Publications

Displaying 1 - 3 of 3
  • Poletiek, F. H., Conway, C. M., Ellefson, M. R., Lai, J., Bocanegra, B. R., & Christiansen, M. H. (2018). Under what conditions can recursion be learned? Effects of starting small in artificial grammar learning of recursive structure. Cognitive Science, 42(8), 2855-2889. doi:10.1111/cogs.12685.

    Abstract

    It has been suggested that external and/or internal limitations paradoxically may lead to superior learning, that is, the concepts of starting small and less is more (Elman, 1993; Newport, 1990). In this paper, we explore the type of incremental ordering during training that might help learning, and what mechanism explains this facilitation. We report four artificial grammar learning experiments with human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two types of simple recursive grammars: right‐branching and center‐embedding, with recursive embedded clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N = 100). In Experiment 3 and 4, we used a more complex center‐embedded grammar with recursive loops in variable positions, producing strings of variable length. When participants were presented an incremental ordering of training stimuli, as in natural language, they were better able to generalize their knowledge of simple units to more complex units when the training input “grew” according to structural complexity, compared to when it “grew” according to string length. Overall, the results suggest that starting small confers an advantage for learning complex center‐embedded structures when the input is organized according to structural complexity.
  • Lai, J., & Poletiek, F. H. (2011). The impact of adjacent-dependencies and staged-input on the learnability of center-embedded hierarchical structures. Cognition, 118(2), 265-273. doi:10.1016/j.cognition.2010.11.011.

    Abstract

    A theoretical debate in artificial grammar learning (AGL) regards the learnability of hierarchical structures. Recent studies using an AnBn grammar draw conflicting conclusions (Bahlmann and Friederici, 2006, De Vries et al., 2008). We argue that 2 conditions crucially affect learning AnBn structures: sufficient exposure to zero-level-of-embedding (0-LoE) exemplars and a staged-input. In 2 AGL experiments, learning was observed only when the training set was staged and contained 0-LoE exemplars. Our results might help understanding how natural complex structures are learned from exemplars.
  • Poletiek, F. H. (2011). You can't have your hypothesis and test it: The importance of utilities in theories of reasoning. Behavioral and Brain Sciences, 34(2), 87-88. doi:10.1017/S0140525X10002980.

Share this page