James McQueen

Publications

Displaying 1 - 28 of 28
  • Goriot, C., McQueen, J. M., Unsworth, S., & Van Hout, R. (2020). Perception of English phonetic contrasts by Dutch children: How bilingual are early-English learners? PLoS One, 15(3): e0229902. doi:10.1371/journal.pone.0229902.

    Abstract

    The aim of this study was to investigate whether early-English education benefits the perception
    of English phonetic contrasts that are known to be perceptually confusable for Dutch
    native speakers, comparing Dutch pupils who were enrolled in an early-English programme
    at school from the age of four with pupils in a mainstream programme with English instruction
    from the age of 11, and English-Dutch early bilingual children. Children were 4-5-yearolds
    (start of primary school), 8-9-year-olds, or 11-12-year-olds (end of primary school).
    Children were tested on four contrasts that varied in difficulty: /b/-/s/ (easy), /k/-/ɡ/ (intermediate),
    /f/-/θ/ (difficult), /ε/-/æ/ (very difficult). Bilingual children outperformed the two other
    groups on all contrasts except /b/-/s/. Early-English pupils did not outperform mainstream
    pupils on any of the contrasts. This shows that early-English education as it is currently
    implemented is not beneficial for pupils’ perception of non-native contrasts.

    Additional information

    Supporting information
  • Hintz*, F., Jongman*, S. R., Dijkhuis, M., Van 't Hoff, V., McQueen, J. M., & Meyer, A. S. (2020). Shared lexical access processes in speaking and listening? An individual differences study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(6), 1048-1063. doi:10.1037/xlm0000768.

    Abstract

    - * indicates joint first authorship - Lexical access is a core component of word processing. In order to produce or comprehend a word, language users must access word forms in their mental lexicon. However, despite its involvement in both tasks, previous research has often studied lexical access in either production or comprehension alone. Therefore, it is unknown to which extent lexical access processes are shared across both tasks. Picture naming and auditory lexical decision are considered good tools for studying lexical access. Both of them are speeded tasks. Given these commonalities, another open question concerns the involvement of general cognitive abilities (e.g., processing speed) in both linguistic tasks. In the present study, we addressed these questions. We tested a large group of young adults enrolled in academic and vocational courses. Participants completed picture naming and auditory lexical decision tasks as well as a battery of tests assessing non-verbal processing speed, vocabulary, and non-verbal intelligence. Our results suggest that the lexical access processes involved in picture naming and lexical decision are related but less closely than one might have thought. Moreover, reaction times in picture naming and lexical decision depended as least as much on general processing speed as on domain-specific linguistic processes (i.e., lexical access processes).
  • Hintz, F., Dijkhuis, M., Van 't Hoff, V., McQueen, J. M., & Meyer, A. S. (2020). A behavioural dataset for studying individual differences in language skills. Scientific Data, 7: 429. doi:10.1038/s41597-020-00758-x.

    Abstract

    This resource contains data from 112 Dutch adults (18–29 years of age) who completed the Individual Differences in Language Skills test battery that included 33 behavioural tests assessing language skills and domain-general cognitive skills likely involved in language tasks. The battery included tests measuring linguistic experience (e.g. vocabulary size, prescriptive grammar knowledge), general cognitive skills (e.g. working memory, non-verbal intelligence) and linguistic processing skills (word production/comprehension, sentence production/comprehension). Testing was done in a lab-based setting resulting in high quality data due to tight monitoring of the experimental protocol and to the use of software and hardware that were optimized for behavioural testing. Each participant completed the battery twice (i.e., two test days of four hours each). We provide the raw data from all tests on both days as well as pre-processed data that were used to calculate various reliability measures (including internal consistency and test-retest reliability). We encourage other researchers to use this resource for conducting exploratory and/or targeted analyses of individual differences in language and general cognitive skills.
  • McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In C. Gussenhoven, & A. Chen (Eds.), The Oxford handbook of language prosody (pp. 509-521). Oxford: Oxford University Press.

    Abstract

    This chapter outlines a Bayesian model of spoken-word recognition and reviews how
    prosody is part of that model. The review focuses on the information that assists the lis­
    tener in recognizing the prosodic structure of an utterance and on how spoken-word
    recognition is also constrained by prior knowledge about prosodic structure. Recognition
    is argued to be a process of perceptual inference that ensures that listening is robust to
    variability in the speech signal. In essence, the listener makes inferences about the seg­
    mental content of each utterance, about its prosodic structure (simultaneously at differ­
    ent levels in the prosodic hierarchy), and about the words it contains, and uses these in­
    ferences to form an utterance interpretation. Four characteristics of the proposed
    prosody-enriched recognition model are discussed: parallel uptake of different informa­
    tion types, high contextual dependency, adaptive processing, and phonological abstrac­
    tion. The next steps that should be taken to develop the model are also discussed.
  • McQueen, J. M., Eisner, F., Burgering, M. A., & Vroomen, J. (2020). Specialized memory systems for learning spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 189-199. doi:10.1037/xlm0000704.

    Abstract

    Learning new words entails, inter alia, encoding of novel sound patterns and transferring those patterns from short-term to long-term memory. We report a series of 5 experiments that investigated whether the memory systems engaged in word learning are specialized for speech and whether utilization of these systems results in a benefit for word learning. Sine-wave synthesis (SWS) was applied to spoken nonwords, and listeners were or were not informed (through instruction and familiarization) that the SWS stimuli were derived from actual utterances. This allowed us to manipulate whether listeners would process sound sequences as speech or as nonspeech. In a sound–picture association learning task, listeners who processed the SWS stimuli as speech consistently learned faster and remembered more associations than listeners who processed the same stimuli as nonspeech. The advantage of listening in “speech mode” was stable over the course of 7 days. These results provide causal evidence that access to a specialized, phonological short-term memory system is important for word learning. More generally, this study supports the notion that subsystems of auditory short-term memory are specialized for processing different types of acoustic information.

    Additional information

    Supplemental material
  • Mickan, A., McQueen, J. M., & Lemhöfer, K. (2020). Between-language competition as a driving force in foreign language attrition. Cognition, 198: 104218. doi:10.1016/j.cognition.2020.104218.

    Abstract

    Research in the domain of memory suggests that forgetting is primarily driven by interference and competition from other, related memories. Here we ask whether similar dynamics are at play in foreign language (FL) attrition. We tested whether interference from translation equivalents in other, more recently used languages causes subsequent retrieval failure in L3. In Experiment 1, we investigated whether interference from the native language (L1) and/or from another foreign language (L2) affected L3 vocabulary retention. On day 1, Dutch native speakers learned 40 new Spanish (L3) words. On day 2, they performed a number of retrieval tasks in either Dutch (L1) or English (L2) on half of these words, and then memory for all items was tested again in L3 Spanish. Recall in Spanish was slower and less complete for words that received interference than for words that did not. In naming speed, this effect was larger for L2 compared to L1 interference. Experiment 2 replicated the interference effect and asked if the language difference can be explained by frequency of use differences between native- and non-native languages. Overall, these findings suggest that competition from more recently used languages, and especially other foreign languages, is a driving force behind FL attrition.

    Additional information

    Supplementary data
  • Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528-1540. doi:10.1016/j.neuroimage.2010.05.048.

    Abstract

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations.
  • Cutler, A., El Aissati, A., Hanulikova, A., & McQueen, J. M. (2010). Effects on speech parsing of vowelless words in the phonology. In Abstracts of Laboratory Phonology 12 (pp. 115-116).
  • Cutler, A., Eisner, F., McQueen, J. M., & Norris, D. (2010). How abstract phonemic categories are necessary for coping with speaker-related variation. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory phonology 10 (pp. 91-111). Berlin: de Gruyter.
  • Hanulikova, A., McQueen, J. M., & Mitterer, H. (2010). Possible words and fixed stress in the segmentation of Slovak speech. Quarterly Journal of Experimental Psychology, 63, 555 -579. doi:10.1080/17470210903038958.

    Abstract

    The possible-word constraint (PWC; Norris, McQueen, Cutler, & Butterfield, 1997) has been proposed as a language-universal segmentation principle: Lexical candidates are disfavoured if the resulting segmentation of continuous speech leads to vowelless residues in the input—for example, single consonants. Three word-spotting experiments investigated segmentation in Slovak, a language with single-consonant words and fixed stress. In Experiment 1, Slovak listeners detected real words such as ruka “hand” embedded in prepositional-consonant contexts (e.g., /gruka/) faster than those in nonprepositional-consonant contexts (e.g., /truka/) and slowest in syllable contexts (e.g., /dugruka/). The second experiment controlled for effects of stress. Responses were still fastest in prepositional-consonant contexts, but were now slowest in nonprepositional-consonant contexts. In Experiment 3, the lexical and syllabic status of the contexts was manipulated. Responses were again slowest in nonprepositional-consonant contexts but equally fast in prepositional-consonant, prepositional-vowel, and nonprepositional-vowel contexts. These results suggest that Slovak listeners use fixed stress and the PWC to segment speech, but that single consonants that can be words have a special status in Slovak segmentation. Knowledge about what constitutes a phonologically acceptable word in a given language therefore determines whether vowelless stretches of speech are or are not treated as acceptable parts of the lexical parse.
  • McQueen, J. M., & Cutler, A. (2010). Cognitive processes in speech perception. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd ed., pp. 489-520). Oxford: Blackwell.
  • Orfanidou, E., Adam, R., Morgan, G., & McQueen, J. M. (2010). Recognition of signed and spoken language: Different sensory inputs, the same segmentation procedure. Journal of Memory and Language, 62(3), 272-283. doi:10.1016/j.jml.2009.12.001.

    Abstract

    Signed languages are articulated through simultaneous upper-body movements and are seen; spoken languages are articulated through sequential vocal-tract movements and are heard. But word recognition in both language modalities entails segmentation of a continuous input into discrete lexical units. According to the Possible Word Constraint (PWC), listeners segment speech so as to avoid impossible words in the input. We argue here that the PWC is a modality-general principle. Deaf signers of British Sign Language (BSL) spotted real BSL signs embedded in nonsense-sign contexts more easily when the nonsense signs were possible BSL signs than when they were not. A control experiment showed that there were no articulatory differences between the different contexts. A second control experiment on segmentation in spoken Dutch strengthened the claim that the main BSL result likely reflects the operation of a lexical-viability constraint. It appears that signed and spoken languages, in spite of radical input differences, are segmented so as to leave no residues of the input that cannot be words.
  • Otake, T., McQueen, J. M., & Cutler, A. (2010). Competition in the perception of spoken Japanese words. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (Interspeech 2010), Makuhari, Japan (pp. 114-117).

    Abstract

    Japanese listeners detected Japanese words embedded at the end of nonsense sequences (e.g., kaba 'hippopotamus' in gyachikaba). When the final portion of the preceding context together with the initial portion of the word (e.g., here, the sequence chika) was compatible with many lexical competitors, recognition of the embedded word was more difficult than when such a sequence was compatible with few competitors. This clear effect of competition, established here for preceding context in Japanese, joins similar demonstrations, in other languages and for following contexts, to underline that the functional architecture of the human spoken-word recognition system is a universal one.
  • Reinisch, E., Jesse, A., & McQueen, J. M. (2010). Early use of phonetic information in spoken word recognition: Lexical stress drives eye movements immediately. Quarterly Journal of Experimental Psychology, 63(4), 772-783. doi:10.1080/17470210903104412.

    Abstract

    For optimal word recognition listeners should use all relevant acoustic information as soon as it comes available. Using printed-word eye-tracking we investigated when during word processing Dutch listeners use suprasegmental lexical stress information to recognize words. Fixations on targets such as 'OCtopus' (capitals indicate stress) were more frequent than fixations on segmentally overlapping but differently stressed competitors ('okTOber') before segmental information could disambiguate the words. Furthermore, prior to segmental disambiguation, initially stressed words were stronger lexical competitors than non-initially stressed words. Listeners recognize words by immediately using all relevant information in the speech signal.
  • Sjerps, M. J., & McQueen, J. M. (2010). The bounds on flexibility in speech perception. Journal of Experimental Psychology: Human Perception and Performance, 36, 195-211. doi:10.1037/a0016803.
  • Tagliapietra, L., & McQueen, J. M. (2010). What and where in speech recognition: Geminates and singletons in spoken Italian. Journal of Memory and Language, 63, 306-323. doi:10.1016/j.jml.2010.05.001.

    Abstract

    Four cross-modal repetition priming experiments examined whether consonant duration in Italian provides listeners with information not only for segmental identification ("what" information: whether the consonant is a geminate or a singleton) but also for lexical segmentation (“where” information: whether the consonant is in word-initial or word-medial position). Italian participants made visual lexical decisions to words containing geminates or singletons, preceded by spoken primes (whole words or fragments) containing either geminates or singletons. There were effects of segmental identity (geminates primed geminate recognition; singletons primed singleton recognition), and effects of consonant position (regression analyses revealed graded effects of geminate duration only for geminates which can vary in position, and mixed-effect modeling revealed a positional effect for singletons only in low-frequency words). Durational information appeared to be more important for segmental identification than for lexical segmentation. These findings nevertheless indicate that the same kind of information can serve both "what" and "where" functions in speech comprehension, and that the perceptual processes underlying those functions are interdependent.
  • Witteman, M. J., Weber, A., & McQueen, J. M. (2010). Rapid and long-lasting adaptation to foreign-accented speech [Abstract]. Journal of the Acoustical Society of America, 128, 2486.

    Abstract

    In foreign-accented speech, listeners have to handle noticeable deviations from the standard pronunciation of a target language. Three cross-modal priming experiments investigated how short- and long-term experiences with a foreign accent influence word recognition by native listeners. In experiment 1, German-accented words were presented to Dutch listeners who had either extensive or limited prior experience with German-accented Dutch. Accented words either contained a diphthong substitution that deviated acoustically quite largely from the canonical form (huis [hys], "house", pronounced as [hoys]), or that deviated acoustically to a lesser extent (lijst [lst], "list", pronounced as [lst]). The mispronunciations never created lexical ambiguity in Dutch. While long-term experience facilitated word recognition for both types of substitutions, limited experience facilitated recognition only of words with acoustically smaller deviations. In experiment 2, Dutch listeners with limited experience listened to the German speaker for 4 min before participating in the cross-modal priming experiment. The results showed that speaker-specific learning effects for acoustically large deviations can be obtained already after a brief exposure, as long as the exposure contains evidence of the deviations. Experiment 3 investigates whether these short-term adaptation effects for foreign-accented speech are speaker-independent.
  • Baayen, R. H., McQueen, J. M., Dijkstra, T., & Schreuder, R. (2003). Frequency effects in regular inflectional morphology: Revisiting Dutch plurals. In R. H. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 355-390). Berlin: Mouton de Gruyter.
  • Baayen, R. H., McQueen, J. M., Dijkstra, T., & Schreuder, R. (2003). Frequency effects in regular inflectional morphology: Revisiting Dutch plurals. In R. H. Baayen, & R. Schreuder (Eds.), Morphological Structure in Language Processing (pp. 355-390). Berlin, Germany: Mouton De Gruyter.
  • McQueen, J. M. (2003). The ghost of Christmas future: Didn't Scrooge learn to be good? Commentary on Magnuson, McMurray, Tanenhaus and Aslin (2003). Cognitive Science, 27(5), 795-799. doi:10.1207/s15516709cog2705_6.

    Abstract

    Magnuson, McMurray, Tanenhaus, and Aslin [Cogn. Sci. 27 (2003) 285] suggest that they have evidence of lexical feedback in speech perception, and that this evidence thus challenges the purely feedforward Merge model [Behav. Brain Sci. 23 (2000) 299]. This evidence is open to an alternative explanation, however, one which preserves the assumption in Merge that there is no lexical-prelexical feedback during on-line speech processing. This explanation invokes the distinction between perceptual processing that occurs in the short term, as an utterance is heard, and processing that occurs over the longer term, for perceptual learning.
  • McQueen, J. M., & Cho, T. (2003). The use of domain-initial strengthening in segmentation of continuous English speech. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 2993-2996). Adelaide: Causal Productions.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., Cutler, A., & Norris, D. (2003). Flow of information in the spoken word recognition system. Speech Communication, 41(1), 257-270. doi:10.1016/S0167-6393(02)00108-5.

    Abstract

    Spoken word recognition consists of two major component processes. First, at the prelexical stage, an abstract description of the utterance is generated from the information in the speech signal. Second, at the lexical stage, this description is used to activate all the words stored in the mental lexicon which match the input. These multiple candidate words then compete with each other. We review evidence which suggests that positive (match) and negative (mismatch) information of both a segmental and a suprasegmental nature is used to constrain this activation and competition process. We then ask whether, in addition to the necessary influence of the prelexical stage on the lexical stage, there is also feedback from the lexicon to the prelexical level. In two phonetic categorization experiments, Dutch listeners were asked to label both syllable-initial and syllable-final ambiguous fricatives (e.g., sounds ranging from [f] to [s]) in the word–nonword series maf–mas, and the nonword–word series jaf–jas. They tended to label the sounds in a lexically consistent manner (i.e., consistent with the word endpoints of the series). These lexical effects became smaller in listeners’ slower responses, even when the listeners were put under pressure to respond as fast as possible. Our results challenge models of spoken word recognition in which feedback modulates the prelexical analysis of the component sounds of a word whenever that word is heard
  • Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47(2), 204-238. doi:10.1016/S0010-0285(03)00006-9.

    Abstract

    This study demonstrates that listeners use lexical knowledge in perceptual learning of speech sounds. Dutch listeners first made lexical decisions on Dutch words and nonwords. The final fricative of 20 critical words had been replaced by an ambiguous sound, between [f] and [s]. One group of listeners heard ambiguous [f]-final words (e.g., [WI tlo?], from witlof, chicory) and unambiguous [s]-final words (e.g., naaldbos, pine forest). Another group heard the reverse (e.g., ambiguous [na:ldbo?], unambiguous witlof). Listeners who had heard [?] in [f]-final words were subsequently more likely to categorize ambiguous sounds on an [f]–[s] continuum as [f] than those who heard [?] in [s]-final words. Control conditions ruled out alternative explanations based on selective adaptation and contrast. Lexical information can thus be used to train categorization of speech. This use of lexical information differs from the on-line lexical feedback embodied in interactive models of speech perception. In contrast to on-line feedback, lexical feedback for learning is of benefit to spoken word recognition (e.g., in adapting to a newly encountered dialect).
  • Salverda, A. P., Dahan, D., & McQueen, J. M. (2003). The role of prosodic boundaries in the resolution of lexical embedding in speech comprehension. Cognition, 90(1), 51-89. doi:10.1016/S0010-0277(03)00139-2.

    Abstract

    Participants' eye movements were monitored as they heard sentences and saw four pictured objects on a computer screen. Participants were instructed to click on the object mentioned in the sentence. There were more transitory fixations to pictures representing monosyllabic words (e.g. ham) when the first syllable of the target word (e.g. hamster) had been replaced by a recording of the monosyllabic word than when it came from a different recording of the target word. This demonstrates that a phonemically identical sequence can contain cues that modulate its lexical interpretation. This effect was governed by the duration of the sequence, rather than by its origin (i.e. which type of word it came from). The longer the sequence, the more monosyllabic-word interpretations it generated. We argue that cues to lexical-embedding disambiguation, such as segmental lengthening, result from the realization of a prosodic boundary that often but not always follows monosyllabic words, and that lexical candidates whose word boundaries are aligned with prosodic boundaries are favored in the word-recognition process.
  • Scharenborg, O., McQueen, J. M., Ten Bosch, L., & Norris, D. (2003). Modelling human speech recognition using automatic speech recognition paradigms in SpeM. In Proceedings of Eurospeech 2003 (pp. 2097-2100). Adelaide: Causal Productions.

    Abstract

    We have recently developed a new model of human speech recognition, based on automatic speech recognition techniques [1]. The present paper has two goals. First, we show that the new model performs well in the recognition of lexically ambiguous input. These demonstrations suggest that the model is able to operate in the same optimal way as human listeners. Second, we discuss how to relate the behaviour of a recogniser, designed to discover the optimum path through a word lattice, to data from human listening experiments. We argue that this requires a metric that combines both path-based and word-based measures of recognition performance. The combined metric varies continuously as the input speech signal unfolds over time.
  • Smits, R., Warner, N., McQueen, J. M., & Cutler, A. (2003). Unfolding of phonetic information over time: A database of Dutch diphone perception. Journal of the Acoustical Society of America, 113(1), 563-574. doi:10.1121/1.1525287.

    Abstract

    We present the results of a large-scale study on speech perception, assessing the number and type of perceptual hypotheses which listeners entertain about possible phoneme sequences in their language. Dutch listeners were asked to identify gated fragments of all 1179 diphones of Dutch, providing a total of 488 520 phoneme categorizations. The results manifest orderly uptake of acoustic information in the signal. Differences across phonemes in the rate at which fully correct recognition was achieved arose as a result of whether or not potential confusions could occur with other phonemes of the language ~long with short vowels, affricates with their initial components, etc.!. These data can be used to improve models of how acoustic phonetic information is mapped onto the mental lexicon during speech comprehension.
  • Spinelli, E., McQueen, J. M., & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233-254. doi:10.1016/S0749-596X(02)00513-2.

Share this page