Displaying 1 - 47 of 47
  • Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2018). Mapping of Human FOXP2 Enhancers Reveals Complex Regulation. Frontiers in Molecular Neuroscience, 11: 47. doi:10.3389/fnmol.2018.00047.

    Abstract

    Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators – FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2. Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders.
  • Bentz, C., Dediu, D., Verkerk, A., & Jäger, G. (2018). Language family trees reflect geography and demography beyond neutral drift. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 38-40). Toruń, Poland: NCU Press. doi:10.12775/3991-1.006.
  • Bentz, C., Dediu, D., Verkerk, A., & Jäger, G. (2018). The evolution of language families is shaped by the environment beyond neutral drift. Nature Human Behaviour, 2, 816-821. doi:10.1038/s41562-018-0457-6.

    Abstract

    There are more than 7,000 languages spoken in the world today1. It has been argued that the natural and social environment of languages drives this diversity. However, a fundamental question is how strong are environmental pressures, and does neutral drift suffice as a mechanism to explain diversification? We estimate the phylogenetic signals of geographic dimensions, distance to water, climate and population size on more than 6,000 phylogenetic trees of 46 language families. Phylogenetic signals of environmental factors are generally stronger than expected under the null hypothesis of no relationship with the shape of family trees. Importantly, they are also—in most cases—not compatible with neutral drift models of constant-rate change across the family tree branches. Our results suggest that language diversification is driven by further adaptive and non-adaptive pressures. Language diversity cannot be understood without modelling the pressures that physical, ecological and social factors exert on language users in different environments across the globe.
  • Dediu, D. (2018). Making genealogical language classifications available for phylogenetic analysis: Newick trees, unified identifiers, and branch length. Language Dynamics and Change, 8(1), 1-21. doi:10.1163/22105832-00801001.

    Abstract

    One of the best-known types of non-independence between languages is caused by genealogical relationships due to descent from a common ancestor. These can be represented by (more or less resolved and controversial) language family trees. In theory, one can argue that language families should be built through the strict application of the comparative method of historical linguistics, but in practice this is not always the case, and there are several proposed classifications of languages into language families, each with its own advantages and disadvantages. A major stumbling block shared by most of them is that they are relatively difficult to use with computational methods, and in particular with phylogenetics. This is due to their lack of standardization, coupled with the general non-availability of branch length information, which encapsulates the amount of evolution taking place on the family tree. In this paper I introduce a method (and its implementation in R) that converts the language classifications provided by four widely-used databases (Ethnologue, WALS, AUTOTYP and Glottolog) intothe de facto Newick standard generally used in phylogenetics, aligns the four most used conventions for unique identifiers of linguistic entities (ISO 639-3, WALS, AUTOTYP and Glottocode), and adds branch length information from a variety of sources (the tree's own topology, an externally given numeric constant, or a distance matrix). The R scripts, input data and resulting Newick trees are available under liberal open-source licenses in a GitHub repository (https://github.com/ddediu/lgfam-newick), to encourage and promote the use of phylogenetic methods to investigate linguistic diversity and its temporal dynamics.
  • Dediu, D., & Levinson, S. C. (2018). Neanderthal language revisited: Not only us. Current Opinion in Behavioral Sciences, 21, 49-55. doi:10.1016/j.cobeha.2018.01.001.

    Abstract

    Here we re-evaluate our 2013 paper on the antiquity of language (Dediu and Levinson, 2013) in the light of a surge of new information on human evolution in the last half million years. Although new genetic data suggest the existence of some cognitive differences between Neanderthals and modern humans — fully expected after hundreds of thousands of years of partially separate evolution, overall our claims that Neanderthals were fully articulate beings and that language evolution was gradual are further substantiated by the wealth of new genetic, paleontological and archeological evidence briefly reviewed here.
  • Den Hoed, J., Sollis, E., Venselaar, H., Estruch, S. B., Derizioti, P., & Fisher, S. E. (2018). Functional characterization of TBR1 variants in neurodevelopmental disorder. Scientific Reports, 8: 14279. doi:10.1038/s41598-018-32053-6.

    Abstract

    Recurrent de novo variants in the TBR1 transcription factor are implicated in the etiology of sporadic autism spectrum disorders (ASD). Disruptions include missense variants located in the T-box DNA-binding domain and previous work has demonstrated that they disrupt TBR1 protein function. Recent screens of thousands of simplex families with sporadic ASD cases uncovered additional T-box variants in TBR1 but their etiological relevance is unclear. We performed detailed functional analyses of de novo missense TBR1 variants found in the T-box of ASD cases, assessing many aspects of protein function, including subcellular localization, transcriptional activity and protein-interactions. Only two of the three tested variants severely disrupted TBR1 protein function, despite in silico predictions that all would be deleterious. Furthermore, we characterized a putative interaction with BCL11A, a transcription factor that was recently implicated in a neurodevelopmental syndrome involving developmental delay and language deficits. Our findings enhance understanding of molecular functions of TBR1, as well as highlighting the importance of functional testing of variants that emerge from next-generation sequencing, to decipher their contributions to neurodevelopmental disorders like ASD.

    Additional information

    Electronic supplementary material
  • Devanna, P., Chen, X. S., Ho, J., Gajewski, D., Smith, S. D., Gialluisi, A., Francks, C., Fisher, S. E., Newbury, D. F., & Vernes, S. C. (2018). Next-gen sequencing identifies non-coding variation disrupting miRNA binding sites in neurological disorders. Molecular Psychiatry, 23(5), 1375-1384. doi:10.1038/mp.2017.30.

    Abstract

    Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3′UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease

    Additional information

    mp201730x1.docx
  • Estruch, S. B., Graham, S. A., Quevedo, M., Vino, A., Dekkers, D. H. W., Deriziotis, P., Sollis, E., Demmers, J., Poot, R. A., & Fisher, S. E. (2018). Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Human Molecular Genetics, 27(7), 1212-1227. doi:10.1093/hmg/ddy035.

    Abstract

    FOXP transcription factors play important roles in neurodevelopment, but little is known about how their transcriptional activity is regulated. FOXP proteins cooperatively regulate gene expression by forming homo- and hetero-dimers with each other. Physical associations with other transcription factors might also modulate the functions of FOXP proteins. However, few FOXP-interacting transcription factors have been identified so far. Therefore, we sought to discover additional transcription factors that interact with the brain-expressed FOXP proteins, FOXP1, FOXP2 and FOXP4, through affinity-purifications of protein complexes followed by mass spectrometry. We identified seven novel FOXP-interacting transcription factors (NR2F1, NR2F2, SATB1, SATB2, SOX5, YY1 and ZMYM2), five of which have well-established roles in cortical development. Accordingly, we found that these transcription factors are co-expressed with FoxP2 in the deep layers of the cerebral cortex and also in the Purkinje cells of the cerebellum, suggesting that they may cooperate with the FoxPs to regulate neural gene expression in vivo. Moreover, we demonstrated that etiological mutations of FOXP1 and FOXP2, known to cause neurodevelopmental disorders, severely disrupted the interactions with FOXP-interacting transcription factors. Additionally, we pinpointed specific regions within FOXP2 sequence involved in mediating these interactions. Thus, by expanding the FOXP interactome we have uncovered part of a broader neural transcription factor network involved in cortical development, providing novel molecular insights into the transcriptional architecture underlying brain development and neurodevelopmental disorders.
  • Estruch, S. B. (2018). Characterization of transcription factors in monogenic disorders of speech and language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Heyne, H. O., Singh, T., Stamberger, H., Jamra, R. A., Caglayan, H., Craiu, D., Guerrini, R., Helbig, K. L., Koeleman, B. P. C., Kosmicki, J. A., Linnankivi, T., May, P., Muhle, H., Møller, R. S., Neubauer, B. A., Palotie, A., Pendziwiat, M., Striano, P., Tang, S., Wu, S. and 9 moreHeyne, H. O., Singh, T., Stamberger, H., Jamra, R. A., Caglayan, H., Craiu, D., Guerrini, R., Helbig, K. L., Koeleman, B. P. C., Kosmicki, J. A., Linnankivi, T., May, P., Muhle, H., Møller, R. S., Neubauer, B. A., Palotie, A., Pendziwiat, M., Striano, P., Tang, S., Wu, S., EuroEPINOMICS RES Consortium, De Kovel, C. G. F., Poduri, A., Weber, Y. G., Weckhuysen, S., Sisodiya, S. M., Daly, M. J., Helbig, I., Lal, D., & Lemke, J. R. (2018). De novo variants in neurodevelopmental disorders with epilepsy. Nature Genetics, 50, 1048-1053. doi:10.1038/s41588-018-0143-7.

    Abstract

    Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent–offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy.
  • Howe, L. J., Lee, M. K., Sharp, G. C., Smith, G. D. W., St Pourcain, B., Shaffer, J. R., Ludwig, K. U., Mangold, E., Marazita, M. L., Feingold, E., Zhurov, A., Stergiakouli, E., Sandy, J., Richmond, S., Weinberg, S. M., Hemani, G., & Lewis, S. J. (2018). Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology. PLoS Genetics, 14(8): e1007501. doi:10.1371/journal.pgen.1007501.

    Abstract

    There is increasing evidence that genetic risk variants for non-syndromic cleft lip/palate (nsCL/P) are also associated with normal-range variation in facial morphology. However, previous analyses are mostly limited to candidate SNPs and findings have not been consistently replicated. Here, we used polygenic risk scores (PRS) to test for genetic overlap between nsCL/P and seven biologically relevant facial phenotypes. Where evidence was found of genetic overlap, we used bidirectional Mendelian randomization (MR) to test the hypothesis that genetic liability to nsCL/P is causally related to implicated facial phenotypes. Across 5,804 individuals of European ancestry from two studies, we found strong evidence, using PRS, of genetic overlap between nsCL/P and philtrum width; a 1 S.D. increase in nsCL/P PRS was associated with a 0.10 mm decrease in philtrum width (95% C.I. 0.054, 0.146; P = 2x10-5). Follow-up MR analyses supported a causal relationship; genetic variants for nsCL/P homogeneously cause decreased philtrum width. In addition to the primary analysis, we also identified two novel risk loci for philtrum width at 5q22.2 and 7p15.2 in our Genome-wide Association Study (GWAS) of 6,136 individuals. Our results support a liability threshold model of inheritance for nsCL/P, related to abnormalities in development of the philtrum.
  • Janssen, R., Moisik, S. R., & Dediu, D. (2018). Agent model reveals the influence of vocal tract anatomy on speech during ontogeny and glossogeny. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 171-174). Toruń, Poland: NCU Press. doi:10.12775/3991-1.042.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Janssen, R., Moisik, S. R., & Dediu, D. (2018). Modelling human hard palate shape with Bézier curves. PLoS One, 13(2): e0191557. doi:10.1371/journal.pone.0191557.

    Abstract

    People vary at most levels, from the molecular to the cognitive, and the shape of the hard palate (the bony roof of the mouth) is no exception. The patterns of variation in the hard palate are important for the forensic sciences and (palaeo)anthropology, and might also play a role in speech production, both in pathological cases and normal variation. Here we describe a method based on Bézier curves, whose main aim is to generate possible shapes of the hard palate in humans for use in computer simulations of speech production and language evolution. Moreover, our method can also capture existing patterns of variation using few and easy-to-interpret parameters, and fits actual data obtained from MRI traces very well with as little as two or three free parameters. When compared to the widely-used Principal Component Analysis (PCA), our method fits actual data slightly worse for the same number of degrees of freedom. However, it is much better at generating new shapes without requiring a calibration sample, its parameters have clearer interpretations, and their ranges are grounded in geometrical considerations. © 2018 Janssen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Janssen, R. (2018). Let the agents do the talking: On the influence of vocal tract anatomy no speech during ontogeny. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Kong, X., Mathias, S. R., Guadalupe, T., ENIGMA Laterality Working Group, Glahn, D. C., Franke, B., Crivello, F., Tzourio-Mazoyer, N., Fisher, S. E., Thompson, P. M., & Francks, C. (2018). Mapping Cortical Brain Asymmetry in 17,141 Healthy Individuals Worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 115(22), E5154-E5163. doi:10.1073/pnas.1718418115.

    Abstract

    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (N = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.

    Additional information

    pnas.1718418115.sapp.pdf
  • Hu, C.-P., Kong, X., Wagenmakers, E.-J., Ly, A., & Peng, K. (2018). The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science, 26(6), 951-965. doi:10.3724/SP.J.1042.2018.00951.

    Abstract

    Statistical inference plays a critical role in modern scientific research, however, the dominant method for statistical inference in science, null hypothesis significance testing (NHST), is often misunderstood and misused, which leads to unreproducible findings. To address this issue, researchers propose to adopt the Bayes factor as an alternative to NHST. The Bayes factor is a principled Bayesian tool for model selection and hypothesis testing, and can be interpreted as the strength for both the null hypothesis H0 and the alternative hypothesis H1 based on the current data. Compared to NHST, the Bayes factor has the following advantages: it quantifies the evidence that the data provide for both the H0 and the H1, it is not “violently biased” against H0, it allows one to monitor the evidence as the data accumulate, and it does not depend on sampling plans. Importantly, the recently developed open software JASP makes the calculation of Bayes factor accessible for most researchers in psychology, as we demonstrated for the t-test. Given these advantages, adopting the Bayes factor will improve psychological researchers’ statistical inferences. Nevertheless, to make the analysis more reproducible, researchers should keep their data analysis transparent and open.
  • De Kovel, C. G. F., & Fisher, S. E. (2018). Molecular genetic methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 330-353). Hoboken: Wiley.
  • De Kovel, C. G. F., Lisgo, S. N., Fisher, S. E., & Francks, C. (2018). Subtle left-right asymmetry of gene expression profiles in embryonic and foetal human brains. Scientific Reports, 8: 12606. doi:10.1038/s41598-018-29496-2.

    Abstract

    Left-right laterality is an important aspect of human –and in fact all vertebrate– brain organization for which the genetic basis is poorly understood. Using RNA sequencing data we contrasted gene expression in left- and right-sided samples from several structures of the anterior central nervous systems of post mortem human embryos and foetuses. While few individual genes stood out as significantly lateralized, most structures showed evidence of laterality of their overall transcriptomic profiles. These left-right differences showed overlap with age-dependent changes in expression, indicating lateralized maturation rates, but not consistently in left-right orientation over all structures. Brain asymmetry may therefore originate in multiple locations, or if there is a single origin, it is earlier than 5 weeks post conception, with structure-specific lateralized processes already underway by this age. This pattern is broadly consistent with the weak correlations reported between various aspects of adult brain laterality, such as language dominance and handedness.
  • De Kovel, C. G. F., Lisgo, S. N., & Francks, C. (2018). Transcriptomic analysis of left-right differences in human embryonic forebrain and midbrain. Scientific Data, 5: 180164. doi:10.1038/sdata.2018.164.

    Abstract

    Left-right asymmetry is subtle but pervasive in the human central nervous system. This asymmetry is initiated early during development, but its mechanisms are poorly known. Forebrains and midbrains were dissected from six human embryos at Carnegie stages 15 or 16, one of which was female. The structures were divided into left and right sides, and RNA was isolated. RNA was sequenced with 100 base-pair paired ends using Illumina Hiseq 4000. After quality control, five paired brain sides were available for midbrain and forebrain. A paired analysis between left- and right sides of a given brain structure across the embryos identified left-right differences. The dataset, consisting of Fastq files and a read count table, can be further used to study early development of the human brain
  • Kuerbitz, J., Arnett, M., Ehrman, S., Williams, M. T., Voorhees, C. V., Fisher, S. E., Garratt, A. N., Muglia, L. J., Waclaw, R. R., & Campbell, K. (2018). Loss of intercalated cells (ITCs) in the mouse amygdala of Tshz1 mutants correlates with fear, depression and social interaction phenotypes. The Journal of Neuroscience, 38, 1160-1177. doi:10.1523/JNEUROSCI.1412-17.2017.

    Abstract

    The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity. Using germline and conditional knock-out (cKO) mouse models, we show that Tshz1 is required for the proper migration and differentiation of ITCs. In the absence of Tshz1, migrating ITC precursors fail to settle in their stereotypical locations encapsulating the lateral amygdala and BLA. Furthermore, they display reductions in the ITC marker Foxp2 and ectopic persistence of the dorsal lateral ganglionic eminence marker Sp8. Tshz1 mutant ITCs show increased cell death at postnatal time points, leading to a dramatic reduction by 3 weeks of age. In line with this, Foxp2-null mutants also show a loss of ITCs at postnatal time points, suggesting that Foxp2 may function downstream of Tshz1 in the maintenance of ITCs. Behavioral analysis of male Tshz1 cKOs revealed defects in fear extinction as well as an increase in floating during the forced swim test, indicative of a depression-like phenotype. Moreover, Tshz1 cKOs display significantly impaired social interaction (i.e., increased passivity) regardless of partner genetics. Together, these results suggest that Tshz1 plays a critical role in the development of ITCs and that fear, depression-like and social behavioral deficits arise in their absence. SIGNIFICANCE STATEMENT We show here that the zinc finger transcription factor Tshz1 is expressed during development of the intercalated cells (ITCs) within the mouse amygdala. These neurons have previously been shown to play a crucial role in fear extinction. Tshz1 mouse mutants exhibit severely reduced numbers of ITCs as a result of abnormal migration, differentiation, and survival of these neurons. Furthermore, the loss of ITCs in mouse Tshz1 mutants correlates well with defects in fear extinction as well as the appearance of depression-like and abnormal social interaction behaviors reminiscent of depressive disorders observed in human patients with distal 18q deletions, including the Tshz1 locus.
  • Liang, S., Vega, R., Kong, X., Deng, W., Wang, Q., Ma, X., Li, M., Hu, X., Greenshaw, A. J., Greiner, R., & Li, T. (2018). Neurocognitive Graphs of First-Episode Schizophrenia and Major Depression Based on Cognitive Features. Neuroscience Bulletin, 34(2), 312-320. doi:10.1007/s12264-017-0190-6.

    Abstract

    Neurocognitive deficits are frequently observed in patients with schizophrenia and major depressive disorder (MDD). The relations between cognitive features may be represented by neurocognitive graphs based on cognitive features, modeled as Gaussian Markov random fields. However, it is unclear whether it is possible to differentiate between phenotypic patterns associated with the differential diagnosis of schizophrenia and depression using this neurocognitive graph approach. In this study, we enrolled 215 first-episode patients with schizophrenia (FES), 125 with MDD, and 237 demographically-matched healthy controls (HCs). The cognitive performance of all participants was evaluated using a battery of neurocognitive tests. The graphical LASSO model was trained with a one-vs-one scenario to learn the conditional independent structure of neurocognitive features of each group. Participants in the holdout dataset were classified into different groups with the highest likelihood. A partial correlation matrix was transformed from the graphical model to further explore the neurocognitive graph for each group. The classification approach identified the diagnostic class for individuals with an average accuracy of 73.41% for FES vs HC, 67.07% for MDD vs HC, and 59.48% for FES vs MDD. Both of the neurocognitive graphs for FES and MDD had more connections and higher node centrality than those for HC. The neurocognitive graph for FES was less sparse and had more connections than that for MDD. Thus, neurocognitive graphs based on cognitive features are promising for describing endophenotypes that may discriminate schizophrenia from depression.

    Additional information

    Liang_etal_2017sup.pdf
  • Xu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W., Zhao, H., Cao, Y., Wang, F., Jiang, N., Lin, S., Li, B., Zhang, Z., Wei, Z., Fan, Y., Jin, Y., He, L., Zhou, R., Dekker, J. D., Tucker, H. O., Fisher, S. E. and 4 moreXu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W., Zhao, H., Cao, Y., Wang, F., Jiang, N., Lin, S., Li, B., Zhang, Z., Wei, Z., Fan, Y., Jin, Y., He, L., Zhou, R., Dekker, J. D., Tucker, H. O., Fisher, S. E., Yao, Z., Liu, Q., Xia, X., & Guo, X. (2018). Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proceedings of the National Academy of Sciences of the United States of America, 115(35), 8799-8804. doi:10.1073/pnas.1721820115.

    Abstract

    Fundamental human traits, such as language and bipedalism, are associated with a range of anatomical adaptations in craniofacial shaping and skeletal remodeling. However, it is unclear how such morphological features arose during hominin evolution. FOXP2 is a brain-expressed transcription factor implicated in a rare disorder involving speech apraxia and language impairments. Analysis of its evolutionary history suggests that this gene may have contributed to the emergence of proficient spoken language. In the present study, through analyses of skeleton-specific knockout mice, we identified roles of Foxp2 in skull shaping and bone remodeling. Selective ablation of Foxp2 in cartilage disrupted pup vocalizations in a similar way to that of global Foxp2 mutants, which may be due to pleiotropic effects on craniofacial morphogenesis. Our findings also indicate that Foxp2 helps to regulate strength and length of hind limbs and maintenance of joint cartilage and intervertebral discs, which are all anatomical features that are susceptible to adaptations for bipedal locomotion. In light of the known roles of Foxp2 in brain circuits that are important for motor skills and spoken language, we suggest that this gene may have been well placed to contribute to coevolution of neural and anatomical adaptations related to speech and bipedal locomotion.

    Files private

    Request files
  • Mandy, W., Pellicano, L., St Pourcain, B., Skuse, D., & Heron, J. (2018). The development of autistic social traits across childhood and adolescence in males and females. The Journal of Child Psychology and Psychiatry, 59(11), 1143-1151. doi:10.1111/jcpp.12913.

    Abstract

    Background

    Autism is a dimensional condition, representing the extreme end of a continuum of social competence that extends throughout the general population. Currently, little is known about how autistic social traits (ASTs), measured across the full spectrum of severity, develop during childhood and adolescence, including whether there are developmental differences between boys and girls. Therefore, we sought to chart the trajectories of ASTs in the general population across childhood and adolescence, with a focus on gender differences.
    Methods

    Participants were 9,744 males (n = 4,784) and females (n = 4,960) from ALSPAC, a UK birth cohort study. ASTs were assessed when participants were aged 7, 10, 13 and 16 years, using the parent‐report Social Communication Disorders Checklist. Data were modelled using latent growth curve analysis.
    Results

    Developmental trajectories of males and females were nonlinear, showing a decline from 7 to 10 years, followed by an increase between 10 and 16 years. At 7 years, males had higher levels of ASTs than females (mean raw score difference = 0.88, 95% CI [.72, 1.04]), and were more likely (odds ratio [OR] = 1.99; 95% CI, 1.82, 2.16) to score in the clinical range on the SCDC. By 16 years this gender difference had disappeared: males and females had, on average, similar levels of ASTs (mean difference = 0.00, 95% CI [−0.19, 0.19]) and were equally likely to score in the SCDC's clinical range (OR = 0.91, 95% CI, 0.73, 1.10). This was the result of an increase in females’ ASTs between 10 and 16 years.
    Conclusions

    There are gender‐specific trajectories of autistic social impairment, with females more likely than males to experience an escalation of ASTs during early‐ and midadolescence. It remains to be discovered whether the observed female adolescent increase in ASTs represents the genuine late onset of social difficulties or earlier, subtle, pre‐existing difficulties becoming more obvious.

    Additional information

    jcpp12913-sup-0001-supinfo.docx
  • Mei, C., Fedorenko, E., Amor, D. J., Boys, A., Hoeflin, C., Carew, P., Burgess, T., Fisher, S. E., & Morgan, A. T. (2018). Deep phenotyping of speech and language skills in individuals with 16p11.2 deletion. European journal of human genetics, 26(5), 676-686. doi:10.1038/s41431-018-0102-x.

    Abstract

    Recurrent deletions of a ~600-kb region of 16p11.2 have been associated with a highly penetrant form of childhood apraxia of speech (CAS). Yet prior findings have been based on a small, potentially biased sample using retrospectively collected data. We examine the prevalence of CAS in a larger cohort of individuals with 16p11.2 deletion using a prospectively designed assessment battery. The broader speech and language phenotype associated with carrying this deletion was also examined. 55 participants with 16p11.2 deletion (47 children, 8 adults) underwent deep phenotyping to test for the presence of CAS and other speech and language diagnoses. Standardized tests of oral motor functioning, speech production, language, and non-verbal IQ were conducted. The majority of children (77%) and half of adults (50%) met criteria for CAS. Other speech outcomes were observed including articulation or phonological errors (i.e., phonetic and cognitive-linguistic errors, respectively), dysarthria (i.e., neuromuscular speech disorder), minimal verbal output, and even typical speech in some. Receptive and expressive language impairment was present in 73% and 70% of children, respectively. Co-occurring neurodevelopmental conditions (e.g., autism) and non-verbal IQ did not correlate with the presence of CAS. Findings indicate that CAS is highly prevalent in children with 16p11.2 deletion with symptoms persisting into adulthood for many. Yet CAS occurs in the context of a broader speech and language profile and other neurobehavioral deficits. Further research will elucidate specific genetic and neural pathways leading to speech and language deficits in individuals with 16p11.2 deletions, resulting in more targeted speech therapies addressing etiological pathways.
  • Morgan, A. T., van Haaften, L., van Hulst, K., Edley, C., Mei, C., Tan, T. Y., Amor, D., Fisher, S. E., & Koolen, D. A. (2018). Early speech development in Koolen de Vries syndrome limited by oral praxis and hypotonia. European journal of human genetics, 26, 75-84. doi:10.1038/s41431-017-0035-9.

    Abstract

    Communication disorder is common in Koolen de Vries syndrome (KdVS), yet its specific symptomatology has not been examined, limiting prognostic counselling and application of targeted therapies. Here we examine the communication phenotype associated with KdVS. Twenty-nine participants (12 males, 4 with KANSL1 variants, 25 with 17q21.31 microdeletion), aged 1.0–27.0 years were assessed for oral-motor, speech, language, literacy, and social functioning. Early history included hypotonia and feeding difficulties. Speech and language development was delayed and atypical from onset of first words (2; 5–3; 5 years of age on average). Speech was characterised by apraxia (100%) and dysarthria (93%), with stuttering in some (17%). Speech therapy and multi-modal communication (e.g., sign-language) was critical in preschool. Receptive and expressive language abilities were typically commensurate (79%), both being severely affected relative to peers. Children were sociable with a desire to communicate, although some (36%) had pragmatic impairments in domains, where higher-level language was required. A common phenotype was identified, including an overriding ‘double hit’ of oral hypotonia and apraxia in infancy and preschool, associated with severely delayed speech development. Remarkably however, speech prognosis was positive; apraxia resolved, and although dysarthria persisted, children were intelligible by mid-to-late childhood. In contrast, language and literacy deficits persisted, and pragmatic deficits were apparent. Children with KdVS require early, intensive, speech motor and language therapy, with targeted literacy and social language interventions as developmentally appropriate. Greater understanding of the linguistic phenotype may help unravel the relevance of KANSL1 to child speech and language development.

    Additional information

    41431_2017_35_MOESM1_ESM.docx
  • Mulhern, M. S., Stumpel, C., Stong, N., Brunner, H. G., Bier, L., Lippa, N., Riviello, J., Rouhl, R. P. W., Kempers, M., Pfundt, R., Stegmann, A. P. A., Kukolich, M. K., Telegrafi, A., Lehman, A., Lopez-Rangel, E., Houcinat, N., Barth, M., Den Hollander, N., Hoffer, M. J. V., Weckhuysen, S. and 31 moreMulhern, M. S., Stumpel, C., Stong, N., Brunner, H. G., Bier, L., Lippa, N., Riviello, J., Rouhl, R. P. W., Kempers, M., Pfundt, R., Stegmann, A. P. A., Kukolich, M. K., Telegrafi, A., Lehman, A., Lopez-Rangel, E., Houcinat, N., Barth, M., Den Hollander, N., Hoffer, M. J. V., Weckhuysen, S., Roovers, J., Djemie, T., Barca, D., Ceulemans, B., Craiu, D., Lemke, J. R., Korff, C., Mefford, H. C., Meyers, C. T., Siegler, Z., Hiatt, S. M., Cooper, G. M., Bebin, E. M., Snijders Blok, L., Veenstra-Knol, H. E., Baugh, E. H., Brilstra, E. H., Volker-Touw, C. M. L., Van Binsbergen, E., Revah-Politi, A., Pereira, E., McBrian, D., Pacault, M., Isidor, B., Le Caignec, C., Gilbert-Dussardier, B., Bilan, F., Heinzen, E. L., Goldstein, D. B., Stevens, S. J. C., & Sands, T. T. (2018). NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Annals of Neurology, 84(5), 788-795. doi:10.1002/ana.25350.

    Abstract

    NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy–like phenotype in a subset of patients.

    Files private

    Request files
  • St Pourcain, B., Eaves, L. J., Ring, S. M., Fisher, S. E., Medland, S., Evans, D. M., & Smith, G. D. (2018). Developmental changes within the genetic architecture of social communication behaviour: A multivariate study of genetic variance in unrelated individuals. Biological Psychiatry, 83(7), 598-606. doi:10.1016/j.biopsych.2017.09.020.

    Abstract

    Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions may relate to distinct sets of genes that exert their maximum influence during different periods of development. This includes analyses of social-communciation difficulties that share, depending on their developmental stage, stronger genetic links with either Autism Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in unrelated individuals to model directly the developmental profile of genetic influences contributing to complex traits, such as social-communication difficulties, during a ~10-year period spanning childhood and adolescence. Methods: Longitudinally assessed quantitative social-communication problems (N ≤ 5,551) were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using standardised measures, genetic architectures were investigated with novel multivariate genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome genotyping information. Analogous to twin research, GSEM included Cholesky decomposition, common pathway and independent pathway models. Results: A 2-factor Cholesky decomposition model described the data best. One genetic factor was common to SCDC measures across development, the other accounted for independent variation at 11 years and later, consistent with distinct developmental profiles in trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% of the genetic variation at 17 years. Conclusion: Using latent factor models, we identified developmental changes in the genetic architecture of social-communication difficulties that enhance the understanding of ASD and schizophrenia-related dimensions. More generally, GSEM present a framework for modelling shared genetic aetiologies between phenotypes and can provide prior information with respect to patterns and continuity of trait-disorder overlap
  • St Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D. and 3 moreSt Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D., Mortensen, P. B., Daly, M., & Davey Smith, G. (2018). ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties. Molecular Psychiatry, 23, 263-270. doi:10.1038/mp.2016.198.

    Abstract

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and
    schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on
    the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth
    (Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social
    Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases,
    11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the
    Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social
    communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of
    genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms

    Additional information

    mp2016198x1.docx
  • Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., Rodan, L. H., Nowak, C. B., Douglas, J., Swoboda, K. J., Steeves, M. A., Sahai, I., Stumpel, C. T. R. M., Stegmann, A. P. A., Wheeler, P., Willing, M., Fiala, E., Kochhar, A., Gibson, W. T., Cohen, A. S. A. and 59 moreSnijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., Rodan, L. H., Nowak, C. B., Douglas, J., Swoboda, K. J., Steeves, M. A., Sahai, I., Stumpel, C. T. R. M., Stegmann, A. P. A., Wheeler, P., Willing, M., Fiala, E., Kochhar, A., Gibson, W. T., Cohen, A. S. A., Agbahovbe, R., Innes, A. M., Au, P. Y. B., Rankin, J., Anderson, I. J., Skinner, S. A., Louie, R. J., Warren, H. E., Afenjar, A., Keren, B., Nava, C., Buratti, J., Isapof, A., Rodriguez, D., Lewandowski, R., Propst, J., Van Essen, T., Choi, M., Lee, S., Chae, J. H., Price, S., Schnur, R. E., Douglas, G., Wentzensen, I. M., Zweier, C., Reis, A., Bialer, M. G., Moore, C., Koopmans, M., Brilstra, E. H., Monroe, G. R., Van Gassen, K. L. I., Van Binsbergen, E., Newbury-Ecob, R., Bownass, L., Bader, I., Mayr, J. A., Wortmann, S. B., Jakielski, K. J., Strand, E. A., Kloth, K., Bierhals, T., The DDD study, Roberts, J. D., Petrovich, R. M., Machida, S., Kurumizaka, H., Lelieveld, S., Pfundt, R., Jansen, S., Derizioti, P., Faivre, L., Thevenon, J., Assoum, M., Shriberg, L., Kleefstra, T., Brunner, H. G., Wade, P. A., Fisher, S. E., & Campeau, P. M. (2018). CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature Communications, 9: 4619. doi:10.1038/s41467-018-06014-6.

    Abstract

    Chromatin remodeling is of crucial importance during brain development. Pathogenic
    alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental
    disorders. We describe an index case with a de novo missense mutation in CHD3,
    identified during whole genome sequencing of a cohort of children with rare speech disorders.
    To gain a comprehensive view of features associated with disruption of this gene, we use a
    genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3
    mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase
    domain of the encoded protein. Modeling their impact on the three-dimensional structure
    demonstrates disturbance of critical binding and interaction motifs. Experimental assays with
    six of the identified mutations show that a subset directly affects ATPase activity, and all but
    one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a
    syndrome characterized by intellectual disability, macrocephaly, and impaired speech and
    language.
  • Snijders Blok, L., Hiatt, S. M., Bowling, K. M., Prokop, J. W., Engel, K. L., Cochran, J. N., Bebin, E. M., Bijlsma, E. K., Ruivenkamp, C. A. L., Terhal, P., Simon, M. E. H., Smith, R., Hurst, J. A., The DDD study, MCLaughlin, H., Person, R., Crunk, A., Wangler, M. F., Streff, H., Symonds, J. D., Zuberi, S. M. and 11 moreSnijders Blok, L., Hiatt, S. M., Bowling, K. M., Prokop, J. W., Engel, K. L., Cochran, J. N., Bebin, E. M., Bijlsma, E. K., Ruivenkamp, C. A. L., Terhal, P., Simon, M. E. H., Smith, R., Hurst, J. A., The DDD study, MCLaughlin, H., Person, R., Crunk, A., Wangler, M. F., Streff, H., Symonds, J. D., Zuberi, S. M., Elliott, K. S., Sanders, V. R., Masunga, A., Hopkin, R. J., Dubbs, H. A., Ortiz-Gonzalez, X. R., Pfundt, R., Brunner, H. G., Fisher, S. E., Kleefstra, T., & Cooper, G. M. (2018). De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder. Human Genetics, 137(5), 375-388. doi:10.1007/s00439-018-1887-y.

    Abstract

    Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes
  • Tilot, A. K., Kucera, K. S., Vino, A., Asher, J. E., Baron-Cohen, S., & Fisher, S. E. (2018). Rare variants in axonogenesis genes connect three families with sound–color synesthesia. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3168-3173. doi:10.1073/pnas.1715492115.

    Abstract

    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound–color (auditory–visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes—COL4A1, ITGA2, MYO10, ROBO3, SLC9A6, and SLIT2—associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences.

    Additional information

    Tilot_etal_2018SI.pdf
  • Van Rhijn, J. R., Fisher, S. E., Vernes, S. C., & Nadif Kasri, N. (2018). Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Structure and Function, 223(9), 4211-4226. doi:10.1007/s00429-018-1746-6.

    Abstract

    Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-mediated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive.

    Additional information

    429_2018_1746_MOESM1_ESM.docx
  • Brucato, N., Cassar, O., Tonasso, L., Tortevoye, P., Migot-Nabias, F., Plancoulaine, S., Guitard, E., Larrouy, G., Gessain, A., & Dugoujon, J.-M. (2010). The imprint of the Slave Trade in an African American population: Mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana. BMC Evolutionary Biology, 10, 314. doi:10.1186/1471-2148-10-314.

    Abstract

    Background Retracing the genetic histories of the descendant populations of the Slave Trade (16th-19th centuries) is particularly challenging due to the diversity of African ethnic groups involved and the different hybridisation processes with Europeans and Amerindians, which have blurred their original genetic inheritances. The Noir Marron in French Guiana are the direct descendants of maroons who escaped from Dutch plantations in the current day Surinam. They represent an original ethnic group with a highly blended culture. Uniparental markers (mtDNA and NRY) coupled with HTLV-1 sequences (env and LTR) were studied to establish the genetic relationships linking them to African American and African populations. Results All genetic systems presented a high conservation of the African gene pool (African ancestry: mtDNA = 99.3%; NRY = 97.6%; HTLV-1 env = 20/23; HTLV-1 LTR = 6/8). Neither founder effect nor genetic drift was detected and the genetic diversity is within a range commonly observed in Africa. Higher genetic similarities were observed with the populations inhabiting the Bight of Benin (from Ivory Coast to Benin). Other ancestries were identified but they presented an interesting sex-bias. Whilst male origins spread throughout the north of the bight (from Benin to Senegal), female origins were spread throughout the south (from the Ivory Coast to Angola). Conclusions The Noir Marron are unique in having conserved their African genetic ancestry, despite major cultural exchanges with Amerindians and Europeans through inhabiting the same region for four centuries. Their maroon identity and the important number of slaves deported in this region have maintained the original African diversity. All these characteristics permit to identify a major origin located in the former region of the Gold Coast and the Bight of Benin; regions highly impacted by slavery, from which goes a sex-biased longitudinal gradient of ancestry.
  • Dediu, D. (2010). Linguistic and genetic diversity - how and why are they related? In M. Brüne, F. Salter, & W. McGrew (Eds.), Building bridges between anthropology, medicine and human ethology: Tributes to Wulf Schiefenhövel (pp. 169-178). Bochum: Europäischer Universitätsverlag.

    Abstract

    There are some 6000 languages spoken today, classfied in approximately 90 linguistic families and many isolates, and also differing across structural, typological, dimensions. Genetically, the human species is remarkably homogeneous, with the existant genetic diversity mostly explain by intra-population differences between individuals, but the remaining inter-population differences have a non-trivial structure. Populations splits and contacts influence both languages and genes, in principle allowing them to evolve in parallel ways. The farming/language co-dispersal hypothesis is a well-known such theory, whereby farmers spreading agriculture from its places of origin also spread their genes and languages. A different type of relationship was recently proposed, involving a genetic bias which influences the structural properties of language as it is transmitted across generations. Such a bias was proposed to explain the correlations between the distribution of tone languages and two brain development-related human genes and, if confirmed by experimental studies, it could represent a new factor explaining the distrbution of diversity. The present chapter overviews these related topics in the hope that a truly interdisciplinary approach could allow a better understanding of our complex (recent as well as evolutionary) history.
  • Dugoujon, J.-M., Larrouy, G., Mazières, S., Brucato, N., Sevin, A., Cassar, O., & Gessain, A. (2010). Histoire et dynamique du peuplement humain en Amazonie: L’exemple de la Guyane. In A. Pavé, & G. Fornet (Eds.), Amazonie: Une aventure scientifique et humaine du CNRS (pp. 128-132). Paris: Galaade Éditions.
  • Fisher, S. E. (2010). Genetic susceptibility to stuttering [Editorial]. New England Journal of Medicine, 362, 750-752. doi:10.1056/NEJMe0912594.
  • Francks, C., Tozzi, F., Farmer, A., Vincent, J. B., Rujescu, D., St Clair, D., & Muglia, P. (2010). Population-based linkage analysis of schizophrenia and bipolar case-control cohorts identifies a potential susceptibility locus on 19q13. Molecular Psychiatry, 15, 319-325. doi:10.1038/mp.2008.100.

    Abstract

    Population-based linkage analysis is a new method for analysing genomewide single nucleotide polymorphism (SNP) genotype data in case-control samples, which does not assume a common disease, common variant model. The genome is scanned for extended segments that show increased identity-by-descent sharing within case-case pairs, relative to case-control or control-control pairs. The method is robust to allelic heterogeneity and is suited to mapping genes which contain multiple, rare susceptibility variants of relatively high penetrance. We analysed genomewide SNP datasets for two schizophrenia case-control cohorts, collected in Aberdeen (461 cases, 459 controls) and Munich (429 cases, 428 controls). Population-based linkage testing must be performed within homogeneous samples and it was therefore necessary to analyse the cohorts separately. Each cohort was first subjected to several procedures to improve genetic homogeneity, including identity-by-state outlier detection and multidimensional scaling analysis. When testing only cases who reported a positive family history of major psychiatric disease, consistent with a model of strongly penetrant susceptibility alleles, we saw a distinct peak on chromosome 19q in both cohorts that appeared in meta-analysis (P=0.000016) to surpass the traditional level for genomewide significance for complex trait linkage. The linkage signal was also present in a third case-control sample for familial bipolar disorder, such that meta-analysing all three datasets together yielded a linkage P=0.0000026. A model of rare but highly penetrant disease alleles may be more applicable to some instances of major psychiatric diseases than the common disease common variant model, and we therefore suggest that other genome scan datasets are analysed with this new, complementary method.
  • Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9, 390-401. doi:10.1111/j.1601-183X.2010.00570.x.

    Abstract

    Heterozygous mutations of the human FOXP2 gene are implicated in a severe speech and language disorder. Aetiological mutations of murine Foxp2 yield abnormal synaptic plasticity and impaired motor-skill learning in mutant mice, while knockdown of the avian orthologue in songbirds interferes with auditory-guided vocal learning. Here, we investigate influences of two distinct Foxp2 point mutations on vocalizations of 4-day-old mouse pups (Mus musculus). The R552H missense mutation is identical to that causing speech and language deficits in a large well-studied human family, while the S321X nonsense mutation represents a null allele that does not produce Foxp2 protein. We ask whether vocalizations, based solely on innate mechanisms of production, are affected by these alternative Foxp2 mutations. Sound recordings were taken in two different situations: isolation and distress, eliciting a range of call types, including broadband vocalizations of varying noise content, ultrasonic whistles and clicks. Sound production rates and several acoustic parameters showed that, despite absence of functional Foxp2, homozygous mutants could vocalize all types of sounds in a normal temporal pattern, but only at comparably low intensities. We suggest that altered vocal output of these homozygotes may be secondary to developmental delays and somatic weakness. Heterozygous mutants did not differ from wild-types in any of the measures that we studied (R552H ) or in only a few (S321X ), which were in the range of differences routinely observed for different mouse strains. Thus, Foxp2 is not essential for the innate production of emotional vocalizations with largely normal acoustic properties by mouse pups.
  • Ingason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J. and 20 moreIngason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Walshe, M., Vassos, E., Di Forti, M., Murray, R., Bonetto, C., Tosato, S., Cantor, R. M., Rietschel, M., Craddock, N., Owen, M. J., Andreassen, O. A., Nothen, M. M., Peltonen, L., St. Clair, D., Ophoff, R. A., O’Donovan, M. C., Collier, D. A., Werge, T., & Rujescu, D. (2010). A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 19(7), 1379-1386. doi:10.1093/hmg/ddq009.

    Abstract

    The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample. Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both the replication study of new samples and the meta-analysis show evidence for significant overrepresentation of all tested alleles in patients compared with controls (meta-analysis; P = 8.2 x 10(-5)-1.7 x 10(-3), common OR = 1.09-1.11). The region contains two genes, AHI1 and C6orf217, and both genes-as well as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia.
  • Liu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R. and 86 moreLiu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R., Kesaniemi, A., McPherson, R., Vincent, J. B., Strauss, J., Kennedy, J. L., Farmer, A., McGuffin, P., Day, R., Matthews, K., Bakke, P., Gulsvik, A., Lucae, S., Ising, M., Brueckl, T., Horstmann, S., Wichmann–, H.-E., Rawal, R., Dahmen, N., Lamina, C., Polasek, O., Zgaga, L., Huffman, J., Campbell, S., Kooner, J., Chambers, J. C., Burnett, M. S., Devaney, J. M., Pichard, A. D., Kent, K. M., Satler, L., Lindsay, J. M., Waksman, R., Epstein, S., Wilson, J. F., Wild, S. H., Campbell, H., Vitart, V., Reilly, M. P., Li, M., Qu, L., Wilensky, R., Matthai, W., Hakonarson, H. H., Rader, D. J., Franke, A., Wittig, M., Schäfer, A., Uda, M., Terracciano, A., Xiao, X., Busonero, F., Scheet, P., Schlessinger, D., St. Clair, D., Rujescu, D., Abecasis, G. R., Grabe, H. J., Teumer, A., Völzke, H., Petersmann, A., John, U., Rudan, I., Hayward, C., Wright, A. F., Kolcic, I., Wright, B. J., Thompson, J. R., Balmforth, A. J., Hall, A. S., Samani, N. J., Anderson, C. A., Ahmad, T., Mathew, C. G., Parkes, M., Satsangi, J., Caulfield, M., Munroe, P. B., Farrall, M., Dominiczak, A., Worthington, J., Thomson, W., Eyre, S., Barton, A., Mooser, V., Francks, C., & Marchini, J. (2010). Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 42(5), 436-440. doi:10.1038/ng.572.

    Abstract

    Smoking is a leading global cause of disease and mortality. We established the Oxford-GlaxoSmithKline study (Ox-GSK) to perform a genome-wide meta-analysis of SNP association with smoking-related behavioral traits. Our final data set included 41,150 individuals drawn from 20 disease, population and control cohorts. Our analysis confirmed an effect on smoking quantity at a locus on 15q25 (P = 9.45 x 10(-19)) that includes CHRNA5, CHRNA3 and CHRNB4, three genes encoding neuronal nicotinic acetylcholine receptor subunits. We used data from the 1000 Genomes project to investigate the region using imputation, which allowed for analysis of virtually all common SNPs in the region and offered a fivefold increase in marker density over HapMap2 (ref. 2) as an imputation reference panel. Our fine-mapping approach identified a SNP showing the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3.
  • Maguire, W., McMahon, A., Heggarty, P., & Dediu, D. (2010). The past, present, and future of English dialects: Quantifying convergence, divergence, and dynamic equilibrium. Language Variation and Change, 22, 69-104. doi:10.1017/S0954394510000013.

    Abstract

    This article reports on research which seeks to compare and measure the similarities between phonetic transcriptions in the analysis of relationships between varieties of English. It addresses the question of whether these varieties have been converging, diverging, or maintaining equilibrium as a result of endogenous and exogenous phonetic and phonological changes. We argue that it is only possible to identify such patterns of change by the simultaneous comparison of a wide range of varieties of a language across a data set that has not been specifically selected to highlight those changes that are believed to be important. Our analysis suggests that although there has been an obvious reduction in regional variation with the loss of traditional dialects of English and Scots, there has not been any significant convergence (or divergence) of regional accents of English in recent decades, despite the rapid spread of a number of features such as TH-fronting.
  • Muglia, P., Tozzi, F., Galwey, N. W., Francks, C., Upmanyu, R., Kong, X., Antoniades, A., Domenici, E., Perry, J., Rothen, S., Vandeleur, C. L., Mooser, V., Waeber, G., Vollenweider, P., Preisig, M., Lucae, S., Muller-Myhsok, B., Holsboer, F., Middleton, L. T., & Roses, A. D. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry, 15(6), 589-601. doi:10.1038/mp.2008.131.

    Abstract

    Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.
  • Newbury, D. F., Fisher, S. E., & Monaco, A. P. (2010). Recent advances in the genetics of language impairment. Genome Medicine, 2, 6. doi:10.1186/gm127.

    Abstract

    Specific language impairment (SLI) is defined as an unexpected and persistent impairment in language ability despite adequate opportunity and intelligence and in the absence of any explanatory medical conditions. This condition is highly heritable and affects between 5% and 8% of pre-school children. Over the past few years, investigations have begun to uncover genetic factors that may contribute to susceptibility to language impairment. So far, variants in four specific genes have been associated with spoken language disorders - forkhead box P2 (FOXP2) and contactin-associated protein-like 2 (CNTNAP2) on chromosome7 and calcium-transporting ATPase 2C2 (ATP2C2) and c-MAF inducing protein (CMIP) on chromosome 16. Here, we describe the different ways in which these genes were identified as candidates for language impairment. We discuss how characterization of these genes, and the pathways in which they are involved, may enhance our understanding of language disorders and improve our understanding of the biological foundations of language acquisition.
  • Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., Rudolf, G., Khalife, M., Hirsch, E., Fisher, S. E., & Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19, 4848-4860. doi:10.1093/hmg/ddq415.

    Abstract

    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), while mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2 binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites, and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired FOXP2 regulation of SRPX2 promoter activity, while that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNPA2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.

    Additional information

    Roll_et_al_2010_Suppl_Material.doc
  • Zhernakova, A., Elbers, C. C., Ferwerda, B., Romanos, J., Trynka, G., Dubois, P. C., De Kovel, C. G. F., Franke, L., Oosting, M., Barisani, D., Bardella, M. T., Joosten, L. A. B., Saavalainen, P., van Heel, D. A., Catassi, C., Netea, M. G., Wijmenga, C., & Finnish Celiac Dis Study, G. (2010). Evolutionary and Functional Analysis of Celiac Risk Loci Reveals SH2B3 as a Protective Factor against Bacterial Infection. American Journal of Human Genetics, 86(6), 970-977. doi:10.1016/j.ajhg.2010.05.004.

    Abstract

    Celiac disease (CD) is an intolerance to dietary proteins of wheat, barley, and rye. CD may have substantial morbidity, yet it is quite common with a prevalence of 1%-2% in Western populations. It is not clear why the CD phenotype is so prevalent despite its negative effects on human health, especially because appropriate treatment in the form of a gluten-free diet has only been available since the 1950s, when dietary gluten was discovered to be the triggering factor. The high prevalence of CD might suggest that genes underlying this disease may have been favored by the process of natural selection. We assessed signatures of selection for ten confirmed CD-associated loci in several genome-wide data sets, comprising 8154 controls from four European populations and 195 individuals from a North African population, by studying haplotype lengths via the integrated haplotype score (iHS) method. Consistent signs of positive selection for CD-associated derived alleles were observed in three loci: IL12A, IL18RAP, and SH2B3. For the SH2B3 risk allele, we also show a difference in allele frequency distribution (F(st)) between HapMap phase II populations. Functional investigation of the effect of the SH2B3 genotype in response to lipopolysaccharide and muramyl dipeptide revealed that carriers of the SH2B3 rs3184504*A risk allele showed stronger activation of the NOD2 recognition pathway. This suggests that SH2B3 plays a role in protection against bacteria infection, and it provides a possible explanation for the selective sweep on SH2B3, which occurred sometime between 1200 and 1700 years ago.

Share this page