Displaying 1 - 14 of 14
-
Bakker-Marshall, I., Takashima, A., Fernandez, C. B., Janzen, G., McQueen, J. M., & Van Hell, J. G. (2021). Overlapping and distinct neural networks supporting novel word learning in bilinguals and monolinguals. Bilingualism: Language and Cognition, 24(3), 524-536. doi:10.1017/S1366728920000589.
Abstract
This study investigated how bilingual experience alters neural mechanisms supporting novel word learning. We hypothesised that novel words elicit increased semantic activation in the larger bilingual lexicon, potentially stimulating stronger memory integration than in monolinguals. English monolinguals and Spanish–English bilinguals were trained on two sets of written Swahili–English word pairs, one set on each of two consecutive days, and performed a recognition task in the MRI-scanner. Lexical integration was measured through visual primed lexical decision. Surprisingly, no group difference emerged in explicit word memory, and priming occurred only in the monolingual group. This difference in lexical integration may indicate an increased need for slow neocortical interleaving of old and new information in the denser bilingual lexicon. The fMRI data were consistent with increased use of cognitive control networks in monolinguals and of articulatory motor processes in bilinguals, providing further evidence for experience-induced neural changes: monolinguals and bilinguals reached largely comparable behavioural performance levels in novel word learning, but did so by recruiting partially overlapping but non-identical neural systems to acquire novel words. -
Tartaro, G., Takashima, A., & McQueen, J. M. (2021). Consolidation as a mechanism for word learning in sequential bilinguals. Bilingualism: Language and Cognition, 24(5), 864-878. doi:10.1017/S1366728921000286.
Abstract
First-language research suggests that new words, after initial episodic-memory encoding, are consolidated and hence become lexically integrated. We asked here if lexical consolidation, about word forms and meanings, occurs in a second language. Italian–English sequential bilinguals learned novel English-like words (e.g., apricon, taught to mean “stapler”). fMRI analyses failed to reveal a predicted shift, after consolidation time, from hippocampal to temporal neocortical activity. In a pause-detection task, responses to existing phonological competitors of learned words (e.g., apricot for apricon) were slowed down if the words had been learned two days earlier (i.e., after consolidation time) but not if they had been learned the same day. In a lexical-decision task, new words primed responses to semantically-related existing words (e.g., apricon-paper) whether the words were learned that day or two days earlier. Consolidation appears to support integration of words into the bilingual lexicon, possibly more rapidly for meanings than for forms.Additional information
materials, procedure, results -
Bakker-Marshall, I., Takashima, A., Schoffelen, J.-M., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2018). Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation. Journal of Cognitive Neuroscience, 30(5), 621-633. doi:10.1162/jocn_a_01240.
Abstract
Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286–1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG. -
Berkers, R. M. W. J., Ekman, M., van Dongen, E. V., Takashima, A., Barth, M., Paller, K. A., & Fernández, G. (2018). Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization. Scientific Reports, 8: 16958. doi:10.1038/s41598-018-35287-6.
Abstract
Memory reprocessing following acquisition enhances memory consolidation. Specifically, neural activity during encoding is thought to be ‘replayed’ during subsequent slow-wave sleep. Such memory replay is thought to contribute to the functional reorganization of neural memory traces. In particular, memory replay may facilitate the exchange of information across brain regions by inducing a reconfiguration of connectivity across the brain. Memory reactivation can be induced by external cues through a procedure known as “targeted memory reactivation”. Here, we analysed data from a published study with auditory cues used to reactivate visual object-location memories during slow-wave sleep. We characterized effects of memory reactivation on brain network connectivity using graph-theory. We found that cue presentation during slow-wave sleep increased global network integration of occipital cortex, a visual region that was also active during retrieval of object locations. Although cueing did not have an overall beneficial effect on the retention of cued versus uncued associations, individual differences in overnight memory stabilization were related to enhanced network integration of occipital cortex. Furthermore, occipital cortex displayed enhanced connectivity with mnemonic regions, namely the hippocampus, parahippocampal gyrus, thalamus and medial prefrontal cortex during cue sound presentation. Together, these results suggest a neural mechanism where cue-induced replay during sleep increases integration of task-relevant perceptual regions with mnemonic regions. This cross-regional integration may be instrumental for the consolidation and long-term storage of enduring memories.Additional information
41598_2018_35287_MOESM1_ESM.doc -
Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.
Abstract
The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers. -
Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.
Abstract
Low-frequency neural entrainment to rhythmic input
has been hypothesized as a canonical mechanism
that shapes sensory perception in time. Neural
entrainment is deemed particularly relevant for
speech analysis, as it would contribute to the extraction
of discrete linguistic elements from continuous
acoustic signals. However, its causal influence in
speech perception has been difficult to establish.
Here, we provide evidence that oscillations build temporal
predictions about the duration of speech tokens
that affect perception. Using magnetoencephalography
(MEG), we studied neural dynamics during
listening to sentences that changed in speech rate.
Weobserved neural entrainment to preceding speech
rhythms persisting for several cycles after the change
in rate. The sustained entrainment was associated
with changes in the perceived duration of the last
word’s vowel, resulting in the perception of words
with different meanings. These findings support oscillatory
models of speech processing, suggesting that
neural oscillations actively shape speech perception. -
Van den Broek, G., Takashima, A., Segers, E., & Verhoeven, L. (2018). Contextual Richness and Word Learning: Context Enhances Comprehension but Retrieval Enhances Retention. Language Learning, 68(2), 546-585. doi:10.1111/lang.12285.
Abstract
Learning new vocabulary from context typically requires multiple encounters during which word meaning can be retrieved from memory or inferred from context. We compared the effect of memory retrieval and context inferences on short‐ and long‐term retention in three experiments. Participants studied novel words and then practiced the words either in an uninformative context that required the retrieval of word meaning from memory (“I need the funguo”) or in an informative context from which word meaning could be inferred (“I want to unlock the door: I need the funguo”). The informative context facilitated word comprehension during practice. However, later recall of word form and meaning and word recognition in a new context were better after successful retrieval practice and retrieval practice with feedback than after context‐inference practice. These findings suggest benefits of retrieval during contextualized vocabulary learning whereby the uninformative context enhanced word retention by triggering memory retrieval. -
Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.
Abstract
Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval. -
Varma, S., Daselaar, S. M., Kessels, R. P. C., & Takashima, A. (2018). Promotion and suppression of autobiographical thinking differentially affect episodic memory consolidation. PLoS One, 13(8): e0201780. doi:10.1371/journal.pone.0201780.
Abstract
During a post-encoding delay period, the ongoing consolidation of recently acquired memories can suffer interference if the delay period involves encoding of new memories, or sensory stimulation tasks. Interestingly, two recent independent studies suggest that (i) autobiographical thinking also interferes markedly with ongoing consolidation of recently learned wordlist material, while (ii) a 2-Back task might not interfere with ongoing consolidation, possibly due to the suppression of autobiographical thinking. In this study, we directly compare these conditions against a quiet wakeful rest baseline to test whether the promotion (via familiar sound-cues) or suppression (via a 2-Back task) of autobiographical thinking during the post-encoding delay period can affect consolidation of studied wordlists in a negative or a positive way, respectively. Our results successfully replicate previous studies and show a significant interference effect (as compared to the rest condition) when learning is followed by familiar sound-cues that promote autobiographical thinking, whereas no interference effect is observed when learning is followed by the 2-Back task. Results from a post-experimental experience-sampling questionnaire further show significant differences in the degree of autobiographical thinking reported during the three post-encoding periods: highest in the presence of sound-cues and lowest during the 2-Back task. In conclusion, our results suggest that varying levels of autobiographical thought during the post-encoding period may modulate episodic memory consolidation.Additional information
6932372.zip http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201780#sec019 -
Bakker, I., Takashima, A., Van Hall, J. G., & McQueen, J. M. (2015). Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of cognitive neuroscience, 27(7), 1286-1297. doi:10.1162/jocn_a_00801.
Abstract
The complementary learning systems account of word learning states that novel words, like other types of memories, undergo an offline consolidation process during which they are gradually integrated into the neocortical memory network. A fundamental change in the neural representation of a novel word should therefore occur in the hours after learning. The present EEG study tested this hypothesis by investigating whether novel words learned before a 24-hr consolidation period elicited more word-like oscillatory responses than novel words learned immediately before testing. In line with previous studies indicating that theta synchronization reflects lexical access, unfamiliar novel words elicited lower power in the theta band (4–8 Hz) than existing words. Recently learned words still showed a marginally lower theta increase than existing words, but theta responses to novel words that had been acquired 24 hr earlier were indistinguishable from responses to existing words. Consistent with evidence that beta desynchronization (16–21 Hz) is related to lexical-semantic processing, we found that both unfamiliar and recently learned novel words elicited less beta desynchronization than existing words. In contrast, no difference was found between novel words learned 24 hr earlier and existing words. These data therefore suggest that an offline consolidation period enables novel words to acquire lexically integrated, word-like neural representations. -
Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2015). Tracking lexical consolidation with ERPs: Lexical and semantic-priming effects on N400 and LPC responses to newly-learned words. Neuropsychologia, 79, 33-41. doi:10.1016/j.neuropsychologia.2015.10.020.
-
Sweegers, C. C. G., Takashima, A., Fernández, G., & Talamini, L. M. (2015). Neural mechanisms supporting the extraction of general knowledge across episodic memories. NeuroImage, 87, 138-146. doi:10.1016/j.neuroimage.2013.10.063.
Abstract
General knowledge acquisition entails the extraction of statistical regularities from the environment. At high levels of complexity, this may involve the extraction, and consolidation, of associative regularities across event memories. The underlying neural mechanisms would likely involve a hippocampo-neocortical dialog, as proposed previously for system-level consolidation. To test these hypotheses, we assessed possible differences in consolidation between associative memories containing cross-episodic regularities and unique associative memories. Subjects learned face–location associations, half of which responded to complex regularities regarding the combination of facial features and locations, whereas the other half did not. Importantly, regularities could only be extracted over hippocampus-encoded, associative aspects of the items. Memory was assessed both immediately after encoding and 48 h later, under fMRI acquisition. Our results suggest that processes related to system-level reorganization occur preferentially for regular associations across episodes. Moreover, the build-up of general knowledge regarding regular associations appears to involve the coordinated activity of the hippocampus and mediofrontal regions. The putative cross-talk between these two regions might support a mechanism for regularity extraction. These findings suggest that the consolidation of cross-episodic regularities may be a key mechanism underlying general knowledge acquisition. -
Thielen, J.-W., Takashima, A., Rutters, F., Tendolkar, I., & Fernandez, G. (2015). Transient relay function of midline thalamic nuclei during long-term memory consolidation in humans. Learning & Memory, 22, 527-531. doi:10.1101/lm.038372.115.
Abstract
To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a parahippocampal area, which decreased with time. In turn, mPFC-parahippocampal connectivity increased progressively. These findings support a model in which thalamic midline nuclei serve as a hub linking hippocampus, mPFC, and posterior representational areas during memory retrieval at an early (2 h) stage of consolidation, extending classical systems consolidation models by attributing a transient role to midline thalamic nuclei. -
van der Ven, F., Takashima, A., Segers, E., & Verhoeven, L. (2015). Learning Word Meanings: Overnight Integration and Study Modality Effects. PLoS One, 10. doi:10.1371/journal.pone.0124926.
Abstract
According to the complementary learning systems (CLS) account of word learning, novel words are rapidly acquired (learning system 1), but slowly integrated into the mental lexicon (learning system 2). This two-step learning process has been shown to apply to novel word forms. In this study, we investigated whether novel word meanings are also gradually integrated after acquisition by measuring the extent to which newly learned words were able to prime semantically related words at two different time points. In addition, we investigated whether modality at study modulates this integration process. Sixty-four adult participants studied novel words together with written or spoken definitions. These words did not prime semantically related words directly following study, but did so after a 24-hour delay. This significant increase in the magnitude of the priming effect suggests that semantic integration occurs over time. Overall, words that were studied with a written definition showed larger priming effects, suggesting greater integration for the written study modality. Although the process of integration, reflected as an increase in the priming effect over time, did not significantly differ between study modalities, words studied with a written definition showed the most prominent positive effect after a 24-hour delay. Our data suggest that semantic integration requires time, and that studying in written format benefits semantic integration more than studying in spoken format. These findings are discussed in light of the CLS theory of word learning.
Share this page