reading is facilitated by brain processes that are sensitive to both word frequency and contextual constraints. It is debated as to whether these attributes have additive or interactive effects on language processing in the brain. We investigated this issue by analysing existing magnetoencephalography data from 99 participants reading intact and scrambled sentences. Using a cross-validated model comparison scheme, we found that lexical frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, irrespective of sentential context. In contrast, index (ordinal word position) was more strongly encoded in sentence words, in left front-temporal areas. This confirms that frequency influences word processing independently of predictability, and that contextual constraints affect word-by-word brain responses. With a conservative multiple comparisons correction, only the interaction between lexical frequency and surprisal survived, in anterior temporal and frontal cortex, and not between lexical frequency and entropy, nor between lexical frequency and index. However, interestingly, the uncorrected index*frequency interaction revealed an effect in left frontal and temporal cortex that reversed in time and space for intact compared to scrambled sentences. Finally, we provide evidence to suggest that, in sentences, lexical frequency and predictability may independently influence early (<150ms) and late stages of word processing, but interact during later stages of word processing (>150-250ms), thus helping to converge previous contradictory eye-tracking and electrophysiological literature. Current neuro-cognitive models of reading would benefit from accounting for these differing effects of lexical frequency and predictability on different stages of word processing. -
Huizeling, E., Peeters, D., & Hagoort, P. (2022). Prediction of upcoming speech under fluent and disfluent conditions: Eye tracking evidence from immersive virtual reality. Language, Cognition and Neuroscience, 37(4), 481-508. doi:10.1080/23273798.2021.1994621.
Abstract
Traditional experiments indicate that prediction is important for efficient speech processing. In three virtual reality visual world paradigm experiments, we tested whether such findings hold in naturalistic settings (Experiment 1) and provided novel insights into whether disfluencies in speech (repairs/hesitations) inform one’s predictions in rich environments (Experiments 2–3). Experiment 1 supports that listeners predict upcoming speech in naturalistic environments, with higher proportions of anticipatory target fixations in predictable compared to unpredictable trials. In Experiments 2–3, disfluencies reduced anticipatory fixations towards predicted referents, compared to conjunction (Experiment 2) and fluent (Experiment 3) sentences. Unexpectedly, Experiment 2 provided no evidence that participants made new predictions from a repaired verb. Experiment 3 provided novel findings that fixations towards the speaker increase upon hearing a hesitation, supporting current theories of how hesitations influence sentence processing. Together, these findings unpack listeners’ use of visual (objects/speaker) and auditory (speech/disfluencies) information when predicting upcoming words.Additional information
Huizeling_SupplementaryMaterial1_April2021.docx Huizeling_SupplementaryMaterial2_2021July26.docx -
Lai, V. T., Van Berkum, J. J. A., & Hagoort, P. (2022). Negative affect increases reanalysis of conflicts between discourse context and world knowledge. Frontiers in Communication, 7: 910482. doi:10.3389/fcomm.2022.910482.
Abstract
Introduction: Mood is a constant in our daily life and can permeate all levels of cognition. We examined whether and how mood influences the processing of discourse content that is relatively neutral and not loaded with emotion. During discourse processing, readers have to constantly strike a balance between what they know in long term memory and what the current discourse is about. Our general hypothesis is that mood states would affect this balance. We hypothesized that readers in a positive mood would rely more on default world knowledge, whereas readers in a negative mood would be more inclined to analyze the details in the current discourse.
Methods: Participants were put in a positive and a negative mood via film clips, one week apart. In each session, after mood manipulation, they were presented with sentences in discourse materials. We created sentences such as “With the lights on you can see...” that end with critical words (CWs) “more” or “less”, where general knowledge supports “more”, not “less”. We then embedded each of these sentences in a wider discourse that does/does not support the CWs (a story about driving in the night vs. stargazing). EEG was recorded throughout.
Results: The results showed that first, mood manipulation was successful in that there was a significant mood difference between sessions. Second, mood did not modulate the N400 effects. Participants in both moods detected outright semantic violations and allowed world knowledge to be overridden by discourse context. Third, mood modulated the LPC (Late Positive Component) effects, distributed in the frontal region. In negative moods, the LPC was sensitive to one-level violation. That is, CWs that were supported by only world knowledge, only discourse, and neither, elicited larger frontal LPCs, in comparison to the condition where CWs were supported by both world knowledge and discourse.
Discussion: These results suggest that mood does not influence all processes involved in discourse processing. Specifically, mood does not influence lexical-semantic retrieval (N400), but it does influence elaborative processes for sensemaking (P600) during discourse processing. These results advance our understanding of the impact and time course of mood on discourse.Additional information
Table 1.XLSX -
Murphy, E., Woolnough, O., Rollo, P. S., Roccaforte, Z., Segaert, K., Hagoort, P., & Tandon, N. (2022). Minimal phrase composition revealed by intracranial recordings. The Journal of Neuroscience, 42(15), 3216-3227. doi:10.1523/JNEUROSCI.1575-21.2022.
Abstract
The ability to comprehend phrases is an essential integrative property of the brain. Here we evaluate the neural processes that enable the transition from single word processing to a minimal compositional scheme. Previous research has reported conflicting timing effects of composition, and disagreement persists with respect to inferior frontal and posterior temporal contributions. To address these issues, 19 patients (10 male, 19 female) implanted with penetrating depth or surface subdural intracranial electrodes heard auditory recordings of adjective-noun, pseudoword-noun and adjective-pseudoword phrases and judged whether the phrase matched a picture. Stimulus-dependent alterations in broadband gamma activity, low frequency power and phase-locking values across the language-dominant left hemisphere were derived. This revealed a mosaic located on the lower bank of the posterior superior temporal sulcus (pSTS), in which closely neighboring cortical sites displayed exclusive sensitivity to either lexicality or phrase structure, but not both. Distinct timings were found for effects of phrase composition (210–300 ms) and pseudoword processing (approximately 300–700 ms), and these were localized to neighboring electrodes in pSTS. The pars triangularis and temporal pole encoded anticipation of composition in broadband low frequencies, and both regions exhibited greater functional connectivity with pSTS during phrase composition. Our results suggest that the pSTS is a highly specialized region comprised of sparsely interwoven heterogeneous constituents that encodes both lower and higher level linguistic features. This hub in pSTS for minimal phrase processing may form the neural basis for the human-specific computational capacity for forming hierarchically organized linguistic structures. -
Udden, J., Hulten, A., Schoffelen, J.-M., Lam, N. H. L., Harbusch, K., Van den Bosch, A., Kempen, G., Petersson, K. M., & Hagoort, P. (2022). Supramodal sentence processing in the human brain: fMRI evidence for the influence of syntactic complexity in more than 200 participants. Neurobiology of Language, 3(4), 575-598. doi:10.1162/nol_a_00076.
Abstract
This study investigated two questions. One is: To what degree is sentence processing beyond single words independent of the input modality (speech vs. reading)? The second question is: Which parts of the network recruited by both modalities is sensitive to syntactic complexity? These questions were investigated by having more than 200 participants read or listen to well-formed sentences or series of unconnected words. A largely left-hemisphere frontotemporoparietal network was found to be supramodal in nature, i.e., independent of input modality. In addition, the left inferior frontal gyrus (LIFG) and the left posterior middle temporal gyrus (LpMTG) were most clearly associated with left-branching complexity. The left anterior temporal lobe (LaTL) showed the greatest sensitivity to sentences that differed in right-branching complexity. Moreover, activity in LIFG and LpMTG increased from sentence onset to end, in parallel with an increase of the left-branching complexity. While LIFG, bilateral anterior temporal lobe, posterior MTG, and left inferior parietal lobe (LIPL) all contribute to the supramodal unification processes, the results suggest that these regions differ in their respective contributions to syntactic complexity related processing. The consequences of these findings for neurobiological models of language processing are discussed.Additional information
supporting information -
Vernes, S. C., Devanna, P., Hörpel, S. G., Alvarez van Tussenbroek, I., Firzlaff, U., Hagoort, P., Hiller, M., Hoeksema, N., Hughes, G. M., Lavrichenko, K., Mengede, J., Morales, A. E., & Wiesmann, M. (2022). The pale spear‐nosed bat: A neuromolecular and transgenic model for vocal learning. Annals of the New York Academy of Sciences, 1517, 125-142. doi:10.1111/nyas.14884.
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.Additional information
supplementary materials -
Eichert, N., Peeters, D., & Hagoort, P. (2018). Language-driven anticipatory eye movements in virtual reality. Behavior Research Methods, 50(3), 1102-1115. doi:10.3758/s13428-017-0929-z.
Abstract
Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. The use of this variant of the visual world paradigm has shown that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional (2D) stimuli that are mere abstractions of real world objects. Here we present a visual world paradigm study in a three-dimensional (3D) immersive virtual reality environment. Despite significant changes in the stimulus material and the different mode of stimulus presentation, language-mediated anticipatory eye movements were observed. These findings thus indicate prediction of upcoming words in language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eye-tracking in rich and multimodal 3D virtual environments.Additional information
13428_2017_929_MOESM1_ESM.docx -
Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458-1467. doi:10.3758/s13423-018-1494-x.
Abstract
When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some speakers follow the perturbation. In the current study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is given. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: It initially responds by doing the opposite of what it was doing. This effect and the non-trivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production-system’s state at the time of perturbation.Additional information
https://link.springer.com/article/10.3758%2Fs13423-018-1494-x#SupplementaryMate… -
Franken, M. K., Eisner, F., Acheson, D. J., McQueen, J. M., Hagoort, P., & Schoffelen, J.-M. (2018). Self-monitoring in the cerebral cortex: Neural responses to pitch-perturbed auditory feedback during speech production. NeuroImage, 179, 326-336. doi:10.1016/j.neuroimage.2018.06.061.
Abstract
Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing. -
De Groot, A. M. B., & Hagoort, P. (
Eds. ). (2018). Research methods in psycholinguistics and the neurobiology of language: A practical guide. Oxford: Wiley. -
Hagoort, P. (2018). Prerequisites for an evolutionary stance on the neurobiology of language. Current Opinion in Behavioral Sciences, 21, 191-194. doi:10.1016/j.cobeha.2018.05.012.
-
Heyselaar, E., Mazaheri, A., Hagoort, P., & Segaert, K. (2018). Changes in alpha activity reveal that social opinion modulates attention allocation during face processing. NeuroImage, 174, 432-440. doi:10.1016/j.neuroimage.2018.03.034.
Abstract
Participants’ performance differs when conducting a task in the presence of a secondary individual, moreover the opinion the participant has of this individual also plays a role. Using EEG, we investigated how previous interactions with, and evaluations of, an avatar in virtual reality subsequently influenced attentional allocation to the face of that avatar. We focused on changes in the alpha activity as an index of attentional allocation. We found that the onset of an avatar’s face whom the participant had developed a rapport with induced greater alpha suppression. This suggests greater attentional resources are allocated to the interacted-with avatars. The evaluative ratings of the avatar induced a U-shaped change in alpha suppression, such that participants paid most attention when the avatar was rated as average. These results suggest that attentional allocation is an important element of how behaviour is altered in the presence of a secondary individual and is modulated by our opinion of that individual.Additional information
mmc1.docx -
Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.
Abstract
Low-frequency neural entrainment to rhythmic input
has been hypothesized as a canonical mechanism
that shapes sensory perception in time. Neural
entrainment is deemed particularly relevant for
speech analysis, as it would contribute to the extraction
of discrete linguistic elements from continuous
acoustic signals. However, its causal influence in
speech perception has been difficult to establish.
Here, we provide evidence that oscillations build temporal
predictions about the duration of speech tokens
that affect perception. Using magnetoencephalography
(MEG), we studied neural dynamics during
listening to sentences that changed in speech rate.
Weobserved neural entrainment to preceding speech
rhythms persisting for several cycles after the change
in rate. The sustained entrainment was associated
with changes in the perceived duration of the last
word’s vowel, resulting in the perception of words
with different meanings. These findings support oscillatory
models of speech processing, suggesting that
neural oscillations actively shape speech perception. -
Lam, N. H. L., Hulten, A., Hagoort, P., & Schoffelen, J.-M. (2018). Robust neuronal oscillatory entrainment to speech displays individual variation in lateralisation. Language, Cognition and Neuroscience, 33(8), 943-954. doi:10.1080/23273798.2018.1437456.
Abstract
Neural oscillations may be instrumental for the tracking and segmentation of continuous speech. Earlier work has suggested that delta, theta and gamma oscillations entrain to the speech rhythm. We used magnetoencephalography and a large sample of 102 participants to investigate oscillatory entrainment to speech, and observed robust entrainment of delta and theta activity, and weak group-level gamma entrainment. We show that the peak frequency and the hemispheric lateralisation of the entrainment are subject to considerable individual variability. The first finding may support the involvement of intrinsic oscillations in entrainment, and the second finding suggests that there is no systematic default right-hemispheric bias for processing acoustic signals on a slow time scale. Although low frequency entrainment to speech is a robust phenomenon, the characteristics of entrainment vary across individuals, and this variation is important for understanding the underlying neural mechanisms of entrainment, as well as its functional significance. -
Segaert, K., Mazaheri, A., & Hagoort, P. (2018). Binding language: Structuring sentences through precisely timed oscillatory mechanisms. European Journal of Neuroscience, 48(7), 2651-2662. doi:10.1111/ejn.13816.
Abstract
Syntactic binding refers to combining words into larger structures. Using EEG, we investigated the neural processes involved in syntactic binding. Participants were auditorily presented two-word sentences (i.e. pronoun and pseudoverb such as ‘I grush’, ‘she grushes’, for which syntactic binding can take place) and wordlists (i.e. two pseudoverbs such as ‘pob grush’, ‘pob grushes’, for which no binding occurs). Comparing these two conditions, we targeted syntactic binding while minimizing contributions of semantic binding and of other cognitive processes such as working memory. We found a converging pattern of results using two distinct analysis approaches: one approach using frequency bands as defined in previous literature, and one data-driven approach in which we looked at the entire range of frequencies between 3-30 Hz without the constraints of pre-defined frequency bands. In the syntactic binding (relative to the wordlist) condition, a power increase was observed in the alpha and beta frequency range shortly preceding the presentation of the target word that requires binding, which was maximal over frontal-central electrodes. Our interpretation is that these signatures reflect that language comprehenders expect the need for binding to occur. Following the presentation of the target word in a syntactic binding context (relative to the wordlist condition), an increase in alpha power maximal over a left lateralized cluster of frontal-temporal electrodes was observed. We suggest that this alpha increase relates to syntactic binding taking place. Taken together, our findings suggest that increases in alpha and beta power are reflections of distinct the neural processes underlying syntactic binding.Additional information
ejn13816-sup-0001-reviewercomments.pdf -
Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.
Abstract
When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings. -
Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.
Abstract
Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval. -
Vanlangendonck, F., Willems, R. M., & Hagoort, P. (2018). Taking common ground into account: Specifying the role of the mentalizing network in communicative language production. PLoS One, 13(10): e0202943. doi:10.1371/journal.pone.0202943.
Additional information
Data availability via Donders Repository -
Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.
Abstract
Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network. -
Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.
Abstract
Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency. -
Asaridou, S. S., Hagoort, P., & McQueen, J. M. (2015). Effects of early bilingual experience with a tone and a non-tone language on speech-music. PLoS One, 10(12): e0144225. doi:10.1371/journal.pone.0144225.
Abstract
We investigated music and language processing in a group of early bilinguals who spoke a tone language and a non-tone language (Cantonese and Dutch). We assessed online speech-music processing interactions, that is, interactions that occur when speech and music are processed simultaneously in songs, with a speeded classification task. In this task, participants judged sung pseudowords either musically (based on the direction of the musical interval) or phonologically (based on the identity of the sung vowel). We also assessed longer-term effects of linguistic experience on musical ability, that is, the influence of extensive prior experience with language when processing music. These effects were assessed with a task in which participants had to learn to identify musical intervals and with four pitch-perception tasks. Our hypothesis was that due to their experience in two different languages using lexical versus intonational tone, the early Cantonese-Dutch bilinguals would outperform the Dutch control participants. In online processing, the Cantonese-Dutch bilinguals processed speech and music more holistically than controls. This effect seems to be driven by experience with a tone language, in which integration of segmental and pitch information is fundamental. Regarding longer-term effects of linguistic experience, we found no evidence for a bilingual advantage in either the music-interval learning task or the pitch-perception tasks. Together, these results suggest that being a Cantonese-Dutch bilingual does not have any measurable longer-term effects on pitch and music processing, but does have consequences for how speech and music are processed jointly.Additional information
Data Availability -
Baggio, G., van Lambalgen, M., & Hagoort, P. (2015). Logic as Marr's computational level: Four case studies. Topics in Cognitive Science, 7, 287-298. doi:10.1111/tops.12125.
Abstract
We sketch four applications of Marr's levels-of-analysis methodology to the relations between logic and experimental data in the cognitive neuroscience of language and reasoning. The first part of the paper illustrates the explanatory power of computational level theories based on logic. We show that a Bayesian treatment of the suppression task in reasoning with conditionals is ruled out by EEG data, supporting instead an analysis based on defeasible logic. Further, we describe how results from an EEG study on temporal prepositions can be reanalyzed using formal semantics, addressing a potential confound. The second part of the article demonstrates the predictive power of logical theories drawing on EEG data on processing progressive constructions and on behavioral data on conditional reasoning in people with autism. Logical theories can constrain processing hypotheses all the way down to neurophysiology, and conversely neuroscience data can guide the selection of alternative computational level models of cognition. -
Bašnákova, J., Van Berkum, J. J. A., Weber, K., & Hagoort, P. (2015). A job interview in the MRI scanner: How does indirectness affect addressees and overhearers? Neuropsychologia, 76, 79-91. doi:10.1016/j.neuropsychologia.2015.03.030.
Abstract
In using language, people not only exchange information, but also navigate their social world – for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one’s shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2013). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee is the one being managed by a face-saving reply. In all, face-saving indirectness provides a window on the cognitive as well as affect-related neural systems involved in human communication.Additional information
http://www.sciencedirect.com/science/article/pii/S0028393215001414 -
Bastiaansen, M. C. M., & Hagoort, P. (2015). Frequency-based segregation of syntactic and semantic unification during online sentence level language comprehension. Journal of Cognitive Neuroscience, 27(11), 2095-2107. doi:10.1162/jocn_a_00829.
Abstract
During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, beta-band power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification. -
Francken, J. C., Meijs, E. L., Ridderinkhof, O. M., Hagoort, P., de Lange, F. P., & van Gaal, S. (2015). Manipulating word awareness dissociates feed-forward from feedback models of language-perception interactions. Neuroscience of consciousness, 1. doi:10.1093/nc/niv003.
Abstract
Previous studies suggest that linguistic material can modulate visual perception, but it is unclear at which level of processing these interactions occur. Here we aim to dissociate between two competing models of language–perception interactions: a feed-forward and a feedback model. We capitalized on the fact that the models make different predictions on the role of feedback. We presented unmasked (aware) or masked (unaware) words implying motion (e.g. “rise,” “fall”), directly preceding an upward or downward visual motion stimulus. Crucially, masking leaves intact feed-forward information processing from low- to high-level regions, whereas it abolishes subsequent feedback. Under this condition, participants remained faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. This suggests that language–perception interactions are driven by the feed-forward convergence of linguistic and perceptual information at higher-level conceptual and decision stages. -
Francken, J. C., Meijs, E. L., Hagoort, P., van Gaal, S., & de Lange, F. P. (2015). Exploring the automaticity of language-perception interactions: Effects of attention and awareness. Scientific Reports, 5: 17725. doi:10.1038/srep17725.
Abstract
Previous studies have shown that language can modulate visual perception, by biasing and/
or enhancing perceptual performance. However, it is still debated where in the brain visual and
linguistic information are integrated, and whether the effects of language on perception are
automatic and persist even in the absence of awareness of the linguistic material. Here, we aimed
to explore the automaticity of language-perception interactions and the neural loci of these
interactions in an fMRI study. Participants engaged in a visual motion discrimination task (upward
or downward moving dots). Before each trial, a word prime was briefly presented that implied
upward or downward motion (e.g., “rise”, “fall”). These word primes strongly influenced behavior:
congruent motion words sped up reaction times and improved performance relative to incongruent
motion words. Neural congruency effects were only observed in the left middle temporal gyrus,
showing higher activity for congruent compared to incongruent conditions. This suggests that higherlevel
conceptual areas rather than sensory areas are the locus of language-perception interactions.
When motion words were rendered unaware by means of masking, they still affected visual motion
perception, suggesting that language-perception interactions may rely on automatic feed-forward
integration of perceptual and semantic material in language areas of the brain.Additional information
srep17725-s1.pdf http://www.nature.com/articles/srep17725#supplementary-information -
Francken, J. C., Kok, P., Hagoort, P., & De Lange, F. P. (2015). The behavioral and neural effects of language on motion perception. Journal of Cognitive Neuroscience, 27(1), 175-184. doi:10.1162/jocn_a_00682.
Abstract
Perception does not function as an isolated module but is tightly linked with other cognitive functions. Several studies have demonstrated an influence of language on motion perception, but it remains debated at which level of processing this modulation takes place. Some studies argue for an interaction in perceptual areas, but it is also possible that the interaction is mediated by "language areas" that integrate linguistic and visual information. Here, we investigated whether language-perception interactions were specific to the language-dominant left hemisphere by comparing the effects of language on visual material presented in the right (RVF) and left visual fields (LVF). Furthermore, we determined the neural locus of the interaction using fMRI. Participants performed a visual motion detection task. On each trial, the visual motion stimulus was presented in either the LVF or in the RVF, preceded by a centrally presented word (e.g., "rise"). The word could be congruent, incongruent, or neutral with regard to the direction of the visual motion stimulus that was presented subsequently. Participants were faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. Interestingly, the speed benefit was present only for motion stimuli that were presented in the RVF. We observed a neural counterpart of the behavioral facilitation effects in the left middle temporal gyrus, an area involved in semantic processing of verbal material. Together, our results suggest that semantic information about motion retrieved in language regions may automatically modulate perceptual decisions about motion. -
Franken, M. K., McQueen, J. M., Hagoort, P., & Acheson, D. J. (2015). Assessing the link between speech perception and production through individual differences. In Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow: the University of Glasgow.
Abstract
This study aims to test a prediction of recent
theoretical frameworks in speech motor control: if speech production targets are specified in auditory
terms, people with better auditory acuity should have more precise speech targets.
To investigate this, we had participants perform speech perception and production tasks in a counterbalanced order. To assess speech perception acuity, we used an adaptive speech discrimination
task. To assess variability in speech production, participants performed a pseudo-word reading task; formant values were measured for each recording.
We predicted that speech production variability to correlate inversely with discrimination performance.
The results suggest that people do vary in their production and perceptual abilities, and that better discriminators have more distinctive vowel production targets, confirming our prediction. This
study highlights the importance of individual
differences in the study of speech motor control, and sheds light on speech production-perception interaction. -
Franken, M. K., Hagoort, P., & Acheson, D. J. (2015). Modulations of the auditory M100 in an Imitation Task. Brain and Language, 142, 18-23. doi:10.1016/j.bandl.2015.01.001.
Abstract
Models of speech production explain event-related suppression of the auditory cortical
response as reflecting a comparison between auditory predictions and feedback. The present MEG
study was designed to test two predictions from this framework: 1) whether the reduced auditory
response varies as a function of the mismatch between prediction and feedback; 2) whether individual
variation in this response is predictive of speech-motor adaptation.
Participants alternated between online imitation and listening tasks. In the imitation task, participants
began each trial producing the same vowel (/e/) and subsequently listened to and imitated auditorilypresented
vowels varying in acoustic distance from /e/.
Results replicated suppression, with a smaller M100 during speaking than listening. Although we did
not find unequivocal support for the first prediction, participants with less M100 suppression were
better at the imitation task. These results are consistent with the enhancement of M100 serving as an
error signal to drive subsequent speech-motor adaptation. -
Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., Hagoort, P., Fernandez, G., Buitelaar, J., van Bokhoven, H., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 41-55. doi:10.1016/j.cortex.2014.07.015.
Abstract
The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale, that overlaps Wernicke’s classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the planum temporale to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the Freesurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan meta-analysis of planum temporale asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the ´steroid hormone receptor activity´ and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the planum temporale in language cognition.Additional information
http://www.sciencedirect.com/science/article/pii/S0010945214002469#appd001 -
Hagoort, P. (2015). Het talige brein. In A. Aleman, & H. E. Hulshoff Pol (
Eds. ), Beeldvorming van het brein: Imaging voor psychiaters en psychologen (pp. 169-176). Utrecht: De Tijdstroom. -
Hagoort, P. (2015). Spiegelneuronen. In J. Brockmann (
Ed. ), Wetenschappelijk onkruid: 179 hardnekkige ideeën die vooruitgang blokkeren (pp. 455-457). Amsterdam: Maven Publishing. -
Holler, J., Kokal, I., Toni, I., Hagoort, P., Kelly, S. D., & Ozyurek, A. (2015). Eye’m talking to you: Speakers’ gaze direction modulates co-speech gesture processing in the right MTG. Social Cognitive & Affective Neuroscience, 10, 255-261. doi:10.1093/scan/nsu047.
Abstract
Recipients process information from speech and co-speech gestures, but it is currently unknown how this processing is influenced by the presence of other important social cues, especially gaze direction, a marker of communicative intent. Such cues may modulate neural activity in regions associated either with the processing of ostensive cues, such as eye gaze, or with the processing of semantic information, provided by speech and gesture.
Participants were scanned (fMRI) while taking part in triadic communication involving two recipients and a speaker. The speaker uttered sentences that
were and were not accompanied by complementary iconic gestures. Crucially, the speaker alternated her gaze direction, thus creating two recipient roles: addressed (direct gaze) vs unaddressed (averted gaze) recipient. The comprehension of Speech&Gesture relative to SpeechOnly utterances recruited middle occipital, middle temporal and inferior frontal gyri, bilaterally. The calcarine sulcus and posterior cingulate cortex were sensitive to differences between direct and averted gaze. Most importantly, Speech&Gesture utterances, but not SpeechOnly utterances, produced additional activity in the right middle temporal gyrus when participants were addressed. Marking communicative intent with gaze direction modulates the processing of speech–gesture utterances in cerebral areas typically associated with the semantic processing of multi-modal communicative acts. -
Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., & Hagoort, P. (2015). Music and language syntax interact in Broca’s Area: An fMRI study. PLoS One, 10(11): e0141069. doi:10.1371/journal.pone.0141069.
Abstract
Instrumental music and language are both syntactic systems, employing complex, hierarchically-structured sequences built using implicit structural norms. This organization allows listeners to understand the role of individual words or tones in the context of an unfolding sentence or melody. Previous studies suggest that the brain mechanisms of syntactic processing may be partly shared between music and language. However, functional neuroimaging evidence for anatomical overlap of brain activity involved in linguistic and musical syntactic processing has been lacking. In the present study we used functional magnetic resonance imaging (fMRI) in conjunction with an interference paradigm based on sung sentences. We show that the processing demands of musical syntax (harmony) and language syntax interact in Broca’s area in the left inferior frontal gyrus (without leading to music and language main effects). A language main effect in Broca’s area only emerged in the complex music harmony condition, suggesting that (with our stimuli and tasks) a language effect only becomes visible under conditions of increased demands on shared neural resources. In contrast to previous studies, our design allows us to rule out that the observed neural interaction is due to: (1) general attention mechanisms, as a psychoacoustic auditory anomaly behaved unlike the harmonic manipulation, (2) error processing, as the language and the music stimuli contained no structural errors. The current results thus suggest that two different cognitive domains—music and language—might draw on the same high level syntactic integration resources in Broca’s area.Additional information
http://hdl.handle.net/1839/00-0000-0000-0020-72EB-9@view -
Lai, V. T., Willems, R. M., & Hagoort, P. (2015). Feel between the Lines: Implied emotion from combinatorial semantics. Journal of Cognitive Neuroscience, 27(8), 1528-1541. doi:10.1162/jocn_a_00798.
Abstract
This study investigated the brain regions for the comprehension of implied emotion in sentences. Participants read negative sentences without negative words, for example, “The boy fell asleep and never woke up again,” and their neutral counterparts “The boy stood up and grabbed his bag.” This kind of negative sentence allows us to examine implied emotion derived at the sentence level, without associative emotion coming from word retrieval. We found that implied emotion in sentences, relative to neutral sentences, led to activation in some emotion-related areas, including the medial prefrontal cortex, the amygdala, and the insula, as well as certain language-related areas, including the inferior frontal gyrus, which has been implicated in combinatorial processing. These results suggest that the emotional network involved in implied emotion is intricately related to the network for combinatorial processing in language, supporting the view that sentence meaning is more than simply concatenating the meanings of its lexical building blocks. -
Peeters, D., Chu, M., Holler, J., Hagoort, P., & Ozyurek, A. (2015). Electrophysiological and kinematic correlates of communicative intent in the planning and production of pointing gestures and speech. Journal of Cognitive Neuroscience, 27(12), 2352-2368. doi:10.1162/jocn_a_00865.
Abstract
In everyday human communication, we often express our communicative intentions by manually pointing out referents in the material world around us to an addressee, often in tight synchronization with referential speech. This study investigated whether and how the kinematic form of index finger pointing gestures is shaped by the gesturer's communicative intentions and how this is modulated by the presence of concurrently produced speech. Furthermore, we explored the neural mechanisms underpinning the planning of communicative pointing gestures and speech. Two experiments were carried out in which participants pointed at referents for an addressee while the informativeness of their gestures and speech was varied. Kinematic and electrophysiological data were recorded online. It was found that participants prolonged the duration of the stroke and poststroke hold phase of their gesture to be more communicative, in particular when the gesture was carrying the main informational burden in their multimodal utterance. Frontal and P300 effects in the ERPs suggested the importance of intentional and modality-independent attentional mechanisms during the planning phase of informative pointing gestures. These findings contribute to a better understanding of the complex interplay between action, attention, intention, and language in the production of pointing gestures, a communicative act core to human interaction. -
Peeters, D., Hagoort, P., & Ozyurek, A. (2015). Electrophysiological evidence for the role of shared space in online comprehension of spatial demonstratives. Cognition, 136, 64-84. doi:10.1016/j.cognition.2014.10.010.
Abstract
A fundamental property of language is that it can be used to refer to entities in the extra-linguistic physical context of a conversation in order to establish a joint focus of attention on a referent. Typological and psycholinguistic work across a wide range of languages has put forward at least two different theoretical views on demonstrative reference. Here we contrasted and tested these two accounts by investigating the electrophysiological brain activity underlying the construction of indexical meaning in comprehension. In two EEG experiments, participants watched pictures of a speaker who referred to one of two objects using speech and an index-finger pointing gesture. In contrast with separately collected native speakers’ linguistic intuitions, N400 effects showed a preference for a proximal demonstrative when speaker and addressee were in a face-to-face orientation and all possible referents were located in the shared space between them, irrespective of the physical proximity of the referent to the speaker. These findings reject egocentric proximity-based accounts of demonstrative reference, support a sociocentric approach to deixis, suggest that interlocutors construe a shared space during conversation, and imply that the psychological proximity of a referent may be more important than its physical proximity. -
Peeters, D., Snijders, T. M., Hagoort, P., & Ozyurek, A. (2015). The role of left inferior frontal Gyrus in the integration of point- ing gestures and speech. In G. Ferré, & M. Tutton (
Eds. ), Proceedings of the4th GESPIN - Gesture & Speech in Interaction Conference. Nantes: Université de Nantes.Abstract
Comprehension of pointing gestures is fundamental to human communication. However, the neural mechanisms
that subserve the integration of pointing gestures and speech in visual contexts in comprehension
are unclear. Here we present the results of an fMRI study in which participants watched images of an
actor pointing at an object while they listened to her referential speech. The use of a mismatch paradigm
revealed that the semantic unication of pointing gesture and speech in a triadic context recruits left
inferior frontal gyrus. Complementing previous ndings, this suggests that left inferior frontal gyrus
semantically integrates information across modalities and semiotic domains. -
Samur, D., Lai, V. T., Hagoort, P., & Willems, R. M. (2015). Emotional context modulates embodied metaphor comprehension. Neuropsychologia, 78, 108-114. doi:10.1016/j.neuropsychologia.2015.10.003.
Abstract
Emotions are often expressed metaphorically, and both emotion and metaphor are ways through which abstract meaning can be grounded in language. Here we investigate specifically whether motion-related verbs when used metaphorically are differentially sensitive to a preceding emotional context, as compared to when they are used in a literal manner. Participants read stories that ended with ambiguous action/motion sentences (e.g., he got it), in which the action/motion could be interpreted metaphorically (he understood the idea) or literally (he caught the ball) depending on the preceding story. Orthogonal to the metaphorical manipulation, the stories were high or low in emotional content. The results showed that emotional context modulated the neural response in visual motion areas to the metaphorical interpretation of the sentences, but not to their literal interpretations. In addition, literal interpretations of the target sentences led to stronger activation in the visual motion areas as compared to metaphorical readings of the sentences. We interpret our results as suggesting that emotional context specifically modulates mental simulation during metaphor processing -
Simanova, I., Van Gerven, M. A., Oostenveld, R., & Hagoort, P. (2015). Predicting the semantic category of internally generated words from neuromagnetic recordings. Journal of Cognitive Neuroscience, 27(1), 35-45. doi:10.1162/jocn_a_00690.
Abstract
In this study, we explore the possibility to predict the semantic category of words from brain signals in a free word generation task. Participants produced single words from different semantic categories in a modified semantic fluency task. A Bayesian logistic regression classifier was trained to predict the semantic category of words from single-trial MEG data. Significant classification accuracies were achieved using sensor-level MEG time series at the time interval of conceptual preparation. Semantic category prediction was also possible using source-reconstructed time series, based on minimum norm estimates of cortical activity. Brain regions that contributed most to classification on the source level were identified. These were the left inferior frontal gyrus, left middle frontal gyrus, and left posterior middle temporal gyrus. Additionally, the temporal dynamics of brain activity underlying the semantic preparation during word generation was explored. These results provide important insights about central aspects of language production -
Xiang, H., Van Leeuwen, T. M., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2015). L2-proficiency-dependent laterality shift in structural connectivity of brain language pathways. Brain Connectivity, 5(6), 349-361. doi:10.1089/brain.2013.0199.
Abstract
Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the BA6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2-processing especially for less proficient L2-speakers. This is the first time that a L2-proficiency-dependent laterality shift in structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right, and back to left hemisphere dominance with increasing L2-proficiency. We additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning
Share this page