Displaying 1 - 5 of 5
-
Van den Bos, E., & Poletiek, F. H. (2015). Learning simple and complex artificial grammars in the presence of a semantic reference field: Effects on performance and awareness. Frontiers in Psychology, 6: 158. doi:10.3389/fpsyg.2015.00158.
Abstract
This study investigated whether the negative effect of complexity on artificial grammar learning could be compensated by adding semantics. Participants were exposed to exemplars from a simple or a complex finite state grammar presented with or without a semantic reference field. As expected, performance on a grammaticality judgment test was higher for the simple grammar than for the complex grammar. For the simple grammar, the results also showed that participants presented with a reference field and instructed to decode the meaning of each exemplar (decoding condition) did better than participants who memorized the exemplars without semantic referents (memorize condition). Contrary to expectations, however, there was no significant difference between the decoding condition and the memorize condition for the complex grammar. These findings indicated that the negative effect of complexity remained, despite the addition of semantics. To clarify how the presence of a reference field influenced the learning process, its effects on the acquisition of two types of knowledge (first- and second-order dependencies) and on participants’ awareness of their knowledge were examined. The results tentatively suggested that the reference field enhanced the learning of second-order dependencies. In addition, participants in the decoding condition realized when they had knowledge relevant to making a grammaticality judgment, whereas participants in the memorize condition demonstrated some knowledge of which they were unaware. These results are in line with the view that the reference field enhanced structure learning by making certain dependencies more salient. Moreover, our findings stress the influence of complexity on artificial grammar learningAdditional information
data sheet 1.pdf -
Van Bommel, T., O'Dwyer, C., Zuidgeest, T. W. M., & Poletiek, F. H. (2015). When the reaper becomes a salesman: The influence of terror management on product preferences. Journal of Economic and Financial Studies, 3(5), 33-42. doi:10.18533/jefs.v3i05.121.
Abstract
The present research investigates how consumer choice is affected by Terror Management Theory’s proposition of Mortality Salience increasing one’s cultural worldview defense and self-esteem striving. The study builds empirically upon prior theorizing by Arndt, Solomon, Kasser and Sheldon (2004). During an experiment, we manipulated Mortality Salience and measured product preferences for conspicuousness and familiarity. Participants primed with death were more likely to choose conspicuous products, corroborating previous research of mortality salience raising materialistic tendencies. In addition, participants showed a tendency to prefer familiar brands. These results are in line with the Terror Management Theory framework.
-
Lai, J., & Poletiek, F. H. (2013). How “small” is “starting small” for learning hierarchical centre-embedded structures? Journal of Cognitive Psychology, 25, 423-435. doi:10.1080/20445911.2013.779247.
Abstract
Hierarchical centre-embedded structures pose a large difficulty for language learners due to their complexity. A recent artificial grammar learning study (Lai & Poletiek, 2011) demonstrated a starting-small (SS) effect, i.e., staged-input and sufficient exposure to 0-level-of-embedding exemplars were the critical conditions in learning AnBn structures. The current study aims to test: (1) a more sophisticated type of SS (a gradually rather than discretely growing input), and (2) the frequency distribution of the input. The results indicate that SS optimally works under other conditional cues, such as a skewed frequency distribution with simple stimuli being more numerous than complex ones. -
Warmelink, L., Vrij, A., Mann, S., Leal, S., & Poletiek, F. H. (2013). The effects of unexpected questions on detecting familiar and unfamiliar lies. Psychiatry, Psychology and law, 20(1), 29-35. doi:10.1080/13218719.2011.619058.
Abstract
Previous research suggests that lie detection can be improved by asking the interviewee unexpected questions. The present experiment investigates the effect of two types of unexpected questions: background questions and detail questions, on detecting lies about topics with which the interviewee is (a) familiar or (b) unfamiliar. In this experiment, 66 participants read interviews in which interviewees answered background or detail questions, either truthfully or deceptively. Those who answered deceptively could be lying about a topic they were familiar with or about a topic they were unfamiliar with. The participants were asked to judge whether the interviewees were lying. The results revealed that background questions distinguished truths from both types of lies, while the detail questions distinguished truths from unfamiliar lies, but not from familiar lies. The implications of these findings are discussed. -
Poletiek, F. H., & Lai, J. (2012). How semantic biases in simple adjacencies affect learning a complex structure with non-adjacencies in AGL: A statistical account. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2046 -2054. doi:10.1098/rstb.2012.0100.
Abstract
A major theoretical debate in language acquisition research regards the learnability of hierarchical structures. The artificial grammar learning methodology is increasingly influential in approaching this question. Studies using an artificial centre-embedded AnBn grammar without semantics draw conflicting conclusions. This study investigates the facilitating effect of distributional biases in simple AB adjacencies in the input sample—caused in natural languages, among others, by semantic biases—on learning a centre-embedded structure. A mathematical simulation of the linguistic input and the learning, comparing various distributional biases in AB pairs, suggests that strong distributional biases might help us to grasp the complex AnBn hierarchical structure in a later stage. This theoretical investigation might contribute to our understanding of how distributional features of the input—including those caused by semantic variation—help learning complex structures in natural languages.
Share this page