Displaying 1 - 15 of 15
-
Fisher, S. E. (2007). Molecular windows into speech and language disorders. Folia Phoniatrica et Logopaedica, 59, 130-140. doi:10.1159/000101771.
Abstract
Why do some children fail to acquire speech and language skills despite adequate environmental input and overtly normal neurological and anatomical development? It has been suspected for several decades, based on indirect evidence, that the human genome might hold some answers to this enigma. These suspicions have recently received dramatic confirmation with the discovery of specific genetic changes which appear sufficient to derail speech and language development. Indeed, researchers are already using information from genetic studies to aid early diagnosis and to shed light on the neural pathways that are perturbed in these inherited forms of speech and language disorder. Thus, we have entered an exciting era for dissecting the neural bases of human communication, one which takes genes and molecules as a starting point. In the current article I explain how this recent paradigm shift has occurred and describe the new vistas that have opened up. I demonstrate ways of bridging the gaps between molecules, neurons and the brain, which will provide a new understanding of the aetiology of speech and language impairments. -
Francks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B. and 22 moreFrancks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B., Nanba, E., Richardson, A. J., Riley, B. P., Martin, N. G., Strittmatter, S. M., Möller, H.-J., Rujescu, D., St Clair, D., Muglia, P., Roos, J. L., Fisher, S. E., Wade-Martins, R., Rouleau, G. A., Stein, J. F., Karayiorgou, M., Geschwind, D. H., Ragoussis, J., Kendler, K. S., Airaksinen, M. S., Oshimura, M., DeLisi, L. E., & Monaco, A. P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129-1139. doi:10.1038/sj.mp.4002053.
Abstract
Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.Additional information
http://www.nature.com/mp/journal/v12/n12/suppinfo/4002053s1.html?url=/mp/journa… -
French, C. A., Groszer, M., Preece, C., Coupe, A.-M., Rajewsky, K., & Fisher, S. E. (2007). Generation of mice with a conditional Foxp2 null allele. Genesis, 45(7), 440-446. doi:10.1002/dvg.20305.
Abstract
Disruptions of the human FOXP2 gene cause problems with articulation of complex speech sounds, accompanied by impairment in many aspects of language ability. The FOXP2/Foxp2 transcription factor is highly similar in humans and mice, and shows a complex conserved expression pattern, with high levels in neuronal subpopulations of the cortex, striatum, thalamus, and cerebellum. In the present study we generated mice in which loxP sites flank exons 12-14 of Foxp2; these exons encode the DNA-binding motif, a key functional domain. We demonstrate that early global Cre-mediated recombination yields a null allele, as shown by loss of the loxP-flanked exons at the RNA level and an absence of Foxp2 protein. Homozygous null mice display severe motor impairment, cerebellar abnormalities and early postnatal lethality, consistent with other Foxp2 mutants. When crossed to transgenic lines expressing Cre protein in a spatially and/or temporally controlled manner, these conditional mice will provide new insights into the contributions of Foxp2 to distinct neural circuits, and allow dissection of roles during development and in the mature brain. -
Monaco, A., Fisher, S. E., & The SLI Consortium (SLIC) (2007). Multivariate linkage analysis of specific language impairment (SLI). Annals of Human Genetics, 71(5), 660-673. doi:10.1111/j.1469-1809.2007.00361.x.
Abstract
Specific language impairment (SLI) is defined as an inability to develop appropriate language skills without explanatory medical conditions, low intelligence or lack of opportunity. Previously, a genome scan of 98 families affected by SLI was completed by the SLI Consortium, resulting in the identification of two quantitative trait loci (QTL) on chromosomes 16q (SLI1) and 19q (SLI2). This was followed by a replication of both regions in an additional 86 families. Both these studies applied linkage methods to one phenotypic trait at a time. However, investigations have suggested that simultaneous analysis of several traits may offer more power. The current study therefore applied a multivariate variance-components approach to the SLI Consortium dataset using additional phenotypic data. A multivariate genome scan was completed and supported the importance of the SLI1 and SLI2 loci, whilst highlighting a possible novel QTL on chromosome 10. Further investigation implied that the effect of SLI1 on non-word repetition was equally as strong on reading and spelling phenotypes. In contrast, SLI2 appeared to have influences on a selection of expressive and receptive language phenotypes in addition to non-word repetition, but did not show linkage to literacy phenotypes.Additional information
Members_SLIC.doc -
Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., Vernes, S. C., Fisher, S. E., Ren, B., & Geschwind, D. (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American Journal of Human Genetics, 81(6), 1144-1157. doi:10.1086/522237.
Abstract
Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes. -
Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., Geschwind, D., & Fisher, S. E. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. American Journal of Human Genetics, 81(6), 1232-1250. doi:10.1086/522238.
Abstract
We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders. -
Fisher, S. E., Lai, C. S., & Monaco, a. A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57-80. doi:10.1146/annurev.neuro.26.041002.131144.
Abstract
A significant number of individuals have unexplained difficulties with acquiring normal speech and language, despite adequate intelligence and environmental stimulation. Although developmental disorders of speech and language are heritable, the genetic basis is likely to involve several, possibly many, different risk factors. Investigations of a unique three-generation family showing monogenic inheritance of speech and language deficits led to the isolation of the first such gene on chromosome 7, which encodes a transcription factor known as FOXP2. Disruption of this gene causes a rare severe speech and language disorder but does not appear to be involved in more common forms of language impairment. Recent genome-wide scans have identified at least four chromosomal regions that may harbor genes influencing the latter, on chromosomes 2, 13, 16, and 19. The molecular genetic approach has potential for dissecting neurological pathways underlying speech and language disorders, but such investigations are only just beginning. -
Fisher, S. E. (2003). The genetic basis of a severe speech and language disorder. In J. Mallet, & Y. Christen (
Eds. ), Neurosciences at the postgenomic era (pp. 125-134). Heidelberg: Springer. -
Francks, C., DeLisi, L. E., Fisher, S. E., Laval, S. H., Rue, J. E., Stein, J. F., & Monaco, A. P. (2003). Confirmatory evidence for linkage of relative hand skill to 2p12-q11 [Letter to the editor]. American Journal of Human Genetics, 72(2), 499-502. doi:10.1086/367548.
-
Francks, C., Fisher, S. E., Marlow, A. J., MacPhie, I. L., Taylor, K. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Familial and genetic effects on motor coordination, laterality, and reading-related cognition. American Journal of Psychiatry, 160(11), 1970-1977. doi:10.1176/appi.ajp.160.11.1970.
Abstract
OBJECTIVE: Recent research has provided evidence for a genetically mediated association between language or reading-related cognitive deficits and impaired motor coordination. Other studies have identified relationships between lateralization of hand skill and cognitive abilities. With a large sample, the authors aimed to investigate genetic relationships between measures of reading-related cognition, hand motor skill, and hand skill lateralization.
METHOD: The authors applied univariate and bivariate correlation and familiality analyses to a range of measures. They also performed genomewide linkage analysis of hand motor skill in a subgroup of 195 sibling pairs.
RESULTS: Hand motor skill was significantly familial (maximum heritability=41%), as were reading-related measures. Hand motor skill was weakly but significantly correlated with reading-related measures, such as nonword reading and irregular word reading. However, these correlations were not significantly familial in nature, and the authors did not observe linkage of hand motor skill to any chromosomal regions implicated in susceptibility to dyslexia. Lateralization of hand skill was not correlated with reading or cognitive ability.
CONCLUSIONS: The authors confirmed a relationship between lower motor ability and poor reading performance. However, the genetic effects on motor skill and reading ability appeared to be largely or wholly distinct, suggesting that the correlation between these traits may have arisen from environmental influences. Finally, the authors found no evidence that reading disability and/or low general cognitive ability were associated with ambidexterity.Additional information
https://doi.org/10.1176/appi.ajp.161.1.185 -
Francks, C., DeLisi, L. E., Shaw, S. H., Fisher, S. E., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2003). Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12-q11. Human Molecular Genetics, 12(24), 3225-3230. doi:10.1093/hmg/ddg362.
Abstract
Schizophrenia and non-right-handedness are moderately associated, and both traits are often accompanied by abnormalities of asymmetrical brain morphology or function. We have found linkage previously of chromosome 2p12-q11 to a quantitative measure of handedness, and we have also found linkage of schizophrenia/schizoaffective disorder to this same chromosomal region in a separate study. Now, we have found that in one of our samples (191 reading-disabled sibling pairs), the relative hand skill of siblings was correlated more strongly with paternal than maternal relative hand skill. This led us to re-analyse 2p12-q11 under parent-of-origin linkage models. We found linkage of relative hand skill in the RD siblings to 2p12-q11 with P=0.0000037 for paternal identity-by-descent sharing, whereas the maternally inherited locus was not linked to the trait (P>0.2). Similarly, in affected-sib-pair analysis of our schizophrenia dataset (241 sibling pairs), we found linkage to schizophrenia for paternal sharing with LOD=4.72, P=0.0000016, within 3 cM of the peak linkage to relative hand skill. Maternal linkage across the region was weak or non-significant. These similar paternal-specific linkages suggest that the causative genetic effects on 2p12-q11 are related. The linkages may be due to a single maternally imprinted influence on lateralized brain development that contains common functional polymorphisms. -
Lai, C. S. L., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(11), 2455-2462. doi:10.1093/brain/awg247.
Abstract
Disruption of FOXP2, a gene encoding a forkhead-domain transcription factor, causes a severe developmental disorder of verbal communication, involving profound articulation deficits, accompanied by linguistic and grammatical impairments. Investigation of the neural basis of this disorder has been limited previously to neuroimaging of affected children and adults. The discovery of the gene responsible, FOXP2, offers a unique opportunity to explore the relevant neural mechanisms from a molecular perspective. In the present study, we have determined the detailed spatial and temporal expression pattern of FOXP2 mRNA in the developing brain of mouse and human. We find expression in several structures including the cortical plate, basal ganglia, thalamus, inferior olives and cerebellum. These data support a role for FOXP2 in the development of corticostriatal and olivocerebellar circuits involved in motor control. We find intriguing concordance between regions of early expression and later sites of pathology suggested by neuroimaging. Moreover, the homologous pattern of FOXP2/Foxp2 expression in human and mouse argues for a role for this gene in development of motor-related circuits throughout mammalian species. Overall, this study provides support for the hypothesis that impairments in sequencing of movement and procedural learning might be central to the FOXP2-related speech and language disorder. -
Marcus, G. F., & Fisher, S. E. (2003). FOXP2 in focus: What can genes tell us about speech and language? Trends in Cognitive Sciences, 7, 257-262. doi:10.1016/S1364-6613(03)00104-9.
Abstract
The human capacity for acquiring speech and language must derive, at least in part, from the genome. In 2001, a study described the first case of a gene, FOXP2, which is thought to be implicated in our ability to acquire spoken language. In the present article, we discuss how this gene was discovered, what it might do, how it relates to other genes, and what it could tell us about the nature of speech and language development. We explain how FOXP2 could, without being specific to the brain or to our own species, still provide an invaluable entry-point into understanding the genetic cascades and neural pathways that contribute to our capacity for speech and language. -
Marlow, A. J., Fisher, S. E., Francks, C., MacPhie, I. L., Cherny, S. S., Richardson, A. J., Talcott, J. B., Stein, J. F., Monaco, A. P., & Cardon, L. R. (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait. American Journal of Human Genetics, 72(3), 561-570. doi:10.1086/368201.
Abstract
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. -
Ogdie, M. N., MacPhie, I. L., Minassian, S. L., Yang, M., Fisher, S. E., Francks, C., Cantor, R. M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2003). A genomewide scan for Attention-Deficit/Hyperactivity Disorder in an extended sample: Suggestive linkage on 17p11. American Journal of Human Genetics, 72(5), 1268-1279. doi:10.1086/375139.
Abstract
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is a common, highly heritable neurobehavioral disorder of childhood onset, characterized by hyperactivity, impulsivity, and/or inattention. As part of an ongoing study of the genetic etiology of ADHD, we have performed a genomewide linkage scan in 204 nuclear families comprising 853 individuals and 270 affected sibling pairs (ASPs). Previously, we reported genomewide linkage analysis of a “first wave” of these families composed of 126 ASPs. A follow-up investigation of one region on 16p yielded significant linkage in an extended sample. The current study extends the original sample of 126 ASPs to 270 ASPs and provides linkage analyses of the entire sample, using polymorphic microsatellite markers that define an ∼10-cM map across the genome. Maximum LOD score (MLS) analysis identified suggestive linkage for 17p11 (MLS=2.98) and four nominal regions with MLS values >1.0, including 5p13, 6q14, 11q25, and 20q13. These data, taken together with the fine mapping on 16p13, suggest two regions as highly likely to harbor risk genes for ADHD: 16p13 and 17p11. Interestingly, both regions, as well as 5p13, have been highlighted in genomewide scans for autism.
Share this page