Beate St Pourcain

Publications

Displaying 1 - 12 of 12
  • Ahluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C. and 106 moreAhluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C., Marioni, R. E., McLachlan, S., Milaneschi, Y., Nolte, I. M., Petrelis, A. M., Porcu, E., Sabater-Lleal, M., Naderi, E., Seppälä, I., Shah, T., Singhal, G., Standl, M., Teumer, A., Thalamuthu, A., Thiering, E., Trompet, S., Ballantyne, C. M., Benjamin, E. J., Casas, J. P., Toben, C., Dedoussis, G., Deelen, J., Durda, P., Engmann, J., Feitosa, M. F., Grallert, H., Hammarstedt, A., Harris, S. E., Homuth, G., Hottenga, J.-J., Jalkanen, S., Jamshidi, Y., Jawahar, M. C., Jess, T., Kivimaki, M., Kleber, M. E., Lahti, J., Liu, Y., Marques-Vidal, P., Mellström, D., Mooijaart, S. P., Müller-Nurasyid, M., Penninx, B., Revez, J. A., Rossing, P., Räikkönen, K., Sattar, N., Scharnagl, H., Sennblad, B., Silveira, A., St Pourcain, B., Timpson, N. J., Trollor, J., CHARGE Inflammation Working Group, Van Dongen, J., Van Heemst, D., Visvikis-Siest, S., Vollenweider, P., Völker, U., Waldenberger, M., Willemsen, G., Zabaneh, D., Morris, R. W., Arnett, D. K., Baune, B. T., Boomsma, D. I., Chang, Y.-P.-C., Deary, I. J., Deloukas, P., Eriksson, J. G., Evans, D. M., Ferreira, M. A., Gaunt, T., Gudnason, V., Hamsten, A., Heinrich, J., Hingorani, A., Humphries, S. E., Jukema, J. W., Koenig, W., Kumari, M., Kutalik, Z., Lawlor, D. A., Lehtimäki, T., März, W., Mather, K. A., Naitza, S., Nauck, M., Ohlsson, C., Price, J. F., Raitakari, O., Rice, K., Sachdev, P. S., Slagboom, E., Sørensen, T. I. A., Spector, T., Stacey, D., Stathopoulou, M. G., Tanaka, T., Wannamethee, S. G., Whincup, P., Rotter, J. I., Dehghan, A., Boerwinkle, E., Psaty, B. M., Snieder, H., & Alizadeh, B. Z. (2021). Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics, 5(1), 393-409. doi:10.1093/hmg/ddab023.

    Abstract

    Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10−11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10−10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10−122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
  • Cuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M. and 98 moreCuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M., Duffy, D. L., Eriksson, J. G., Esko, T., Feenstra, B., Geller, F., Gieger, C., Giegling, I., Gordon, S. D., Han, J., Hansen, T. F., Hartmann, A. M., Hayward, C., Heikkilä, K., Hicks, A. A., Hirschhorn, J. N., Hottenga, J.-J., Huffman, J. E., Hwang, L.-D., Ikram, M. A., Kaprio, J., Kemp, J. P., Khaw, K.-T., Klopp, N., Konte, B., Kutalik, Z., Lahti, J., Li, X., Loos, R. J. F., Luciano, M., Magnusson, S. H., Mangino, M., Marques-Vidal, P., Martin, N. G., McArdle, W. L., McCarthy, M. I., Medina-Gomez, C., Melbye, M., Melville, S. A., Metspalu, A., Milani, L., Mooser, V., Nelis, M., Nyholt, D. R., O'Connell, K. S., Ophoff, R. A., Palmer, C., Palotie, A., Palviainen, T., Pare, G., Paternoster, L., Peltonen, L., Penninx, B. W. J. H., Polasek, O., Pramstaller, P. P., Prokopenko, I., Raikkonen, K., Ripatti, S., Rivadeneira, F., Rudan, I., Rujescu, D., Smit, J. H., Smith, G. D., Smoller, J. W., Soranzo, N., Spector, T. D., St Pourcain, B., Starr, J. M., Stefánsson, H., Steinberg, S., Teder-Laving, M., Thorleifsson, G., Stefansson, K., Timpson, N. J., Uitterlinden, A. G., Van Duijn, C. M., Van Rooij, F. J. A., Vink, J. M., Vollenweider, P., Vuoksimaa, E., Waeber, G., Wareham, N. J., Warrington, N., Waterworth, D., Werge, T., Wichmann, H.-E., Widen, E., Willemsen, G., Wright, A. F., Wright, M. J., Xu, M., Zhao, J. H., Kraft, P., Hinds, D. A., Lindgren, C. M., Magi, R., Neale, B. M., Evans, D. M., & Medland, S. E. (2021). Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 5, 59-70. doi:10.1038/s41562-020-00956-y.

    Abstract

    Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10−8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.

    Additional information

    supplementary tables
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C. and 29 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Kirsten, H., Müller, B., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 3004-3017. doi:10.1038/s41380-020-00898-x.

    Abstract

    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10−6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p  = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
  • Shapland, C. Y., Verhoef, E., Smith, G. D., Fisher, S. E., Verhulst, B., Dale, P. S., & St Pourcain, B. (2021). Multivariate genome-wide covariance analyses of literacy, language and working memory skills reveal distinct etiologies. npj Science of Learning, 6: 23. doi:10.1038/s41539-021-00101-y.

    Abstract

    Several abilities outside literacy proper are associated with reading and spelling, both phenotypically and genetically, though our knowledge of multivariate genomic covariance structures is incomplete. Here, we introduce structural models describing genetic and residual influences between traits to study multivariate links across measures of literacy, phonological awareness, oral language, and phonological working memory (PWM) in unrelated UK youth (8-13 years, N=6,453). We find that all phenotypes share a large proportion of underlying genetic variation, although especially oral language and PWM reveal substantial differences in their genetic variance composition with substantial trait-specific genetic influences. Multivariate genetic and residual trait covariance showed concordant patterns, except for marked differences between oral language and literacy/phonological awareness, where strong genetic links contrasted near-zero residual overlap. These findings suggest differences in etiological mechanisms, acting beyond a pleiotropic set of genetic variants, and implicate variation in trait modifiability even among phenotypes that have high genetic correlations.

    Additional information

    supplementary information
  • Ip, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E. and 129 moreIp, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E., Border, R., Peterson, R. E., Prinz, J. A., Thiering, E., Seppälä, I., Vilor-Tejedor, N., Ahluwalia, T. S., Day, F. R., Hottenga, J.-J., Allegrini, A. G., Rimfeld, K., Chen, Q., Lu, Y., Martin, J., Soler Artigas, M., Rovira, P., Bosch, R., Español, G., Ramos Quiroga, J. A., Neumann, A., Ensink, J., Grasby, K., Morosoli, J. J., Tong, X., Marrington, S., Middeldorp, C., Scott, J. G., Vinkhuyzen, A., Shabalin, A. A., Corley, R., Evans, L. M., Sugden, K., Alemany, S., Sass, L., Vinding, R., Ruth, K., Tyrrell, J., Davies, G. E., Ehli, E. A., Hagenbeek, F. A., De Zeeuw, E., Van Beijsterveldt, T. C., Larsson, H., Snieder, H., Verhulst, F. C., Amin, N., Whipp, A. M., Korhonen, T., Vuoksimaa, E., Rose, R. J., Uitterlinden, A. G., Heath, A. C., Madden, P., Haavik, J., Harris, J. R., Helgeland, Ø., Johansson, S., Knudsen, G. P. S., Njolstad, P. R., Lu, Q., Rodriguez, A., Henders, A. K., Mamun, A., Najman, J. M., Brown, S., Hopfer, C., Krauter, K., Reynolds, C., Smolen, A., Stallings, M., Wadsworth, S., Wall, T. L., Silberg, J. L., Miller, A., Keltikangas-Järvinen, L., Hakulinen, C., Pulkki-Råback, L., Havdahl, A., Magnus, P., Raitakari, O. T., Perry, J. R. B., Llop, S., Lopez-Espinosa, M.-J., Bønnelykke, K., Bisgaard, H., Sunyer, J., Lehtimäki, T., Arseneault, L., Standl, M., Heinrich, J., Boden, J., Pearson, J., Horwood, L. J., Kennedy, M., Poulton, R., Eaves, L. J., Maes, H. H., Hewitt, J., Copeland, W. E., Costello, E. J., Williams, G. M., Wray, N., Järvelin, M.-R., McGue, M., Iacono, W., Caspi, A., Moffitt, T. E., Whitehouse, A., Pennell, C. E., Klump, K. L., Burt, S. A., Dick, D. M., Reichborn-Kjennerud, T., Martin, N. G., Medland, S. E., Vrijkotte, T., Kaprio, J., Tiemeier, H., Davey Smith, G., Hartman, C. A., Oldehinkel, A. J., Casas, M., Ribasés, M., Lichtenstein, P., Lundström, S., Plomin, R., Bartels, M., Nivard, M. G., & Boomsma, D. I. (2021). Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 11: 413. doi:10.1038/s41398-021-01480-x.
  • Verhoef, E., Grove, J., Shapland, C. Y., Demontis, D., Burgess, S., Rai, D., Børglum, A. D., & St Pourcain, B. (2021). Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nature Communications, 12: 6534. doi:10.1038/s41467-021-26755-1.

    Abstract

    Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610–766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.

    Additional information

    supplementary information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental origins of genetic factors influencing language and literacy: Associations with early-childhood vocabulary. Journal of Child Psychology and Psychiatry, 62(6), 728-738. doi:10.1111/jcpp.13327.

    Abstract

    Background

    The heritability of language and literacy skills increases from early‐childhood to adolescence. The underlying mechanisms are little understood and may involve (a) the amplification of genetic influences contributing to early language abilities, and/or (b) the emergence of novel genetic factors (innovation). Here, we investigate the developmental origins of genetic factors influencing mid‐childhood/early‐adolescent language and literacy. We evaluate evidence for the amplification of early‐childhood genetic factors for vocabulary, in addition to genetic innovation processes.
    Methods

    Expressive and receptive vocabulary scores at 38 months, thirteen language‐ and literacy‐related abilities and nonverbal cognition (7–13 years) were assessed in unrelated children from the Avon Longitudinal Study of Parents and Children (ALSPAC, Nindividuals ≤ 6,092). We investigated the multivariate genetic architecture underlying early‐childhood expressive and receptive vocabulary, and each of 14 mid‐childhood/early‐adolescent language, literacy or cognitive skills with trivariate structural equation (Cholesky) models as captured by genome‐wide genetic relationship matrices. The individual path coefficients of the resulting structural models were finally meta‐analysed to evaluate evidence for overarching patterns.
    Results

    We observed little support for the emergence of novel genetic sources for language, literacy or cognitive abilities during mid‐childhood or early adolescence. Instead, genetic factors of early‐childhood vocabulary, especially those unique to receptive skills, were amplified and represented the majority of genetic variance underlying many of these later complex skills (≤99%). The most predictive early genetic factor accounted for 29.4%(SE = 12.9%) to 45.1%(SE = 7.6%) of the phenotypic variation in verbal intelligence and literacy skills, but also for 25.7%(SE = 6.4%) in performance intelligence, while explaining only a fraction of the phenotypic variation in receptive vocabulary (3.9%(SE = 1.8%)).
    Conclusions

    Genetic factors contributing to many complex skills during mid‐childhood and early adolescence, including literacy, verbal cognition and nonverbal cognition, originate developmentally in early‐childhood and are captured by receptive vocabulary. This suggests developmental genetic stability and overarching aetiological mechanisms.

    Additional information

    supporting information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental genetic architecture of vocabulary skills during the first three years of life: Capturing emerging associations with later-life reading and cognition. PLoS Genetics, 17(2): e1009144. doi:10.1371/journal.pgen.1009144.

    Abstract

    Individual differences in early-life vocabulary measures are heritable and associated with subsequent reading and cognitive abilities, although the underlying mechanisms are little understood. Here, we (i) investigate the developmental genetic architecture of expressive and receptive vocabulary in early-life and (ii) assess timing of emerging genetic associations with mid-childhood verbal and non-verbal skills. We studied longitudinally assessed early-life vocabulary measures (15–38 months) and later-life verbal and non-verbal skills (7–8 years) in up to 6,524 unrelated children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We dissected the phenotypic variance of rank-transformed scores into genetic and residual components by fitting multivariate structural equation models to genome-wide genetic-relationship matrices. Our findings show that the genetic architecture of early-life vocabulary involves multiple distinct genetic factors. Two of these genetic factors are developmentally stable and also contribute to genetic variation in mid-childhood skills: One genetic factor emerging with expressive vocabulary at 24 months (path coefficient: 0.32(SE = 0.06)) was also related to later-life reading (path coefficient: 0.25(SE = 0.12)) and verbal intelligence (path coefficient: 0.42(SE = 0.13)), explaining up to 17.9% of the phenotypic variation. A second, independent genetic factor emerging with receptive vocabulary at 38 months (path coefficient: 0.15(SE = 0.07)), was more generally linked to verbal and non-verbal cognitive abilities in mid-childhood (reading path coefficient: 0.57(SE = 0.07); verbal intelligence path coefficient: 0.60(0.10); performance intelligence path coefficient: 0.50(SE = 0.08)), accounting for up to 36.1% of the phenotypic variation and the majority of genetic variance in these later-life traits (≥66.4%). Thus, the genetic foundations of mid-childhood reading and cognitive abilities are diverse. They involve at least two independent genetic factors that emerge at different developmental stages during early language development and may implicate differences in cognitive processes that are already detectable during toddlerhood.

    Additional information

    supporting information
  • Glaser, B., Nikolov, I., Chubb, D., Hamshere, M. L., Segurado, R., Moskvina, V., & Holmans, P. (2007). Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests. BMC Proceedings, 1(Suppl 1): 54.

    Abstract

    Using parametric and nonparametric techniques, our study investigated the presence of single locus and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2), analyzing 463 independent patients and 855 controls. Specifically, our work examined the correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction effects, and random forest (RF) single and joint importance measures. For this comparison, we selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their importance measures and those by RFs grown on 5000 trees. Both RF importance measures captured most of the LR single-locus and pairwise interaction effects, while joint importance measures also corresponded to full LR models containing main and interaction effects. We furthermore showed that RF measures were particularly sensitive to data imputation. The most consistent pairwise effect on rheumatoid arthritis was found between two markers within MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels. Within a hypothetical two-stage design, pairwise LR analysis of all markers with significant RF single importance would have reduced the number of possible combinations in our small data set by 61%, whereas joint importance measures would have been less efficient for marker pair reduction. This suggests that RF single importance measures, which are able to detect a wide range of interaction effects and are computationally very efficient, might be exploited as pre-screening tool for larger association studies. Follow-up analysis, such as by LR, is required since RFs do not indicate highrisk genotype combinations.
  • Hamshere, M. L., Segurado, R., Moskvina, V., Nikolov, I., Glaser, B., & Holmans, P. A. (2007). Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proceedings, 1 (Suppl 1), S100.

    Abstract

    Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p <} 0.001) and rheumatoid factor (RF) IgM (p {< 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates.
  • Segurado, R., Hamshere, M. L., Glaser, B., Nikolov, I., Moskvina, V., & Holmans, P. A. (2007). Combining linkage data sets for meta-analysis and mega-analysis: the GAW15 rheumatoid arthritis data set. BMC Proceedings, 1(Suppl 1): S104.

    Abstract

    We have used the genome-wide marker genotypes from Genetic Analysis Workshop 15 Problem 2 to explore joint evidence for genetic linkage to rheumatoid arthritis across several samples. The data consisted of four high-density genome scans on samples selected for rheumatoid arthritis. We cleaned the data, removed intermarker linkage disequilibrium, and assembled the samples onto a common genetic map using genome sequence positions as a reference for map interpolation. The individual studies were combined first at the genotype level (mega-analysis) prior to a multipoint linkage analysis on the combined sample, and second using the genome scan meta-analysis method after linkage analysis of each sample. The two approaches were compared, and give strong support to the HLA locus on chromosome 6 as a susceptibility locus. Other regions of interest include loci on chromosomes 11, 2, and 12.
  • Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.

    Abstract

    Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.

Share this page