Beate St Pourcain

Publications

Displaying 1 - 9 of 9
  • Hegemann, L., Eilertsen, E., Hagen Pettersen, J., Corfield, E. C., Cheesman, R., Frach, L., Daae Bjørndal, L., Ask, H., St Pourcain, B., Havdahl, A., & Hannigan, L. J. (2025). Direct and indirect genetic effects on early neurodevelopmental traits. The Journal of Child Psychology and Psychiatry. Advance online publication. doi:10.1111/jcpp.14122.

    Abstract


    Background

    Neurodevelopmental conditions are highly heritable. Recent studies have shown that genomic heritability estimates can be confounded by genetic effects mediated via the environment (indirect genetic effects). However, the relative importance of direct versus indirect genetic effects on early variability in traits related to neurodevelopmental conditions is unknown.

    Methods

    The sample included up to 24,692 parent-offspring trios from the Norwegian MoBa cohort. We use Trio-GCTA to estimate latent direct and indirect genetic effects on mother-reported neurodevelopmental traits at age of 3 years (restricted and repetitive behaviors and interests, inattention, hyperactivity, language, social, and motor development). Further, we investigate to what extent direct and indirect effects are attributable to common genetic variants associated with autism, ADHD, developmental dyslexia, educational attainment, and cognitive ability using polygenic scores (PGS) in regression modeling.

    Results

    We find evidence for contributions of direct and indirect latent common genetic effects to inattention (direct: explaining 4.8% of variance, indirect: 6.7%) hyperactivity (direct: 1.3%, indirect: 9.6%), and restricted and repetitive behaviors (direct: 0.8%, indirect: 7.3%). Direct effects best explained variation in social and communication, language, and motor development (5.1%–5.7%). Direct genetic effects on inattention were captured by PGS for ADHD, educational attainment, and cognitive ability, whereas direct genetic effects on language development were captured by cognitive ability, educational attainment, and autism PGS. Indirect genetic effects on neurodevelopmental traits were primarily captured by educational attainment and/or cognitive ability PGS.

    Conclusions

    Results were consistent with differential contributions to neurodevelopmental traits in early childhood from direct and indirect genetic effects. Indirect effects were particularly important for hyperactivity and restricted and repetitive behaviors and interests and may be linked to genetic variation associated with cognition and educational attainment. Our findings illustrate the importance of within-family methods for disentangling genetic processes that influence early neurodevelopmental traits, even when identifiable associations are small.

    Additional information

    supplemental material
  • Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. E. M., Abdellaoui, A., Bartels, M., Baselmans, B. M. L., Ligthart, L., St Pourcain, B., Boomsma, D. I., Munafò, M. R., & Middeldorp, C. M. (2017). Genetic overlap between schizophrenia and developmental psychopathology: Longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophrenia Bulletin, 43(6), 1197-1207. doi:10.1093/schbul/sbx031.

    Abstract

    Background: Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Methods: Polygenic risk scores (PRS), reflecting an individual’s genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Results: Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. Conclusion: By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology.
  • Nivard, M. G., Lubke, G. H., Dolan, C. V., Evans, D. M., St Pourcain, B., Munafo, M. R., & Middeldorp, C. M. (2017). Joint developmental trajectories of internalizing and externalizing disorders between childhood and adolescence. Development and Psychopathology, 29(3), 919-928. doi:10.1017/S0954579416000572.

    Abstract

    This study sought to identify trajectories of DSM-IV based internalizing (INT) and externalizing (EXT) problem scores across childhood and adolescence and to provide insight into the comorbidity by modeling the co-occurrence of INT and EXT trajectories. INT and EXT were measured repeatedly between age 7 and age 15 years in over 7,000 children and analyzed using growth mixture models. Five trajectories were identified for both INT and EXT, including very low, low, decreasing, and increasing trajectories. In addition, an adolescent onset trajectory was identified for INT and a stable high trajectory was identified for EXT. Multinomial regression showed that similar EXT and INT trajectories were associated. However, the adolescent onset INT trajectory was independent of high EXT trajectories, and persisting EXT was mainly associated with decreasing INT. Sex and early life environmental risk factors predicted EXT and, to a lesser extent, INT trajectories. The association between trajectories indicates the need to consider comorbidity when a child presents with INT or EXT disorders, particularly when symptoms start early. This is less necessary when INT symptoms start at adolescence. Future studies should investigate the etiology of co-occurring INT and EXT and the specific treatment needs of these severely affected children.
  • Stergiakouli, E., Martin, J., Hamshere, M. L., Heron, J., St Pourcain, B., Timpson, N. J., Thapar, A., & Smith, G. D. (2017). Association between polygenic risk scores for attention-deficit hyperactivity disorder and educational and cognitive outcomes in the general population. International Journal of Epidemiology, 46(2), 421-428. doi:10.1093/ije/dyw216.

    Abstract

    Background: Children with a diagnosis of attention-deficit hyperactivity disorder (ADHD) have lower cognitive ability and are at risk of adverse educational outcomes; ADHD genetic risks have been found to predict childhood cognitive ability and other neurodevelopmental traits in the general population; thus genetic risks might plausibly also contribute to cognitive ability later in development and to educational underachievement.

    Methods: We generated ADHD polygenic risk scores in the Avon Longitudinal Study of Parents and Children participants (maximum N: 6928 children and 7280 mothers) based on the results of a discovery clinical sample, a genome-wide association study of 727 cases with ADHD diagnosis and 5081 controls. We tested if ADHD polygenic risk scores were associated with educational outcomes and IQ in adolescents and their mothers.

    Results: High ADHD polygenic scores in adolescents were associated with worse educational outcomes at Key Stage 3 [national tests conducted at age 13–14 years; β = −1.4 (−2.0 to −0.8), P = 2.3 × 10−6), at General Certificate of Secondary Education exams at age 15–16 years (β = −4.0 (−6.1 to −1.9), P = 1.8 × 10−4], reduced odds of sitting Key Stage 5 examinations at age 16–18 years [odds ratio (OR) = 0.90 (0.88 to 0.97), P = 0.001] and lower IQ scores at age 15.5 [β = −0.8 (−1.2 to −0.4), P = 2.4 × 10−4]. Moreover, maternal ADHD polygenic scores were associated with lower maternal educational achievement [β = −0.09 (−0.10 to −0.06), P = 0.005] and lower maternal IQ [β = −0.6 (−1.2 to −0.1), P = 0.03].

    Conclusions: ADHD diagnosis risk alleles impact on functional outcomes in two generations (mother and child) and likely have intergenerational environmental effects.
  • Stergiakouli, E., Smith, G. D., Martin, J., Skuse, D. H., Viechtbauer, W., Ring, S. M., Ronald, A., Evans, D. E., Fisher, S. E., Thapar, A., & St Pourcain, B. (2017). Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development. Molecular Autism, 8: 18. doi:10.1186/s13229-017-0131-2.

    Abstract

    Background: Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and
    autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however,
    subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD
    and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and
    cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk.
    Methods: Social-communication difficulties (N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and
    combined hyperactive-impulsive/inattentive ADHD symptoms (N ≤ 5678, Strengths and Difficulties Questionnaire,
    SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary
    statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls)
    were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between
    phenotypes were estimated using genome-wide data.
    Results: In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout
    development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait rg ≤ 1,
    pmin = 3 × 10−4) as those between repeated measures of the same trait (within-trait rg ≤ 0.94, pmin = 7 × 10−4).
    Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling
    upregulated genes (p-meta = 6.4 × 10−4).
    Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles
    for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression
    R2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during
    childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores
    were linked to genetic risk for disorder.
    Conclusions: In the general population, genetic aetiologies between social-communication difficulties and ADHD
    symptoms are shared throughout child and adolescent development and may implicate similar biological pathways
    that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked
    to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional
    trait-disorder relationships.
  • Tachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G. and 83 moreTachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G., Männistö, S., Matchan, A., Medina-Gomez, C., Metrustry, S. J., Nag, A., Ntalla, I., Paternoster, L., Rayner, N. W., Sala, C., Scott, W. R., Shihab, H. A., Southam, L., St Pourcain, B., Traglia, M., Trajanoska, K., Zaza, G., Zhang, W., Artigas, M. S., Bansal, N., Benn, M., Chen, Z., Danecek, P., Lin, W.-Y., Locke, A., Luan, J., Manning, A. K., Mulas, A., Sidore, C., Tybjaerg-Hansen, A., Varbo, A., Zoledziewska, M., Finan, C., Hatzikotoulas, K., Hendricks, A. E., Kemp, J. P., Moayyeri, A., Panoutsopoulou, K., Szpak, M., Wilson, S. G., Boehnke, M., Cucca, F., Di Angelantonio, E., Langenberg, C., Lindgren, C., McCarthy, M. I., Morris, A. P., Nordestgaard, B. G., Scott, R. A., Tobin, M. D., Wareham, N. J., Burton, P., Chambers, J. C., Smith, G. D., Dedoussis, G., Felix, J. F., Franco, O. H., Gambaro, G., Gasparini, P., Hammond, C. J., Hofman, A., Jaddoe, V. W. V., Kleber, M., Kooner, J. S., Perola, M., Relton, C., Ring, S. M., Rivadeneira, F., Salomaa, V., Spector, T. D., Stegle, O., Toniolo, D., Uitterlinden, A. G., Barroso, I., Greenwood, C. M. T., Perry, J. R. B., Walker, B. R., Butterworth, A. S., Xue, Y., Durbin, R., Small, K. S., Soranzo, N., Timpson, N. J., & Zeggini, E. (2017). Whole-Genome Sequencing coupled to imputation discovers genetic signals for anthropometric traits. The American Journal of Human Genetics, 100(6), 865-884. doi:10.1016/j.ajhg.2017.04.014.

    Abstract

    Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.
  • Glaser, B., & Holmans, P. (2009). Comparison of methods for combining case-control and family-based association studies. Human Heredity, 68(2), 106-116. doi:10.1159/000212503.

    Abstract

    OBJECTIVES: Combining the analysis of family-based samples with unrelated individuals can enhance the power of genetic association studies. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power, or robustness to confounding factors. We investigated empirically the power of up to six combined methods using simulated samples of trios and unrelated cases/controls (TDTCC), trios and unrelated controls (TDTC), and affected sibpairs with parents and unrelated cases/controls (ASPFCC). METHODS: We simulated multiplicative, dominant and recessive models with varying risk parameters in single samples. Additionally, we studied false-positive rates and investigated, if possible, the coverage of the true genetic effect (TDTCC). RESULTS/CONCLUSIONS: Under the TDTCC design, we identified four approaches with equivalent power and false-positive rates. Combined statistics were more powerful than single-sample statistics or a pooled chi(2)-statistic when risk parameters were similar in single samples. Adding parental information to the CC part of the joint likelihood increased the power of generalised logistic regression under the TDTC but not the TDTCC scenario. Formal testing of differences between risk parameters in subsamples was the most sensitive approach to avoid confounding in combined analysis. Non-parametric analysis based on Monte-Carlo testing showed the highest power for ASPFCC samples.
  • Richards, J. B., Waterworth, D., O'Rahilly, S., Hivert, M.-F., Loos, R. J. F., Perry, J. R. B., Tanaka, T., Timpson, N. J., Semple, R. K., Soranzo, N., Song, K., Rocha, N., Grundberg, E., Dupuis, J., Florez, J. C., Langenberg, C., Prokopenko, I., Saxena, R., Sladek, R., Aulchenko, Y. and 47 moreRichards, J. B., Waterworth, D., O'Rahilly, S., Hivert, M.-F., Loos, R. J. F., Perry, J. R. B., Tanaka, T., Timpson, N. J., Semple, R. K., Soranzo, N., Song, K., Rocha, N., Grundberg, E., Dupuis, J., Florez, J. C., Langenberg, C., Prokopenko, I., Saxena, R., Sladek, R., Aulchenko, Y., Evans, D., Waeber, G., Erdmann, J., Burnett, M.-S., Sattar, N., Devaney, J., Willenborg, C., Hingorani, A., Witteman, J. C. M., Vollenweider, P., Glaser, B., Hengstenberg, C., Ferrucci, L., Melzer, D., Stark, K., Deanfield, J., Winogradow, J., Grassl, M., Hall, A. S., Egan, J. M., Thompson, J. R., Ricketts, S. L., König, I. R., Reinhard, W., Grundy, S., Wichmann, H.-E., Barter, P., Mahley, R., Kesaniemi, Y. A., Rader, D. J., Reilly, M. P., Epstein, S. E., Stewart, A. F. R., Van Duijn, C. M., Schunkert, H., Burling, K., Deloukas, P., Pastinen, T., Samani, N. J., McPherson, R., Davey Smith, G., Frayling, T. M., Wareham, N. J., Meigs, J. B., Mooser, V., Spector, T. D., & Consortium, G. (2009). A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genetics, 5(12): e1000768. doi:10.1371/journal.pgen.1000768.

    Abstract

    The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P<} or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P{< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
  • Timpson, N. J., Tobias, J. H., Richards, J. B., Soranzo, N., Duncan, E. L., Sims, A.-M., Whittaker, P., Kumanduri, V., Zhai, G., Glaser, B., Eisman, J., Jones, G., Nicholson, G., Prince, R., Seeman, E., Spector, T. D., Brown, M. A., Peltonen, L., Smith, G. D., Deloukas, P. and 1 moreTimpson, N. J., Tobias, J. H., Richards, J. B., Soranzo, N., Duncan, E. L., Sims, A.-M., Whittaker, P., Kumanduri, V., Zhai, G., Glaser, B., Eisman, J., Jones, G., Nicholson, G., Prince, R., Seeman, E., Spector, T. D., Brown, M. A., Peltonen, L., Smith, G. D., Deloukas, P., & Evans, D. M. (2009). Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Human Molecular Genetics, 18(8), 1510-1517. doi:10.1093/hmg/ddp052.

    Abstract

    Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 x 10(-4); Australia: P = 3.7 x 10(-4)). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 x 10(-11)). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 x 10(-5)). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.

Share this page