Publications

Displaying 1 - 7 of 7
  • Poletiek, F. H., Conway, C. M., Ellefson, M. R., Lai, J., Bocanegra, B. R., & Christiansen, M. H. (2018). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Cognitive Science, 42(8), 2855-2889. doi:10.1111/cogs.12685.

    Abstract

    It has been suggested that external and/or internal limitations paradoxically may lead to superior learning, that is, the concepts of starting small and less is more (Elman, 1993; Newport, 1990). In this paper, we explore the type of incremental ordering during training that might help learning, and what mechanism explains this facilitation. We report four artificial grammar learning experiments with human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two types of simple recursive grammars: right‐branching and center‐embedding, with recursive embedded clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N = 100). In Experiment 3 and 4, we used a more complex center‐embedded grammar with recursive loops in variable positions, producing strings of variable length. When participants were presented an incremental ordering of training stimuli, as in natural language, they were better able to generalize their knowledge of simple units to more complex units when the training input “grew” according to structural complexity, compared to when it “grew” according to string length. Overall, the results suggest that starting small confers an advantage for learning complex center‐embedded structures when the input is organized according to structural complexity.
  • Poletiek, F. H., & Van Schijndel, T. J. P. (2009). Stimulus set size and statistical coverage of the grammar in artificial grammar learning. Psychonomic Bulletin & Review, 16(6), 1058-1064. doi:10.3758/PBR.16.6.1058.

    Abstract

    Adults and children acquire knowledge of the structure of their environment on the basis of repeated exposure to samples of structured stimuli. In the study of inductive learning, a straightforward issue is how much sample information is needed to learn the structure. The present study distinguishes between two measures for the amount of information in the sample: set size and the extent to which the set of exemplars statistically covers the underlying structure. In an artificial grammar learning experiment, learning was affected by the sample’s statistical coverage of the grammar, but not by its mere size. Our result suggests an alternative explanation of the set size effects on learning found in previous studies (McAndrews & Moscovitch, 1985; Meulemans & Van der Linden, 1997), because, as we argue, set size was confounded with statistical coverage in these studies. nt]mis|This research was supported by a grant from the Netherlands Organization for Scientific Research. We thank Jarry Porsius for his help with the data analyses.
  • Poletiek, F. H. (2009). Popper's Severity of Test as an intuitive probabilistic model of hypothesis testing. Behavioral and Brain Sciences, 32(1), 99-100. doi:10.1017/S0140525X09000454.
  • Poletiek, F. H., & Wolters, G. (2009). What is learned about fragments in artificial grammar learning? A transitional probabilities approach. Quarterly Journal of Experimental Psychology, 62(5), 868-876. doi:10.1080/17470210802511188.

    Abstract

    Learning local regularities in sequentially structured materials is typically assumed to be based on encoding of the frequencies of these regularities. We explore the view that transitional probabilities between elements of chunks, rather than frequencies of chunks, may be the primary factor in artificial grammar learning (AGL). The transitional probability model (TPM) that we propose is argued to provide an adaptive and parsimonious strategy for encoding local regularities in order to induce sequential structure from an input set of exemplars of the grammar. In a variant of the AGL procedure, in which participants estimated the frequencies of bigrams occurring in a set of exemplars they had been exposed to previously, participants were shown to be more sensitive to local transitional probability information than to mere pattern frequencies.
  • Poletiek, F. H., & Rassin E. (Eds.). (2005). Het (on)bewuste [Special Issue]. De Psycholoog.
  • Poletiek, F. H., & Van den Bos, E. J. (2005). Het onbewuste is een dader met een motief. De Psycholoog, 40(1), 11-17.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.

Share this page