Displaying 1 - 11 of 11
-
Beyh, A., Ohlerth, A.-K., & Forkel, S. J. (in press). Harnessing advanced tractography in neurosurgical practice. In S. M. Krieg, & T. Picht (
Eds. ), Navigated Transcranial Magnetic Stimulation in Neurosurgery. Berlin: Springer. -
Ohlerth, A.-K., Lavrador, J. P., Vergani, F., & Forkel, S. J. (in press). Combining anTMS and tractography for language mapping: An integrated paradigm for neurosurgical planning. In S. M. Krieg, & T. Picht (
Eds. ), Navigated Transcranial Magnetic Stimulation in Neurosurgery. Berlin: Springer. -
Dulyan, L., Guzmán Chacón, E. G., & Forkel, S. J. (2025). Navigating neuroanatomy. In J. H. Grafman (
Ed. ), Encyclopedia of the human brain (2nd ed.). Amsterdam: Elsevier.Abstract
This chapter introduces the origins and development of our current anatomical terminology. It scrutinizes the historical evolution and etymological significance of the over 1900 official anatomical terms in the current nomenclature, underscoring their impact on the contemporary comprehension of cognitive neuroanatomy. The chapter traces unification efforts from the Basel Nomina Anatomica in 1895 to the 1998 Terminologia Anatomica, noting challenges arising from outdated terminology in light of recent anatomical advancements.
Highlighting the influence of terminologies on interpretations of brain anatomy, the chapter explores several anatomical mapping methods such as surface, sectional, connectional, and functional anatomy. It illuminates discrepancies and controversies, exemplified by divergent interpretations of the number of brain lobes and the definitions of 'Broca' and 'Wernicke' areas.
The chapter explores anatomical terms' historical and cultural underpinnings, encompassing mythonyms, eponyms, and cultural influences on nomenclature. It critically examines the implications of these terminologies on contemporary research and shows that Large Language Models mirror these discrepancies. It underscores the need for more inclusive and culturally sensitive approaches in anatomical education.
Lastly, we advocate for updating anatomical nomenclature, suggesting that a deeper understanding of these terminologies could provide insights and aid in resolving ongoing debates in the field. This examination sheds light on historical knowledge and emphasizes the dynamic interplay between language, culture, and anatomy in shaping our comprehension of the neurobiology of the brain and how we navigate neuroanatomy in the 21st century. -
Dulyan, L., Bortolami, C., & Forkel, S. J. (2025). Asymmetries in the human brain. In C. Papagno, & P. Corballis (
Eds. ), Cerebral Asymmetries: Handbook of Clinical Neurology (pp. 15-36). Amsterdam: Elsevier.Abstract
The human brain is an intricate network of cortical regions interconnected by white matter pathways, dynamically supporting cognitive functions. While cortical asymmetries have been consistently reported, the asymmetry of white matter connections remains less explored. This chapter provides a brief overview of asymmetries observed at the cortical, subcortical, cytoarchitectural, and receptor levels before exploring the detailed connectional anatomy of the human brain. It thoroughly examines the lateralization and interindividual variability of 56 distinct white matter tracts, offering a comprehensive review of their structural characteristics and interindividual variability. Additionally, we provide an extensive update on the asymmetry of a wide range of white matter tracts using high-resolution data from the Human Connectome Project (7T HCP www.humanconnectome.org). Future research and advanced quantitative analyses are crucial to understanding fully how asymmetry contributes to interindividual variability. This comprehensive exploration enhances our understanding of white matter organization and its potential implications for brain function. -
Forkel, S. J., Bortolami, C., Dulyan, L., Barrett, R. L. C., & Beyh, A. (2025). Dissecting white matter pathways: A neuroanatomical approach. In F. Dell'Acqua, M. Descoteaux, & A. Leemans (
Eds. ), Handbook of Diffusion MR Tractography (pp. 397-421). Amsterdam: Elsevier.Abstract
The brain is the most magnificent structure, and we are only at the cusp of unraveling some of its complexity. Neuroanatomy is the best tool to map the brain's structural complexity. As such, neuroanatomy is not just an academic exercise; it serves our fundamental understanding of the neurobiology of cognition and improves clinical practice. A deepened anatomical understanding has advanced our conceptual grasp of the evolution of the brain, interindividual variability of cognition in health and disease, and the conceptual shift toward the emergence of cognition. For the past 20 years, diffusion imaging tractography has dramatically facilitated these advances by enabling the study of the delicate networks that orchestrate brain processes (for review, see Thiebaut de Schotten and Forkel, 2022). Several steps are consistent across all studied populations and brain states (health/disease) when analyzing tractography data. We discuss various considerations for dissections across populations and give practical tips on common pitfalls and features to improve the visualization of the dissections. We briefly discuss specific considerations for manual dissections in nonhuman primates. Lastly, we provide an atlas of regions of interest (ROIs) for the most commonly delineated white matter connections in the human brain. -
Satoer, D., Dulyan, L., & Forkel, S. J. (2025). Oncology: Brain asymmetries in language-relevant brain tumors. In C. Papagno, & P. Corballis (
Eds. ), Cerebral Asymmetries: Handbook of Clinical Neurology (pp. 65-87). Amsterdam: Elsevier.Abstract
Brain tumors are classified as rare diseases, with an annual occurrence of 300,000 cases and account for an annual loss of 241,000 lives, highlighting their devastating nature. Recent advancements in diagnosis and treatment have significantly improved the management and care of brain tumors. This chapter provides an overview of the common types of primary brain tumors affecting language functions—gliomas and meningiomas. Techniques for identifying and mapping critical language areas, including the white matter language system, such as awake brain tumor surgery and diffusion-weighted tractography, are pivotal for understanding language localization and informing personalized treatment approaches. Numerous studies have demonstrated that gliomas in the dominant hemisphere can lead to (often subtle) impairments across various cognitive domains, with a particular emphasis on language. Recently, increased attention has been directed toward (nonverbal) cognitive deficits in patients with gliomas in the nondominant hemisphere, as well as cognitive outcomes in patients with meningiomas, a group historically overlooked. A patient-tailored approach to language and cognitive functions across the pre-, intra-, and postoperative phases is mandatory for brain tumor patients to preserve quality of life. Continued follow-up studies, in conjunction with advanced imaging techniques, are crucial for understanding the brain's potential for neuroplasticity and optimizing patient outcomes. -
Forkel, S. J. (2022). Lesion-Symptom Mapping: From Single Cases to the Human Disconnectome. In S. Della Salla (
Ed. ), Encyclopedia of Behavioral Neuroscience (2nd edition, pp. 142-154). Elsevier. doi:10.1016/B978-0-12-819641-0.00056-6.Abstract
Lesion symptom mapping has revolutionized our understanding of the functioning of the human brain. Associating damaged voxels in the brain with loss of function has created a map of the brain that identifies critical areas. While these methods have significantly advanced our understanding, recent improvements have identified the need for multivariate and multimodal methods to map hidden lesions and damage to white matter networks beyond the lesion voxels. This article reviews the evolution of lesion-symptom mapping from single case studies to the human disconnectome. -
Forkel, S. J., Friedrich, P., Thiebaut de Schotten, M., & Howells, H. (2022). White matter variability, cognition, and disorders. In S. Della Sala (
Ed. ), Encyclopedia of Behavioral Neuroscience (2nd ed., pp. 233-241). Amsterdam: Elsevier.Abstract
Inter-individual differences can inform treatment procedures and - if accounted for - can improve patient outcomes. However, when studying brain anatomy, these variations are largely unaccounted for. Brain connections are essential to mediate brain functional organization and, when severed, cause functional impairments. Here we reviewed the wealth of studies that associate functions and clinical symptoms with connections using tractography. Our results indicate that tractography is a sensitive method in healthy and clinical conditions to identify variability and its functional correlates. While our review identified some methodological caveats, it also suggests that tract-function correlations might be a promising biomarker for precision medicine. -
Forkel, S. J., & Catani, M. (2019). Diffusion imaging methods in language sciences. In G. I. De Zubicaray, & N. O. Schiller (
Eds. ), The Oxford Handbook of Neurolinguistics (pp. 212-228). Oxford: Oxford University Press.Abstract
The field of neuroanatomy of language is moving forward at a fast pace. This
progression is partially due to the development of diffusion tractography, which
has been used to describe white matter connections in the living human brain.
For the field of neurolinguistics this advancement is timely and important for
two reasons. First, it allows clinical researchers to liberate themselves from
neuroanatomical models of language derived from animal studies. Second, for
the first time, it offers the possibility of testing network correlates of
neurolinguistic models directly in the human brain. This chapter introduces the
reader to general principles of diffusion imaging and tractography. Examples of
its applications, such as tract analysis, will be used to explicate its potentials and
limitations. -
Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (
Eds. ), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.Abstract
Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations. -
Catani, M., Forkel, S. J., & Thiebaut de Schotten, M. (2010). Asymmetry of white matter pathways in the brain. In K. Hugdahl, & R. Westerhausen (
Eds. ), The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres (pp. 177-209). Cambridge: MIT Press.
Share this page