Beate St Pourcain

Publications

Displaying 1 - 25 of 25
  • Doust, C., Fontanillas, P., Eising, E., Gordon, S. D., Wang, Z., Alagöz, G., Molz, B., 23andMe Research Team, Quantitative Trait Working Group of the GenLang Consortium, St Pourcain, B., Francks, C., Marioni, R. E., Zhao, J., Paracchini, S., Talcott, J. B., Monaco, A. P., Stein, J. F., Gruen, J. R., Olson, R. K., Willcutt, E. G., DeFries, J. C., Pennington, B. F. and 7 moreDoust, C., Fontanillas, P., Eising, E., Gordon, S. D., Wang, Z., Alagöz, G., Molz, B., 23andMe Research Team, Quantitative Trait Working Group of the GenLang Consortium, St Pourcain, B., Francks, C., Marioni, R. E., Zhao, J., Paracchini, S., Talcott, J. B., Monaco, A. P., Stein, J. F., Gruen, J. R., Olson, R. K., Willcutt, E. G., DeFries, J. C., Pennington, B. F., Smith, S. D., Wright, M. J., Martin, N. G., Auton, A., Bates, T. C., Fisher, S. E., & Luciano, M. (2022). Discovery of 42 genome-wide significant loci associated with dyslexia. Nature Genetics. doi:10.1038/s41588-022-01192-y.

    Abstract

    Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
  • Eising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M. M. J., Liao, Z., Jansen, P. R., Andlauer, T. F. M., Bates, T. C. and 70 moreEising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M. M. J., Liao, Z., Jansen, P. R., Andlauer, T. F. M., Bates, T. C., Bernard, M., Blokland, K., Børglum, A. D., Bourgeron, T., Brandeis, D., Ceroni, F., Dale, P. S., Landerl, K., Lyytinen, H., De Jong, P. F., DeFries, J. C., Demontis, D., Feng, Y., Gordon, S. D., Guger, S. L., Hayiou-Thomas, M. E., Hernández-Cabrera, J. A., Hottenga, J.-J., Hulme, C., Kerr, E. N., Koomar, T., Lovett, M. W., Martin, N. G., Martinelli, A., Maurer, U., Michaelson, J. J., Moll, K., Monaco, A. P., Morgan, A. T., Nöthen, M. M., Pausova, Z., Pennell, C. E., Pennington, B. F., Price, K. M., Rajagopal, V. M., Ramus, F., Richer, L., Simpson, N. H., Smith, S., Snowling, M. J., Stein, J., Strug, L. J., Talcott, J. B., Tiemeier, H., Van de Schroeff, M. M. P., Verhoef, E., Watkins, K. E., Wilkinson, M., Wright, M. J., Barr, C. L., Boomsma, D. I., Carreiras, M., Franken, M.-C.-J., Gruen, J. R., Luciano, M., Müller-Myhsok, B., Newbury, D. F., Olson, R. K., Paracchini, S., Paus, T., Plomin, R., Schulte-Körne, G., Reilly, S., Tomblin, J. B., Van Bergen, E., Whitehouse, A. J., Willcutt, E. G., St Pourcain, B., Francks, C., & Fisher, S. E. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences of the United States of America, 119(35): e2202764119. doi:10.1073/pnas.2202764119.

    Abstract

    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10−8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.
  • Neumann, A., Nolte, I. M., Pappa, I., Ahluwalia, T. S., Pettersson, E., Rodriguez, A., Whitehouse, A., Van Beijsterveldt, C. E. M., Benyamin, B., Hammerschlag, A. R., Helmer, Q., Karhunen, V., Krapohl, E., Lu, Y., Van der Most, P. J., Palviainen, T., St Pourcain, B., Seppälä, I., Suarez, A., Vilor-Tejedor, N. and 41 moreNeumann, A., Nolte, I. M., Pappa, I., Ahluwalia, T. S., Pettersson, E., Rodriguez, A., Whitehouse, A., Van Beijsterveldt, C. E. M., Benyamin, B., Hammerschlag, A. R., Helmer, Q., Karhunen, V., Krapohl, E., Lu, Y., Van der Most, P. J., Palviainen, T., St Pourcain, B., Seppälä, I., Suarez, A., Vilor-Tejedor, N., Tiesler, C. M. T., Wang, C., Wills, A., Zhou, A., Alemany, S., Bisgaard, H., Bønnelykke, K., Davies, G. E., Hakulinen, C., Henders, A. K., Hyppönen, E., Stokholm, J., Bartels, M., Hottenga, J.-J., Heinrich, J., Hewitt, J., Keltikangas-Järvinen, L., Korhonen, T., Kaprio, J., Lahti, J., Lahti-Pulkkinen, M., Lehtimäki, T., Middeldorp, C. M., Najman, J. M., Pennell, C., Power, C., Oldehinkel, A. J., Plomin, R., Räikkönen, K., Raitakari, O. T., Rimfeld, K., Sass, L., Snieder, H., Standl, M., Sunyer, J., Williams, G. M., Bakermans-Kranenburg, M. J., Boomsma, D. I., Van IJzendoorn, M. H., Hartman, C. A., & Tiemeier, H. (2022). A genome-wide association study of total child psychiatric problems scores. PLOS ONE, 17(8): e0273116. doi:10.1371/journal.pone.0273116.

    Abstract

    Substantial genetic correlations have been reported across psychiatric disorders and numerous cross-disorder genetic variants have been detected. To identify the genetic variants underlying general psychopathology in childhood, we performed a genome-wide association study using a total psychiatric problem score. We analyzed 6,844,199 common SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01) and two loci reached genome-wide significance: rs10767094 and rs202005905. We also observed an association of SBF2, a gene associated with neuroticism in previous GWAS, with total psychiatric problems. The genetic effects underlying the total score were shared with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety, depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders (schizophrenia, bipolar disorder, or eating disorders) (rG < 0.01). Importantly, the total psychiatric problem score also showed at least a moderate genetic correlation with intelligence, educational attainment, wellbeing, smoking, and body fat (rG > 0.29). The results suggest that many common genetic variants are associated with childhood psychiatric symptoms and related phenotypes in general instead of with specific symptoms. Further research is needed to establish causality and pleiotropic mechanisms between related traits.

    Additional information

    Full summary results
  • Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., Porteous, D. J. and 18 moreOkbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., Porteous, D. J., Freese, J., Herd, P., 23andMe Research Team, Social Science Genetic Association Consortium, Watson, C., Jala, J., Conley, D., Koellinger, P. D., Johannesson, M., Laibson, D., Meyer, M. N., Lee, J. J., Kong, A., Yengo, L., Cesarini, D., Turley, P., Visscher, P. M., Beauchamp, J. P., Benjamin, D. J., & Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54, 437-449. doi:10.1038/s41588-022-01016-z.

    Abstract

    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12–16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI’s magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.

    Additional information

    supplementary information
  • Price, K. M., Wigg, K. G., Eising, E., Feng, Y., Blokland, K., Wilkinson, M., Kerr, E. N., Guger, S. L., Quantitative Trait Working Group of the GenLang Consortium, Fisher, S. E., Lovett, M. W., Strug, L. J., & Barr, C. L. (2022). Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities. Translational Psychiatry, 12: 495. doi:10.1038/s41398-022-02250-z.

    Abstract

    Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations.
  • Schlag, F., Allegrini, A. G., Buitelaar, J., Verhoef, E., Van Donkelaar, M. M. J., Plomin, R., Rimfeld, K., Fisher, S. E., & St Pourcain, B. (2022). Polygenic risk for mental disorder reveals distinct association profiles across social behaviour in the general population. Molecular Psychiatry, 27, 1588-1598. doi:10.1038/s41380-021-01419-0.

    Abstract

    Many mental health conditions present a spectrum of social difficulties that overlaps with social behaviour in the general population including shared but little characterised genetic links. Here, we systematically investigate heterogeneity in shared genetic liabilities with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), bipolar disorder (BP), major depression (MD) and schizophrenia across a spectrum of different social symptoms. Longitudinally assessed low-prosociality and peer-problem scores in two UK population-based cohorts (4–17 years; parent- and teacher-reports; Avon Longitudinal Study of Parents and Children(ALSPAC): N ≤ 6,174; Twins Early Development Study(TEDS): N ≤ 7,112) were regressed on polygenic risk scores for disorder, as informed by genome-wide summary statistics from large consortia, using negative binomial regression models. Across ALSPAC and TEDS, we replicated univariate polygenic associations between social behaviour and risk for ADHD, MD and schizophrenia. Modelling variation in univariate genetic effects jointly using random-effect meta-regression revealed evidence for polygenic links between social behaviour and ADHD, ASD, MD, and schizophrenia risk, but not BP. Differences in age, reporter and social trait captured 45–88% in univariate effect variation. Cross-disorder adjusted analyses demonstrated that age-related heterogeneity in univariate effects is shared across mental health conditions, while reporter- and social trait-specific heterogeneity captures disorder-specific profiles. In particular, ADHD, MD, and ASD polygenic risk were more strongly linked to peer problems than low prosociality, while schizophrenia was associated with low prosociality only. The identified association profiles suggest differences in the social genetic architecture across mental disorders when investigating polygenic overlap with population-based social symptoms spanning 13 years of child and adolescent development.
  • Vogelezang, S., Bradfield, J. P., the Early Growth Genetics Consortium, Grant, S. F. A., Felix, J. F., & Jaddoe, V. W. V. (2022). Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes. BMC Medical Genomics, 15: 124. doi:10.1186/s12920-022-01281-1.

    Abstract

    Background

    Head circumference is associated with intelligence and tracks from childhood into adulthood.
    Methods

    We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age.
    Results

    Seven loci reached genome-wide significance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes.
    Conclusions

    The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics.
  • Ahluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C. and 106 moreAhluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C., Marioni, R. E., McLachlan, S., Milaneschi, Y., Nolte, I. M., Petrelis, A. M., Porcu, E., Sabater-Lleal, M., Naderi, E., Seppälä, I., Shah, T., Singhal, G., Standl, M., Teumer, A., Thalamuthu, A., Thiering, E., Trompet, S., Ballantyne, C. M., Benjamin, E. J., Casas, J. P., Toben, C., Dedoussis, G., Deelen, J., Durda, P., Engmann, J., Feitosa, M. F., Grallert, H., Hammarstedt, A., Harris, S. E., Homuth, G., Hottenga, J.-J., Jalkanen, S., Jamshidi, Y., Jawahar, M. C., Jess, T., Kivimaki, M., Kleber, M. E., Lahti, J., Liu, Y., Marques-Vidal, P., Mellström, D., Mooijaart, S. P., Müller-Nurasyid, M., Penninx, B., Revez, J. A., Rossing, P., Räikkönen, K., Sattar, N., Scharnagl, H., Sennblad, B., Silveira, A., St Pourcain, B., Timpson, N. J., Trollor, J., CHARGE Inflammation Working Group, Van Dongen, J., Van Heemst, D., Visvikis-Siest, S., Vollenweider, P., Völker, U., Waldenberger, M., Willemsen, G., Zabaneh, D., Morris, R. W., Arnett, D. K., Baune, B. T., Boomsma, D. I., Chang, Y.-P.-C., Deary, I. J., Deloukas, P., Eriksson, J. G., Evans, D. M., Ferreira, M. A., Gaunt, T., Gudnason, V., Hamsten, A., Heinrich, J., Hingorani, A., Humphries, S. E., Jukema, J. W., Koenig, W., Kumari, M., Kutalik, Z., Lawlor, D. A., Lehtimäki, T., März, W., Mather, K. A., Naitza, S., Nauck, M., Ohlsson, C., Price, J. F., Raitakari, O., Rice, K., Sachdev, P. S., Slagboom, E., Sørensen, T. I. A., Spector, T., Stacey, D., Stathopoulou, M. G., Tanaka, T., Wannamethee, S. G., Whincup, P., Rotter, J. I., Dehghan, A., Boerwinkle, E., Psaty, B. M., Snieder, H., & Alizadeh, B. Z. (2021). Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics, 5(1), 393-409. doi:10.1093/hmg/ddab023.

    Abstract

    Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10−11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10−10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10−122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
  • Cuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M. and 98 moreCuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M., Duffy, D. L., Eriksson, J. G., Esko, T., Feenstra, B., Geller, F., Gieger, C., Giegling, I., Gordon, S. D., Han, J., Hansen, T. F., Hartmann, A. M., Hayward, C., Heikkilä, K., Hicks, A. A., Hirschhorn, J. N., Hottenga, J.-J., Huffman, J. E., Hwang, L.-D., Ikram, M. A., Kaprio, J., Kemp, J. P., Khaw, K.-T., Klopp, N., Konte, B., Kutalik, Z., Lahti, J., Li, X., Loos, R. J. F., Luciano, M., Magnusson, S. H., Mangino, M., Marques-Vidal, P., Martin, N. G., McArdle, W. L., McCarthy, M. I., Medina-Gomez, C., Melbye, M., Melville, S. A., Metspalu, A., Milani, L., Mooser, V., Nelis, M., Nyholt, D. R., O'Connell, K. S., Ophoff, R. A., Palmer, C., Palotie, A., Palviainen, T., Pare, G., Paternoster, L., Peltonen, L., Penninx, B. W. J. H., Polasek, O., Pramstaller, P. P., Prokopenko, I., Raikkonen, K., Ripatti, S., Rivadeneira, F., Rudan, I., Rujescu, D., Smit, J. H., Smith, G. D., Smoller, J. W., Soranzo, N., Spector, T. D., St Pourcain, B., Starr, J. M., Stefánsson, H., Steinberg, S., Teder-Laving, M., Thorleifsson, G., Stefansson, K., Timpson, N. J., Uitterlinden, A. G., Van Duijn, C. M., Van Rooij, F. J. A., Vink, J. M., Vollenweider, P., Vuoksimaa, E., Waeber, G., Wareham, N. J., Warrington, N., Waterworth, D., Werge, T., Wichmann, H.-E., Widen, E., Willemsen, G., Wright, A. F., Wright, M. J., Xu, M., Zhao, J. H., Kraft, P., Hinds, D. A., Lindgren, C. M., Magi, R., Neale, B. M., Evans, D. M., & Medland, S. E. (2021). Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 5, 59-70. doi:10.1038/s41562-020-00956-y.

    Abstract

    Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10−8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.

    Additional information

    supplementary tables
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C. and 29 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Kirsten, H., Müller, B., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 3004-3017. doi:10.1038/s41380-020-00898-x.

    Abstract

    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10−6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p  = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
  • Shapland, C. Y., Verhoef, E., Smith, G. D., Fisher, S. E., Verhulst, B., Dale, P. S., & St Pourcain, B. (2021). Multivariate genome-wide covariance analyses of literacy, language and working memory skills reveal distinct etiologies. npj Science of Learning, 6: 23. doi:10.1038/s41539-021-00101-y.

    Abstract

    Several abilities outside literacy proper are associated with reading and spelling, both phenotypically and genetically, though our knowledge of multivariate genomic covariance structures is incomplete. Here, we introduce structural models describing genetic and residual influences between traits to study multivariate links across measures of literacy, phonological awareness, oral language, and phonological working memory (PWM) in unrelated UK youth (8-13 years, N=6,453). We find that all phenotypes share a large proportion of underlying genetic variation, although especially oral language and PWM reveal substantial differences in their genetic variance composition with substantial trait-specific genetic influences. Multivariate genetic and residual trait covariance showed concordant patterns, except for marked differences between oral language and literacy/phonological awareness, where strong genetic links contrasted near-zero residual overlap. These findings suggest differences in etiological mechanisms, acting beyond a pleiotropic set of genetic variants, and implicate variation in trait modifiability even among phenotypes that have high genetic correlations.

    Additional information

    supplementary information
  • Ip, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E. and 129 moreIp, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E., Border, R., Peterson, R. E., Prinz, J. A., Thiering, E., Seppälä, I., Vilor-Tejedor, N., Ahluwalia, T. S., Day, F. R., Hottenga, J.-J., Allegrini, A. G., Rimfeld, K., Chen, Q., Lu, Y., Martin, J., Soler Artigas, M., Rovira, P., Bosch, R., Español, G., Ramos Quiroga, J. A., Neumann, A., Ensink, J., Grasby, K., Morosoli, J. J., Tong, X., Marrington, S., Middeldorp, C., Scott, J. G., Vinkhuyzen, A., Shabalin, A. A., Corley, R., Evans, L. M., Sugden, K., Alemany, S., Sass, L., Vinding, R., Ruth, K., Tyrrell, J., Davies, G. E., Ehli, E. A., Hagenbeek, F. A., De Zeeuw, E., Van Beijsterveldt, T. C., Larsson, H., Snieder, H., Verhulst, F. C., Amin, N., Whipp, A. M., Korhonen, T., Vuoksimaa, E., Rose, R. J., Uitterlinden, A. G., Heath, A. C., Madden, P., Haavik, J., Harris, J. R., Helgeland, Ø., Johansson, S., Knudsen, G. P. S., Njolstad, P. R., Lu, Q., Rodriguez, A., Henders, A. K., Mamun, A., Najman, J. M., Brown, S., Hopfer, C., Krauter, K., Reynolds, C., Smolen, A., Stallings, M., Wadsworth, S., Wall, T. L., Silberg, J. L., Miller, A., Keltikangas-Järvinen, L., Hakulinen, C., Pulkki-Råback, L., Havdahl, A., Magnus, P., Raitakari, O. T., Perry, J. R. B., Llop, S., Lopez-Espinosa, M.-J., Bønnelykke, K., Bisgaard, H., Sunyer, J., Lehtimäki, T., Arseneault, L., Standl, M., Heinrich, J., Boden, J., Pearson, J., Horwood, L. J., Kennedy, M., Poulton, R., Eaves, L. J., Maes, H. H., Hewitt, J., Copeland, W. E., Costello, E. J., Williams, G. M., Wray, N., Järvelin, M.-R., McGue, M., Iacono, W., Caspi, A., Moffitt, T. E., Whitehouse, A., Pennell, C. E., Klump, K. L., Burt, S. A., Dick, D. M., Reichborn-Kjennerud, T., Martin, N. G., Medland, S. E., Vrijkotte, T., Kaprio, J., Tiemeier, H., Davey Smith, G., Hartman, C. A., Oldehinkel, A. J., Casas, M., Ribasés, M., Lichtenstein, P., Lundström, S., Plomin, R., Bartels, M., Nivard, M. G., & Boomsma, D. I. (2021). Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 11: 413. doi:10.1038/s41398-021-01480-x.
  • Verhoef, E., Grove, J., Shapland, C. Y., Demontis, D., Burgess, S., Rai, D., Børglum, A. D., & St Pourcain, B. (2021). Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nature Communications, 12: 6534. doi:10.1038/s41467-021-26755-1.

    Abstract

    Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610–766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.

    Additional information

    supplementary information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental origins of genetic factors influencing language and literacy: Associations with early-childhood vocabulary. Journal of Child Psychology and Psychiatry, 62(6), 728-738. doi:10.1111/jcpp.13327.

    Abstract

    Background

    The heritability of language and literacy skills increases from early‐childhood to adolescence. The underlying mechanisms are little understood and may involve (a) the amplification of genetic influences contributing to early language abilities, and/or (b) the emergence of novel genetic factors (innovation). Here, we investigate the developmental origins of genetic factors influencing mid‐childhood/early‐adolescent language and literacy. We evaluate evidence for the amplification of early‐childhood genetic factors for vocabulary, in addition to genetic innovation processes.
    Methods

    Expressive and receptive vocabulary scores at 38 months, thirteen language‐ and literacy‐related abilities and nonverbal cognition (7–13 years) were assessed in unrelated children from the Avon Longitudinal Study of Parents and Children (ALSPAC, Nindividuals ≤ 6,092). We investigated the multivariate genetic architecture underlying early‐childhood expressive and receptive vocabulary, and each of 14 mid‐childhood/early‐adolescent language, literacy or cognitive skills with trivariate structural equation (Cholesky) models as captured by genome‐wide genetic relationship matrices. The individual path coefficients of the resulting structural models were finally meta‐analysed to evaluate evidence for overarching patterns.
    Results

    We observed little support for the emergence of novel genetic sources for language, literacy or cognitive abilities during mid‐childhood or early adolescence. Instead, genetic factors of early‐childhood vocabulary, especially those unique to receptive skills, were amplified and represented the majority of genetic variance underlying many of these later complex skills (≤99%). The most predictive early genetic factor accounted for 29.4%(SE = 12.9%) to 45.1%(SE = 7.6%) of the phenotypic variation in verbal intelligence and literacy skills, but also for 25.7%(SE = 6.4%) in performance intelligence, while explaining only a fraction of the phenotypic variation in receptive vocabulary (3.9%(SE = 1.8%)).
    Conclusions

    Genetic factors contributing to many complex skills during mid‐childhood and early adolescence, including literacy, verbal cognition and nonverbal cognition, originate developmentally in early‐childhood and are captured by receptive vocabulary. This suggests developmental genetic stability and overarching aetiological mechanisms.

    Additional information

    supporting information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental genetic architecture of vocabulary skills during the first three years of life: Capturing emerging associations with later-life reading and cognition. PLoS Genetics, 17(2): e1009144. doi:10.1371/journal.pgen.1009144.

    Abstract

    Individual differences in early-life vocabulary measures are heritable and associated with subsequent reading and cognitive abilities, although the underlying mechanisms are little understood. Here, we (i) investigate the developmental genetic architecture of expressive and receptive vocabulary in early-life and (ii) assess timing of emerging genetic associations with mid-childhood verbal and non-verbal skills. We studied longitudinally assessed early-life vocabulary measures (15–38 months) and later-life verbal and non-verbal skills (7–8 years) in up to 6,524 unrelated children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We dissected the phenotypic variance of rank-transformed scores into genetic and residual components by fitting multivariate structural equation models to genome-wide genetic-relationship matrices. Our findings show that the genetic architecture of early-life vocabulary involves multiple distinct genetic factors. Two of these genetic factors are developmentally stable and also contribute to genetic variation in mid-childhood skills: One genetic factor emerging with expressive vocabulary at 24 months (path coefficient: 0.32(SE = 0.06)) was also related to later-life reading (path coefficient: 0.25(SE = 0.12)) and verbal intelligence (path coefficient: 0.42(SE = 0.13)), explaining up to 17.9% of the phenotypic variation. A second, independent genetic factor emerging with receptive vocabulary at 38 months (path coefficient: 0.15(SE = 0.07)), was more generally linked to verbal and non-verbal cognitive abilities in mid-childhood (reading path coefficient: 0.57(SE = 0.07); verbal intelligence path coefficient: 0.60(0.10); performance intelligence path coefficient: 0.50(SE = 0.08)), accounting for up to 36.1% of the phenotypic variation and the majority of genetic variance in these later-life traits (≥66.4%). Thus, the genetic foundations of mid-childhood reading and cognitive abilities are diverse. They involve at least two independent genetic factors that emerge at different developmental stages during early language development and may implicate differences in cognitive processes that are already detectable during toddlerhood.

    Additional information

    supporting information
  • Ho, Y. Y. W., Evans, D. M., Montgomery, G. W., Henders, A. K., Kemp, J. P., Timpson, N. J., St Pourcain, B., Heath, A. C., Madden, P. A. F., Loesch, D. Z., McNevin, D., Daniel, R., Davey-Smith, G., Martin, N. G., & Medland, S. E. (2016). Common genetic variants influence whorls in fingerprint patterns. Journal of Investigative Dermatology, 136(4), 859-862. doi:10.1016/j.jid.2015.10.062.
  • Fan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y. and 17 moreFan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y., Ding, X., Wojciechowski, R., Young, T. L., Parssinen, O., Oexle, K., Pfeiffer, N., Bailey-Wilson, J. E., Paterson, A. D., Klaver, C. C. W., Plomin, R., Hammond, C. J., Mackey, D. A., He, M. G., Saw, S. M., Williams, C., Guggenheim, J. A., & Cream, C. (2016). Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 6: 25853. doi:10.1038/srep25853.

    Abstract

    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).

    Additional information

    srep25853-s1.pdf
  • Fan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C. and 83 moreFan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C., Miyake, M., Hewitt, A. W., Guo, X., Mazur, J., Huffman, J. E., Williams, K. M., Polasek, O., Campbell, H., Rudan, I., Vatavuk, Z., Wilson, J. F., Joshi, P. K., McMahon, G., St Pourcain, B., Evans, D. M., Simpson, C. L., Schwantes-An, T.-H., Igo, R. P., Mirshahi, A., Cougnard-Gregoire, A., Bellenguez, C., Blettner, M., Raitakari, O., Kähönen, M., Seppälä, I., Zeller, T., Meitinger, T., Ried, J. S., Gieger, C., Portas, L., Van Leeuwen, E. M., Amin, N., Uitterlinden, A. G., Rivadeneira, F., Hofman, A., Vingerling, J. R., Wang, Y. X., Wang, X., Boh, E.-T.-H., Ikram, M. K., Sabanayagam, C., Gupta, P., Tan, V., Zhou, L., Ho, C. E., Lim, W., Beuerman, R. W., Siantar, R., Tai, E.-S., Vithana, E., Mihailov, E., Khor, C.-C., Hayward, C., Luben, R. N., Foster, P. J., Klein, B. E., Klein, R., Wong, H.-S., Mitchell, P., Metspalu, A., Aung, T., Young, T. L., He, M., Pärssinen, O., Van Duijn, C. M., Wang, J. J., Williams, C., Jonas, J. B., Teo, Y.-Y., Mackey, D. A., Oexle, K., Yoshimura, N., Paterson, A. D., Pfeiffer, N., Wong, T.-Y., Baird, P. N., Stambolian, D., Bailey-Wilson, J. E., Cheng, C.-Y., Hammond, C. J., Klaver, C. C., Saw, S.-M., & Consortium for Refractive Error and Myopia (CREAM) (2016). Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 7: 11008. doi:10.1038/ncomms11008.

    Abstract

    Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia

    Additional information

    Fan_etal_2016sup.pdf
  • Hugh-Jones, D., Verweij, K. J. H., St Pourcain, B., & Abdellaoui, A. (2016). Assortative mating on educational attainment leads to genetic spousal resemblance for causal alleles. Intelligence, 59, 103-108. doi:10.1016/j.intell.2016.08.005.

    Abstract

    We examined whether assortative mating for educational attainment (“like marries like”) can be detected in the genomes of ~ 1600 UK spouse pairs of European descent. Assortative mating on heritable traits like educational attainment increases the genetic variance and heritability of the trait in the population, which may increase social inequalities. We test for genetic assortative mating in the UK on educational attainment, a phenotype that is indicative of socio-economic status and has shown substantial levels of assortative mating. We use genome-wide allelic effect sizes from a large genome-wide association study on educational attainment (N ~ 300 k) to create polygenic scores that are predictive of educational attainment in our independent sample (r = 0.23, p < 2 × 10− 16). The polygenic scores significantly predict partners' educational outcome (r = 0.14, p = 4 × 10− 8 and r = 0.19, p = 2 × 10− 14, for prediction from males to females and vice versa, respectively), and are themselves significantly correlated between spouses (r = 0.11, p = 7 × 10− 6). Our findings provide molecular genetic evidence for genetic assortative mating on education in the UK
  • Middeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J. and 31 moreMiddeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J., Hudziak, J. J., Jugessur, A., Kemp, J. P., Krapohl, E., Martin, N. G., Murcia, M., Myhre, R., Ormel, J., Ring, S. M., Standl, M., Stergiakouli, E., Stoltenberg, C., Thiering, E., Timpson, N. J., Trzaskowski, M., van der Most, P. J., Wang, C., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Psychiatric Genomics Consortium ADHD Working Group, Nyholt, D. R., Medland, S. E., Neale, B., Jacobsson, B., Sunyer, J., Hartman, C. A., Whitehouse, A. J. O., Pennell, C. E., Heinrich, J., Plomin, R., Smith, G. D., Tiemeier, H., Posthuma, D., & Boomsma, D. I. (2016). A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Paediatric Cohorts. Journal of the American Academy of Child & Adolescent Psychiatry, 55(10), 896-905. doi:10.1016/j.jaac.2016.05.025.

    Abstract

    Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants.
  • Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G. and 236 moreOkbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., Turley, P., Chen, G. B., Emilsson, V., Meddens, S. F. W., Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., De Vlaming, R., Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., Bjornsdottir, G., Brandsma, J., Pina Concas, M., Derringer, J., Furlotte, N. A., Galesloot, T. E., Girotto, G., Gupta, R., Hall, L. M., Harris, S. E., Hofer, E., Horikoshi, M., Huffman, J. E., Kaasik, K., Kalafati, I. P., Karlsson, R., Kong, A., Lahti, J., Lee, S. J. V. D., DeLeeuw, C., Lind, P. A., Lindgren, K.-.-O., Liu, T., Mangino, M., Marten, J., Mihailov, E., Miller, M. B., Van der Most, P. J., Oldmeadow, C., Payton, A., Pervjakova, N., Peyrot, W. J., Qian, Y., Raitakari, O., Rueedi, R., Salvi, E., Schmidt, B., Schraut, K. E., Shi, J., Smith, A. V., Poot, R. A., St Pourcain, B., Teumer, A., Thorleifsson, G., Verweij, N., Vuckovic, D., Wellmann, J., Westra, H.-.-J., Yang, J., Zhao, W., Zhu, Z., Alizadeh, B. Z., Amin, N., Bakshi, A., Baumeister, S. E., Biino, G., Bønnelykke, K., Boyle, P. A., Campbell, H., Cappuccio, F. P., Davies, G., De Neve, J.-.-E., Deloukas, P., Demuth, I., Ding, J., Eibich, P., Eisele, L., Eklund, N., Evans, D. M., Faul, J. D., Feitosa, M. F., Forstner, A. J., Gandin, I., Gunnarsson, B., Halldórsson, B. V., Harris, T. B., Heath, A. C., Hocking, L. J., Holliday, E. G., Homuth, G., Horan, M. A., Hottenga, J.-.-J., De Jager, P. L., Joshi, P. K., Jugessur, A., Kaakinen, M. A., Kähönen, M., Kanoni, S., Keltigangas-Järvinen, L., Kiemeney, L. A. L. M., Kolcic, I., Koskinen, S., Kraja, A. T., Kroh, M., Kutalik, Z., Latvala, A., Launer, L. J., Lebreton, M. P., Levinson, D. F., Lichtenstein, P., Lichtner, P., Liewald, D. C. M., Cohert Study, L., Loukola, A., Madden, P. A., Mägi, R., Mäki-Opas, T., Marioni, R. E., Marques-Vidal, P., Meddens, G. A., McMahon, G., Meisinger, C., Meitinger, T., Milaneschi, Y., Milani, L., Montgomery, G. W., Myhre, R., Nelson, C. P., Nyholt, D. R., Ollier, W. E. R., Palotie, A., Paternoster, L., Pedersen, N. L., Petrovic, K. E., Porteous, D. J., Räikkönen, K., Ring, S. M., Robino, A., Rostapshova, O., Rudan, I., Rustichini, A., Salomaa, V., Sanders, A. R., Sarin, A.-.-P., Schmidt, H., Scott, R. J., Smith, B. H., Smith, J. A., Staessen, J. A., Steinhagen-Thiessen, E., Strauch, K., Terracciano, A., Tobin, M. D., Ulivi, S., Vaccargiu, S., Quaye, L., Van Rooij, F. J. A., Venturini, C., Vinkhuyzen, A. A. E., Völker, U., Völzke, H., Vonk, J. M., Vozzi, D., Waage, J., Ware, E. B., Willemsen, G., Attia, J. R., Bennett, D. A., Berger, K., Bertram, L., Bisgaard, H., Boomsma, D. I., Borecki, I. B., Bültmann, U., Chabris, C. F., Cucca, F., Cusi, D., Deary, I. J., Dedoussis, G. V., Van Duijn, C. M., Eriksson, J. G., Franke, B., Franke, L., Gasparini, P., Gejman, P. V., Gieger, C., Grabe, H.-.-J., Gratten, J., Groenen, P. J. F., Gudnason, V., Van der Harst, P., Hayward, C., Hinds, D. A., Hoffmann, W., Hyppönen, E., Iacono, W. G., Jacobsson, B., Järvelin, M.-.-R., Jöckel, K.-.-H., Kaprio, J., Kardia, S. L. R., Lehtimäki, T., Lehrer, S. F., Magnusson, P. K. E., Martin, N. G., McGue, M., Metspalu, A., Pendleton, N., Penninx, B. W. J. H., Perola, M., Pirastu, N., Pirastu, M., Polasek, O., Posthuma, D., Power, C., Province, M. A., Samani, N. J., Schlessinger, D., Schmidt, R., Sørensen, T. I. A., Spector, T. D., Stefansson, K., Thorsteinsdottir, U., Thurik, A. R., Timpson, N. J., Tiemeier, H., Tung, J. Y., Uitterlinden, A. G., Vitart, V., Vollenweider, P., Weir, D. R., Wilson, J. F., Wright, A. F., Conley, D. C., Krueger, R. F., Davey Smith, G., Hofman, A., Laibson, D. I., Medland, S. E., Meyer, M. N., Yang, J., Johannesson, M., Visscher, P. M., Esko, T., Koellinger, P. D., Cesarini, D., & Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539-542. doi:10.1038/nature17671.

    Abstract

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases
  • Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R., Motazedi, E. and 23 morePappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R., Motazedi, E., Power, C., Raitakari, O. T., Ring, S. M., Rivadeneira, F., Rodriguez, A., Scheet, P. A., Seppälä, I., Snieder, H., Standl, M., Thiering, E., Timpson, N. J., Veenstra, R., Velders, F. P., Whitehouse, A. J. O., Smith, G. D., Heinrich, J., Hypponen, E., Lehtimäki, T., Middeldorp, C. M., Oldehinkel, A. J., Pennell, C. E., Boomsma, D. I., & Tiemeier, H. (2016). A genome-wide approach to children's aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 562-572. doi:10.1002/ajmg.b.32333.

    Abstract

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10–54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10−8). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning.
  • Robinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A. and 2 moreRobinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A., Smith, G. D., & Daly, M. J. (2016). Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 48, 552-555. doi:10.1038/ng.3529.

    Abstract

    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology.

    Additional information

    ng.3529-S1.pdf
  • Stock, N. M., Humphries, K., St Pourcain, B., Bailey, M., Persson, M., Ho, K. M., Ring, S., Marsh, C., Albery, L., Rumsey, N., & Sandy, J. (2016). Opportunities and Challenges in Establishing a Cohort Study: An Example From Cleft Lip/Palate Research in the United Kingdom. Cleft Palate-Craniofacial Journal, (3), 317-325. doi:10.1597/14-306.

    Abstract

    Full text and MPG-specific services(opens in a new window)|
    Export
    | Download | Add to List | More...

    Cleft Palate-Craniofacial Journal
    Volume 53, Issue 3, May 2016, Pages 317-325
    Opportunities and challenges in establishing a cohort study: An example from cleft lip/palate research in the United Kingdom (Article)
    Stock, N.M.a ,
    Humphries, K.b,
    St. Pourcain, B.b,
    Bailey, M.b,
    Persson, M.a,
    Ho, K.M.b,
    Ring, S.b,
    Marsh, C.c,
    Albery, L.c,
    Rumsey, N.a,
    Sandy, J.b


    a Centre for Appearance Research, University of the West of England, Coldharbour Lane, Bristol, United Kingdom
    b Faculty of Medicine and Dentistry, University of Bristol, United Kingdom
    c South West Cleft Service, University Hospitals Bristol NHS Foundation Trust, United Kingdom
    Hide additional affiliations
    View references (32)
    Abstract

    Background: Cleft lip and/or palate (CL/P) is one of the most common birth conditions in the world, but little is known about its causes. Professional opinion remains divided as to which treatments may be the most beneficial for patients with CL/P, and the factors that contribute to psychological adjustment are poorly understood. The use of different methodological approaches and tools plays a key role in hampering efforts to address discrepancies within the evidence base. A new UK-wide program of research, The Cleft Collective, was established to combat many of these methodological challenges and to address some of the key research questions important to all CL/P stakeholders. Objective: To describe the establishment of CL/P cohort studies in the United Kingdom and to consider the many opportunities this resource will generate. Results: To date, protocols have been developed and implemented within most UK cleft teams. Biological samples, environmental information, and data pertaining to parental psychological well-being and child development are being collected successfully. Recruitment is currently on track to meet the ambitious target of approximately 9800 individuals from just more than 3000 families. Conclusions: The Cleft Collective cohort studies represent a significant step forward for research in the field of CL/P. The data collected will form a comprehensive resource of information about individuals with CL/P and their families. This resource will provide the basis for many future projects and collaborations, both in the United Kingdom and around the world.
  • van den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., Matteson, L. K., Derringer, J., Esko, T., Amin, N. F., Gordon, S. D., Hansell, N. K., Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., Nutile, T. and 101 morevan den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., Matteson, L. K., Derringer, J., Esko, T., Amin, N. F., Gordon, S. D., Hansell, N. K., Hart, A. B., Seppälä, I., Huffman, J. E., Konte, B., Lahti, J., Lee, M., Miller, M., Nutile, T., Tanaka, T., Teumer, A., Viktorin, A., Wedenoja, J., Abdellaoui, A., Abecasis, G. R., Adkins, D. E., Agrawal, A., Allik, J., Appel, K., Bigdeli, T. B., Busonero, F., Campbell, H., Costa, P., Smith, G. D., Davies, G., de Wit, H., Ding, J., Engelhardt, B. E., Eriksson, J. G., Fedko, I. O., Ferrucci, L., Franke, B., Giegling, I., Grucza, R., Hartmann, A. M., Heath, A. C., Heinonen, K., Henders, A. K., Homuth, G., Hottenga, J.-J., Iacono, W. G., Janzing, J., Jokela, M., Karlsson, R., Kemp, J., Kirkpatrick, M. G., Latvala, A., Lehtimäki, T., Liewald, D. C., Madden, P. F., Magri, C., Magnusson, P. E., Marten, J., Maschio, A., Mbarek, H., Medland, S. E., Mihailov, E., Milaneschi, Y., Montgomery, G. W., Nauck, M., Nivard, M. G., Ouwens, K. G., Palotie, A., Pettersson, E., Polasek, O., Qian, Y., Pulkki-Råback, L., Raitakari, O., Realo, A., Rose, R. J., Ruggiero, D., Schmidt, C. O., Slutske, W. S., Sorice, R., Starr, J. M., St Pourcain, B., Sutin, A. R., Timpson, N. J., Trochet, H., Vermeulen, S., Vuoksimaa, E., Widen, E., Wouda, J., Wright, M. J., Zgaga, L., Porteous, D., Minelli, A., Palmer, A. A., Rujescu, D., Ciullo, M., Hayward, C., Rudan, I., Metspalu, A., Kaprio, J., Deary, I. J., Räikkönen, K., Wilson, J. F., Keltikangas-Järvinen, L., Bierut, L. J., Hettema, J. M., Grabe, H. J., Penninx, B. W. J. H., van Duijn, C. M., Evans, D. M., Schlessinger, D., Pedersen, N. L., Terracciano, A., McGue, M., Martin, N. G., & Boomsma, D. I. (2016). Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behavior Genetics, 46, 170-182. doi:10.1007/s10519-015-9735-5.

    Abstract

    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion. © 2015 The Author(s)

    Additional information

    10519_2015_9735_MOESM1_ESM.docx

Share this page