Displaying 1 - 39 of 39
-
Abbondanza, F., Dale, P. S., Wang, C. A., Hayiou‐Thomas, M. E., Toseeb, U., Koomar, T. S., Wigg, K. G., Feng, Y., Price, K. M., Kerr, E. N., Guger, S. L., Lovett, M. W., Strug, L. J., Van Bergen, E., Dolan, C. V., Tomblin, J. B., Moll, K., Schulte‐Körne, G., Neuhoff, N., Warnke, A. and 13 moreAbbondanza, F., Dale, P. S., Wang, C. A., Hayiou‐Thomas, M. E., Toseeb, U., Koomar, T. S., Wigg, K. G., Feng, Y., Price, K. M., Kerr, E. N., Guger, S. L., Lovett, M. W., Strug, L. J., Van Bergen, E., Dolan, C. V., Tomblin, J. B., Moll, K., Schulte‐Körne, G., Neuhoff, N., Warnke, A., Fisher, S. E., Barr, C. L., Michaelson, J. J., Boomsma, D. I., Snowling, M. J., Hulme, C., Whitehouse, A. J. O., Pennell, C. E., Newbury, D. F., Stein, J., Talcott, J. B., Bishop, D. V. M., & Paracchini, S. (2023). Language and reading impairments are associated with increased prevalence of non‐right‐handedness. Child Development, 94(4), 970-984. doi:10.1111/cdev.13914.
Abstract
Handedness has been studied for association with language-related disorders because of its link with language hemispheric dominance. No clear pattern has emerged, possibly because of small samples, publication bias, and heterogeneous criteria across studies. Non-right-handedness (NRH) frequency was assessed in N = 2503 cases with reading and/or language impairment and N = 4316 sex-matched controls identified from 10 distinct cohorts (age range 6–19 years old; European ethnicity) using a priori set criteria. A meta-analysis (Ncases = 1994) showed elevated NRH % in individuals with language/reading impairment compared with controls (OR = 1.21, CI = 1.06–1.39, p = .01). The association between reading/language impairments and NRH could result from shared pathways underlying brain lateralization, handedness, and cognitive functions.Additional information
supplementary information -
Barendse, M. T., & Rosseel, Y. (2023). Multilevel SEM with random slopes in discrete data using the pairwise maximum likelihood. British Journal of Mathematical and Statistical Psychology, 76(2), 327-352. doi:10.1111/bmsp.12294.
Abstract
Pairwise maximum likelihood (PML) estimation is a promising method for multilevel models with discrete responses. Multilevel models take into account that units within a cluster tend to be more alike than units from different clusters. The pairwise likelihood is then obtained as the product of bivariate likelihoods for all within-cluster pairs of units and items. In this study, we investigate the PML estimation method with computationally intensive multilevel random intercept and random slope structural equation models (SEM) in discrete data. In pursuing this, we first reconsidered the general ‘wide format’ (WF) approach for SEM models and then extend the WF approach with random slopes. In a small simulation study we the determine accuracy and efficiency of the PML estimation method by varying the sample size (250, 500, 1000, 2000), response scales (two-point, four-point), and data-generating model (mediation model with three random slopes, factor model with one and two random slopes). Overall, results show that the PML estimation method is capable of estimating computationally intensive random intercept and random slopes multilevel models in the SEM framework with discrete data and many (six or more) latent variables with satisfactory accuracy and efficiency. However, the condition with 250 clusters combined with a two-point response scale shows more bias.Additional information
figures -
Corradi, Z., Khan, M., Hitti-Malin, R., Mishra, K., Whelan, L., Cornelis, S. S., ABCA4-Study Group, Hoyng, C. B., Kämpjärvi, K., Klaver, C. C. W., Liskova, P., Stohr, H., Weber, B. H. F., Banfi, S., Farrar, G. J., Sharon, D., Zernant, J., Allikmets, R., Dhaenens, C.-M., & Cremers, F. P. M. (2023). Targeted sequencing and in vitro splice assays shed light on ABCA4-associated retinopathies missing heritability. Human Genetics and Genomics Advances, 4(4): 100237. doi:10.1016/j.xhgg.2023.100237.
Abstract
The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207/520 (39.8%) naïve or unsolved cases and 70/202 (34.7%) monoallelic cases, while additional causal variants were identified in 54/136 (39.7%) of probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in STGD1 cases. -
Dingemans, A. J. M., Hinne, M., Truijen, K. M. G., Goltstein, L., Van Reeuwijk, J., De Leeuw, N., Schuurs-Hoeijmakers, J., Pfundt, R., Diets, I. J., Den Hoed, J., De Boer, E., Coenen-Van der Spek, J., Jansen, S., Van Bon, B. W., Jonis, N., Ockeloen, C. W., Vulto-van Silfhout, A. T., Kleefstra, T., Koolen, D. A., Campeau, P. M. and 13 moreDingemans, A. J. M., Hinne, M., Truijen, K. M. G., Goltstein, L., Van Reeuwijk, J., De Leeuw, N., Schuurs-Hoeijmakers, J., Pfundt, R., Diets, I. J., Den Hoed, J., De Boer, E., Coenen-Van der Spek, J., Jansen, S., Van Bon, B. W., Jonis, N., Ockeloen, C. W., Vulto-van Silfhout, A. T., Kleefstra, T., Koolen, D. A., Campeau, P. M., Palmer, E. E., Van Esch, H., Lyon, G. J., Alkuraya, F. S., Rauch, A., Marom, R., Baralle, D., Van der Sluijs, P. J., Santen, G. W. E., Kooy, R. F., Van Gerven, M. A. J., Vissers, L. E. L. M., & De Vries, B. B. A. (2023). PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nature Genetics, 55, 1598-1607. doi:10.1038/s41588-023-01469-w.
Abstract
Several molecular and phenotypic algorithms exist that establish genotype–phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype–phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.Additional information
supplementary information -
Galke, L., Vagliano, I., Franke, B., Zielke, T., & Scherp, A. (2023). Lifelong learning on evolving graphs under the constraints of imbalanced classes and new classes. Neural networks, 164, 156-176. doi:10.1016/j.neunet.2023.04.022.
Abstract
Lifelong graph learning deals with the problem of continually adapting graph neural network (GNN) models to changes in evolving graphs. We address two critical challenges of lifelong graph learning in this work: dealing with new classes and tackling imbalanced class distributions. The combination of these two challenges is particularly relevant since newly emerging classes typically resemble only a tiny fraction of the data, adding to the already skewed class distribution. We make several contributions: First, we show that the amount of unlabeled data does not influence the results, which is an essential prerequisite for lifelong learning on a sequence of tasks. Second, we experiment with different label rates and show that our methods can perform well with only a tiny fraction of annotated nodes. Third, we propose the gDOC method to detect new classes under the constraint of having an imbalanced class distribution. The critical ingredient is a weighted binary cross-entropy loss function to account for the class imbalance. Moreover, we demonstrate combinations of gDOC with various base GNN models such as GraphSAGE, Simplified Graph Convolution, and Graph Attention Networks. Lastly, our k-neighborhood time difference measure provably normalizes the temporal changes across different graph datasets. With extensive experimentation, we find that the proposed gDOC method is consistently better than a naive adaption of DOC to graphs. Specifically, in experiments using the smallest history size, the out-of-distribution detection score of gDOC is 0.09 compared to 0.01 for DOC. Furthermore, gDOC achieves an Open-F1 score, a combined measure of in-distribution classification and out-of-distribution detection, of 0.33 compared to 0.25 of DOC (32% increase). -
González-Peñas, J., De Hoyos, L., Díaz-Caneja, C. M., Andreu-Bernabeu, Á., Stella, C., Gurriarán, X., Fañanás, L., Bobes, J., González-Pinto, A., Crespo-Facorro, B., Martorell, L., Vilella, E., Muntané, G., Molto, M. D., Gonzalez-Piqueras, J. C., Parellada, M., Arango, C., & Costas, J. (2023). Recent natural selection conferred protection against schizophrenia by non-antagonistic pleiotropy. Scientific Reports, 13: 15500. doi:10.1038/s41598-023-42578-0.
Abstract
Schizophrenia is a debilitating psychiatric disorder associated with a reduced fertility and decreased life expectancy, yet common predisposing variation substantially contributes to the onset of the disorder, which poses an evolutionary paradox. Previous research has suggested balanced selection, a mechanism by which schizophrenia risk alleles could also provide advantages under certain environments, as a reliable explanation. However, recent studies have shown strong evidence against a positive selection of predisposing loci. Furthermore, evolutionary pressures on schizophrenia risk alleles could have changed throughout human history as new environments emerged. Here in this study, we used 1000 Genomes Project data to explore the relationship between schizophrenia predisposing loci and recent natural selection (RNS) signatures after the human diaspora out of Africa around 100,000 years ago on a genome-wide scale. We found evidence for significant enrichment of RNS markers in derived alleles arisen during human evolution conferring protection to schizophrenia. Moreover, both partitioned heritability and gene set enrichment analyses of mapped genes from schizophrenia predisposing loci subject to RNS revealed a lower involvement in brain and neuronal related functions compared to those not subject to RNS. Taken together, our results suggest non-antagonistic pleiotropy as a likely mechanism behind RNS that could explain the persistence of schizophrenia common predisposing variation in human populations due to its association to other non-psychiatric phenotypes. -
Heim, F., Fisher, S. E., Scharff, C., Ten Cate, C., & Riebel, K. (2023). Effects of cortical FoxP1 knockdowns on learned song preference in female zebra finches. eNeuro, 10(3): ENEURO.0328-22.2023. doi:10.1523/ENEURO.0328-22.2023.
Abstract
The search for molecular underpinnings of human vocal communication has focused on genes encoding forkhead-box transcription factors, as rare disruptions of FOXP1, FOXP2, and FOXP4 have been linked to disorders involving speech and language deficits. In male songbirds, an animal model for vocal learning, experimentally altered expression levels of these transcription factors impair song production learning. The relative contributions of auditory processing, motor function or auditory-motor integration to the deficits observed after different FoxP manipulations in songbirds are unknown. To examine the potential effects on auditory learning and development, we focused on female zebra finches (Taeniopygia guttata) that do not sing but develop song memories, which can be assayed in operant preference tests. We tested whether the relatively high levels of FoxP1 expression in forebrain areas implicated in female song preference learning are crucial for the development and/or maintenance of this behavior. Juvenile and adult female zebra finches received FoxP1 knockdowns targeted to HVC (proper name) or to the caudomedial mesopallium (CMM). Irrespective of target site and whether the knockdown took place before (juveniles) or after (adults) the sensitive phase for song memorization, all groups preferred their tutor’s song. However, adult females with FoxP1 knockdowns targeted at HVC showed weaker motivation to hear song and weaker song preferences than sham-treated controls, while no such differences were observed after knockdowns in CMM or in juveniles. In summary, FoxP1 knockdowns in the cortical song nucleus HVC were not associated with impaired tutor song memory but reduced motivation to actively request tutor songs. -
Kaspi, A., Hildebrand, M. S., Jackson, V. E., Braden, R., Van Reyk, O., Howell, T., Debono, S., Lauretta, M., Morison, L., Coleman, M. J., Webster, R., Coman, D., Goel, H., Wallis, M., Dabscheck, G., Downie, L., Baker, E. K., Parry-Fielder, B., Ballard, K., Harrold, E. and 10 moreKaspi, A., Hildebrand, M. S., Jackson, V. E., Braden, R., Van Reyk, O., Howell, T., Debono, S., Lauretta, M., Morison, L., Coleman, M. J., Webster, R., Coman, D., Goel, H., Wallis, M., Dabscheck, G., Downie, L., Baker, E. K., Parry-Fielder, B., Ballard, K., Harrold, E., Ziegenfusz, S., Bennett, M. F., Robertson, E., Wang, L., Boys, A., Fisher, S. E., Amor, D. J., Scheffer, I. E., Bahlo, M., & Morgan, A. T. (2023). Genetic aetiologies for childhood speech disorder: Novel pathways co-expressed during brain development. Molecular Psychiatry, 28, 1647-1663. doi:10.1038/s41380-022-01764-8.
Abstract
Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.Additional information
supplemental methods and results supplemental table 1 supplementary tables 2 to 9 correction -
Lemaitre, H., Le Guen, Y., Tilot, A. K., Stein, J. L., Philippe, C., Mangin, J.-F., Fisher, S. E., & Frouin, V. (2023). Genetic variations within human gained enhancer elements affect human brain sulcal morphology. NeuroImage, 265: 119773. doi:10.1016/j.neuroimage.2022.119773.
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.Additional information
tables -
Morison, L., Meffert, E., Stampfer, M., Steiner-Wilke, I., Vollmer, B., Schulze, K., Briggs, T., Braden, R., Vogel, A. P., Thompson-Lake, D., Patel, C., Blair, E., Goel, H., Turner, S., Moog, U., Riess, A., Liegeois, F., Koolen, D. A., Amor, D. J., Kleefstra, T. and 3 moreMorison, L., Meffert, E., Stampfer, M., Steiner-Wilke, I., Vollmer, B., Schulze, K., Briggs, T., Braden, R., Vogel, A. P., Thompson-Lake, D., Patel, C., Blair, E., Goel, H., Turner, S., Moog, U., Riess, A., Liegeois, F., Koolen, D. A., Amor, D. J., Kleefstra, T., Fisher, S. E., Zweier, C., & Morgan, A. T. (2023). In-depth characterisation of a cohort of individuals with missense and loss-of-function variants disrupting FOXP2. Journal of Medical Genetics, 60(6), 597-607. doi:10.1136/jmg-2022-108734.
Abstract
Background
Heterozygous disruptions of FOXP2 were the first identified molecular cause for severe speech disorder; childhood apraxia of speech (CAS), yet few cases have been reported, limiting knowledge of the condition.
Methods
Here we phenotyped 29 individuals from 18 families with pathogenic FOXP2-only variants (13 loss-of-function, 5 missense variants; 14 males; aged 2 years to 62 years). Health and development (cognitive, motor, social domains) was examined, including speech and language outcomes with the first cross-linguistic analysis of English and German.
Results
Speech disorders were prevalent (24/26, 92%) and CAS was most common (23/26, 89%), with similar speech presentations across English and German. Speech was still impaired in adulthood and some speech sounds (e.g. ‘th’, ‘r’, ‘ch’, ‘j’) were never acquired. Language impairments (22/26, 85%) ranged from mild to severe. Comorbidities included feeding difficulties in infancy (10/27, 37%), fine (14/27, 52%) and gross (14/27, 52%) motor impairment, anxiety (6/28, 21%), depression (7/28, 25%), and sleep disturbance (11/15, 44%). Physical features were common (23/28, 82%) but with no consistent pattern. Cognition ranged from average to mildly impaired, and was incongruent with language ability; for example, seven participants with severe language disorder had average non-verbal cognition.
Conclusions
Although we identify increased prevalence of conditions like anxiety, depression and sleep disturbance, we confirm that the consequences of FOXP2 dysfunction remain relatively specific to speech disorder, as compared to other recently identified monogenic conditions associated with CAS. Thus, our findings reinforce that FOXP2 provides a valuable entrypoint for examining the neurobiological bases of speech disorder. -
Oliveira‑Stahl, G., Farboud, S., Sterling, M. L., Heckman, J. J., Van Raalte, B., Lenferink, D., Van der Stam, A., Smeets, C. J. L. M., Fisher, S. E., & Englitz, B. (2023). High-precision spatial analysis of mouse courtship vocalization behavior reveals sex and strain differences. Scientific Reports, 13: 5219. doi:10.1038/s41598-023-31554-3.
Abstract
Mice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, including sexually motivated dyadic interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential. The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 2–3-fold improvement in accuracy (13.1–14.3 mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset. We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals that vocalization behavior is dependent on the spatial relation between the interacting mice. Female mice vocalized more in close snout-to-snout interaction while male mice vocalized more when the male snout was in close proximity to the female's ano-genital region. Further, we find that the acoustic properties of the ultrasonic vocalizations (duration, Wiener Entropy, and sound level) are dependent on the spatial relation between the interacting mice as well as on the genotype. In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.Additional information
supplementary movies and figures -
Pender, R., Fearon, P., St Pourcain, B., Heron, J., & Mandy, W. (2023). Developmental trajectories of autistic social traits in the general population. Psychological Medicine, 53(3), 814-822. doi:10.1017/S0033291721002166.
Abstract
Background
Autistic people show diverse trajectories of autistic traits over time, a phenomenon labelled ‘chronogeneity’. For example, some show a decrease in symptoms, whilst others experience an intensification of difficulties. Autism spectrum disorder (ASD) is a dimensional condition, representing one end of a trait continuum that extends throughout the population. To date, no studies have investigated chronogeneity across the full range of autistic traits. We investigated the nature and clinical significance of autism trait chronogeneity in a large, general population sample.
Methods
Autistic social/communication traits (ASTs) were measured in the Avon Longitudinal Study of Parents and Children using the Social and Communication Disorders Checklist (SCDC) at ages 7, 10, 13 and 16 (N = 9744). We used Growth Mixture Modelling (GMM) to identify groups defined by their AST trajectories. Measures of ASD diagnosis, sex, IQ and mental health (internalising and externalising) were used to investigate external validity of the derived trajectory groups.
Results
The selected GMM model identified four AST trajectory groups: (i) Persistent High (2.3% of sample), (ii) Persistent Low (83.5%), (iii) Increasing (7.3%) and (iv) Decreasing (6.9%) trajectories. The Increasing group, in which females were a slight majority (53.2%), showed dramatic increases in SCDC scores during adolescence, accompanied by escalating internalising and externalising difficulties. Two-thirds (63.6%) of the Decreasing group were male.
Conclusions
Clinicians should note that for some young people autism-trait-like social difficulties first emerge during adolescence accompanied by problems with mood, anxiety, conduct and attention. A converse, majority-male group shows decreasing social difficulties during adolescence.
-
Raghavan, R., Raviv, L., & Peeters, D. (2023). What's your point? Insights from virtual reality on the relation between intention and action in the production of pointing gestures. Cognition, 240: 105581. doi:10.1016/j.cognition.2023.105581.
Abstract
Human communication involves the process of translating intentions into communicative actions. But how exactly do our intentions surface in the visible communicative behavior we display? Here we focus on pointing gestures, a fundamental building block of everyday communication, and investigate whether and how different types of underlying intent modulate the kinematics of the pointing hand and the brain activity preceding the gestural movement. In a dynamic virtual reality environment, participants pointed at a referent to either share attention with their addressee, inform their addressee, or get their addressee to perform an action. Behaviorally, it was observed that these different underlying intentions modulated how long participants kept their arm and finger still, both prior to starting the movement and when keeping their pointing hand in apex position. In early planning stages, a neurophysiological distinction was observed between a gesture that is used to share attitudes and knowledge with another person versus a gesture that mainly uses that person as a means to perform an action. Together, these findings suggest that our intentions influence our actions from the earliest neurophysiological planning stages to the kinematic endpoint of the movement itself. -
Raviv, L., & Kirby, S. (2023). Self domestication and the cultural evolution of language. In J. J. Tehrani, J. Kendal, & R. Kendal (
Eds. ), The Oxford Handbook of Cultural Evolution. Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780198869252.013.60.Abstract
The structural design features of human language emerge in the process of cultural evolution, shaping languages over the course of communication, learning, and transmission. What role does this leave biological evolution? This chapter highlights the biological bases and preconditions that underlie the particular type of prosocial behaviours and cognitive inference abilities that are required for languages to emerge via cultural evolution to begin with. -
Raviv, L., Jacobson, S. L., Plotnik, J. M., Bowman, J., Lynch, V., & Benítez-Burraco, A. (2023). Elephants as an animal model for self-domestication. Proceedings of the National Academy of Sciences of the United States of America, 120(15): e2208607120. doi:10.1073/pnas.2208607120.
Abstract
Humans are unique in their sophisticated culture and societal structures, their complex languages, and their extensive tool use. According to the human self-domestication hypothesis, this unique set of traits may be the result of an evolutionary process of self-induced domestication, in which humans evolved to be less aggressive and more cooperative. However, the only other species that has been argued to be self-domesticated besides humans so far is bonobos, resulting in a narrow scope for investigating this theory limited to the primate order. Here, we propose an animal model for studying self-domestication: the elephant. First, we support our hypothesis with an extensive cross-species comparison, which suggests that elephants indeed exhibit many of the features associated with self-domestication (e.g., reduced aggression, increased prosociality, extended juvenile period, increased playfulness, socially regulated cortisol levels, and complex vocal behavior). Next, we present genetic evidence to reinforce our proposal, showing that genes positively selected in elephants are enriched in pathways associated with domestication traits and include several candidate genes previously associated with domestication. We also discuss several explanations for what may have triggered a self-domestication process in the elephant lineage. Our findings support the idea that elephants, like humans and bonobos, may be self-domesticated. Since the most recent common ancestor of humans and elephants is likely the most recent common ancestor of all placental mammals, our findings have important implications for convergent evolution beyond the primate taxa, and constitute an important advance toward understanding how and why self-domestication shaped humans’ unique cultural niche.Additional information
supporting information -
Roe, J. M., Vidal-Piñeiro, D., Amlien, I. K., Pan, M., Sneve, M. H., Thiebaut de Schotten, M., Friedrich, P., Sha, Z., Francks, C., Eilertsen, E. M., Wang, Y., Walhovd, K. B., Fjell, A. M., & Westerhausen, R. (2023). Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife, 12: e84685. doi:10.7554/eLife.84685.
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is altered in neurodevelopmental disorders and aging. Achieving consensus on cortical asymmetries in humans is necessary to uncover the genetic-developmental mechanisms that shape them and factors moderating cortical lateralization. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories across life (4-89 years; observations = 3937; 70% longitudinal). We reveal asymmetry interrelationships, heritability, and test associations in UK Biobank (N=∼37,500). Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in development and declines in aging. Areal asymmetry correlates in specific regions, whereas thickness asymmetry is globally interrelated across cortex and suggests high directional variability in global thickness lateralization. Areal asymmetry is moderately heritable (max h2SNP ∼19%), and phenotypic correlations are reflected by high genetic correlations, whereas heritability of thickness asymmetry is low. Finally, we detected an asymmetry association with cognition and confirm recently-reported handedness links. Results suggest areal asymmetry is developmentally stable and arises in early life, whereas developmental changes in thickness asymmetry may lead to directional variability of global thickness lateralization. Our results bear enough reproducibility to serve as a standard for future brain asymmetry studies. -
Sajovic, J., Meglič, A., Corradi, Z., Khan, M., Maver, A., Vidmar, M. J., Hawlina, M., Cremers, F. P. M., & Fakin, A. (2023). ABCA4Variant c.5714+5G> A in trans with null alleles results in primary RPE damage. Investigative Opthalmology & Visual Science, 64(12): 33. doi:10.1167/iovs.64.12.33.
Abstract
Purpose: To determine the disease pathogenesis associated with the frequent ABCA4 variant c.5714+5G>A (p.[=,Glu1863Leufs*33]).
Methods: Patient-derived photoreceptor precursor cells were generated to analyze the effect of c.5714+5G>A on splicing and perform a quantitative analysis of c.5714+5G>A products. Patients with c.5714+5G>A in trans with a null allele (i.e., c.5714+5G>A patients; n = 7) were compared with patients with two null alleles (i.e., double null patients; n = 11); with a special attention to the degree of RPE atrophy (area of definitely decreased autofluorescence and the degree of photoreceptor impairment (outer nuclear layer thickness and pattern electroretinography amplitude).
Results: RT-PCR of mRNA from patient-derived photoreceptor precursor cells showed exon 40 and exon 39/40 deletion products, as well as the normal transcript. Quantification of products showed 52.4% normal and 47.6% mutant ABCA4 mRNA. Clinically, c.5714+5G>A patients displayed significantly better structural and functional preservation of photoreceptors (thicker outer nuclear layer, presence of tubulations, higher pattern electroretinography amplitude) than double null patients with similar degrees of RPE loss, whereas double null patients exhibited signs of extensive photoreceptor ,damage even in the areas with preserved RPE.
Conclusions: The prototypical STGD1 sequence of events of primary RPE and secondary photoreceptor damage is congruous with c.5714+5G>A, but not the double null genotype, which implies different and genotype-dependent disease mechanisms. We hypothesize that the relative photoreceptor sparing in c.5714+5G>A patients results from the remaining function of the ABCA4 transporter originating from the normally spliced product, possibly by decreasing the direct bisretinoid toxicity on photoreceptor membranes. -
Schijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A. and 129 moreSchijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A., Jönsson, E. G., Kochunov, P., Bruggemann, J. M., Catts, S. V., Michie, P. T., Mowry, B. J., Quidé, Y., Rasser, P. E., Schall, U., Scott, R. J., Carr, V. J., Green, M. J., Henskens, F. A., Loughland, C. M., Pantelis, C., Weickert, C. S., Weickert, T. W., De Haan, L., Brosch, K., Pfarr, J.-K., Ringwald, K. G., Stein, F., Jansen, A., Kircher, T. T., Nenadić, I., Krämer, B., Gruber, O., Satterthwaite, T. D., Bustillo, J., Mathalon, D. H., Preda, A., Calhoun, V. D., Ford, J. M., Potkin, S. G., Chen, J., Tan, Y., Wang, Z., Xiang, H., Fan, F., Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M. A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Van Amelsvoort, T., Dickie, E. W., Voineskos, A. N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R. M., Kim, W.-S., Chung, Y.-C., Andreou, C., Schmidt, A., Borgwardt, S., McIntosh, A. M., Whalley, H. C., Lawrie, S. M., Du Plessis, S., Luckhoff, H. K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J. T., Rootes-Murdy, K., Stephen, J. M., Mayer, A. R., Antonucci, L. A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C. M., Janssen, J., Lois, N. G., Arango, C., Tomyshev, A. S., Lebedeva, I., Cervenka, S., Sellgren, C. M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y. B., Oh, S., Kwon, J. S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F. M., Stein, D. J., Temmingh, H. S., Diaz-Zuluaga, A. M., Pineda-Zapata, J. A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S. E., Franke, B., Glahn, D. C., Gur, R. C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S. E., Thompson, P. M., Turner, J. A., Van Erp, T. G., & Francks, C. (2023). Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proceedings of the National Academy of Sciences of the United States of America, 120(14): e2213880120. doi:10.1073/pnas.2213880120.
Abstract
Left–right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case–control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case–control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case–control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case–control status. Subtle case–control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia. -
Sha, Z., Schijven, D., Fisher, S. E., & Francks, C. (2023). Genetic architecture of the white matter connectome of the human brain. Science Advances, 9(7): eadd2870. doi:10.1126/sciadv.add2870.
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.Additional information
figs. S1 to S14, legends for tables S1 to S31 tables S1 to S31 link to Preprint on bioRxiv -
Snijders Blok, L., Verseput, J., Rots, D., Venselaar, H., Innes, A. M., Stumpel, C., Õunap, K., Reinson, K., Seaby, E. G., McKee, S., Burton, B., Kim, K., Van Hagen, J. M., Waisfisz, Q., Joset, P., Steindl, K., Rauch, A., Li, D., Zackai, E. H., Sheppard, S. E. and 29 moreSnijders Blok, L., Verseput, J., Rots, D., Venselaar, H., Innes, A. M., Stumpel, C., Õunap, K., Reinson, K., Seaby, E. G., McKee, S., Burton, B., Kim, K., Van Hagen, J. M., Waisfisz, Q., Joset, P., Steindl, K., Rauch, A., Li, D., Zackai, E. H., Sheppard, S. E., Keena, B., Hakonarson, H., Roos, A., Kohlschmidt, N., Cereda, A., Iascone, M., Rebessi, E., Kernohan, K. D., Campeau, P. M., Millan, F., Taylor, J. A., Lochmüller, H., Higgs, M. R., Goula, A., Bernhard, B., Velasco, D. J., Schmanski, A. A., Stark, Z., Gallacher, L., Pais, L., Marcogliese, P. C., Yamamoto, S., Raun, N., Jakub, T. E., Kramer, J. M., Den Hoed, J., Fisher, S. E., Brunner, H. G., & Kleefstra, T. (2023). A clustering of heterozygous missense variants in the crucial chromatin modifier WDR5 defines a new neurodevelopmental disorder. Human Genetics and Genomics Advances, 4(1): 100157. doi:10.1016/j.xhgg.2022.100157.
Abstract
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals, and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (N=11), intellectual disability (N=9), epilepsy (N=7) and autism spectrum disorder (N=4). Additional phenotypic features included abnormal growth parameters (N=7), heart anomalies (N=2) and hearing loss (N=2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders. -
Soheili-Nezhad, S., Sprooten, E., Tendolkar, I., & Medici, M. (2023). Exploring the genetic link between thyroid dysfunction and common psychiatric disorders: A specific hormonal or a general autoimmune comorbidity. Thyroid, 33(2), 159-168. doi:10.1089/thy.2022.0304.
Abstract
Background: The hypothalamus-pituitary-thyroid axis coordinates brain development and postdevelopmental function. Thyroid hormone (TH) variations, even within the normal range, have been associated with the risk of developing common psychiatric disorders, although the underlying mechanisms remain poorly understood.
Methods: To get new insight into the potentially shared mechanisms underlying thyroid dysfunction and psychiatric disorders, we performed a comprehensive analysis of multiple phenotypic and genotypic databases. We investigated the relationship of thyroid disorders with depression, bipolar disorder (BIP), and anxiety disorders (ANXs) in 497,726 subjects from U.K. Biobank. We subsequently investigated genetic correlations between thyroid disorders, thyrotropin (TSH), and free thyroxine (fT4) levels, with the genome-wide factors that predispose to psychiatric disorders. Finally, the observed global genetic correlations were furthermore pinpointed to specific local genomic regions.
Results: Hypothyroidism was positively associated with an increased risk of major depressive disorder (MDD; OR = 1.31, p = 5.29 × 10−89), BIP (OR = 1.55, p = 0.0038), and ANX (OR = 1.16, p = 6.22 × 10−8). Hyperthyroidism was associated with MDD (OR = 1.11, p = 0.0034) and ANX (OR = 1.34, p = 5.99 × 10−⁶). Genetically, strong coheritability was observed between thyroid disease and both major depressive (rg = 0.17, p = 2.7 × 10−⁴) and ANXs (rg = 0.17, p = 6.7 × 10−⁶). This genetic correlation was particularly strong at the major histocompatibility complex locus on chromosome 6 (p < 10−⁵), but further analysis showed that other parts of the genome also contributed to this global effect. Importantly, neither TSH nor fT4 levels were genetically correlated with mood disorders.
Conclusions: Our findings highlight an underlying association between autoimmune hypothyroidism and mood disorders, which is not mediated through THs and in which autoimmunity plays a prominent role. While these findings could shed new light on the potential ineffectiveness of treating (minor) variations in thyroid function in psychiatric disorders, further research is needed to identify the exact underlying molecular mechanisms.Additional information
supplementary table S1 -
Sollis, E., Den Hoed, J., Quevedo, M., Estruch, S. B., Vino, A., Dekkers, D. H. W., Demmers, J. A. A., Poot, R., Derizioti, P., & Fisher, S. E. (2023). Characterization of the TBR1 interactome: Variants associated with neurodevelopmental disorders disrupt novel protein interactions. Human Molecular Genetics, 32(9): ddac311, pp. 1497-1510. doi:10.1093/hmg/ddac311.
Abstract
TBR1 is a neuron-specific transcription factor involved in brain development and implicated in a neurodevelopmental disorder (NDD) combining features of autism spectrum disorder (ASD), intellectual disability (ID) and speech delay. TBR1 has been previously shown to interact with a small number of transcription factors and co-factors also involved in NDDs (including CASK, FOXP1/2/4 and BCL11A), suggesting that the wider TBR1 interactome may have a significant bearing on normal and abnormal brain development. Here we have identified approximately 250 putative TBR1-interaction partners by affinity purification coupled to mass spectrometry. As well as known TBR1-interactors such as CASK, the identified partners include transcription factors and chromatin modifiers, along with ASD- and ID-related proteins. Five interaction candidates were independently validated using bioluminescence resonance energy transfer assays. We went on to test the interaction of these candidates with TBR1 protein variants implicated in cases of NDD. The assays uncovered disturbed interactions for NDD-associated variants and identified two distinct protein-binding domains of TBR1 that have essential roles in protein–protein interaction. -
Trupp, M. D., Bignardi, G., Specker, E., Vessel, E. A., & Pelowski, M. (2023). Who benefits from online art viewing, and how: The role of pleasure, meaningfulness, and trait aesthetic responsiveness in computer-based art interventions for well-being. Computers in Human Behavior, 145: 107764. doi:10.1016/j.chb.2023.107764.
Abstract
When experienced in-person, engagement with art has been associated with positive outcomes in well-being and mental health. However, especially in the last decade, art viewing, cultural engagement, and even ‘trips’ to museums have begun to take place online, via computers, smartphones, tablets, or in virtual reality. Similarly, to what has been reported for in-person visits, online art engagements—easily accessible from personal devices—have also been associated to well-being impacts. However, a broader understanding of for whom and how online-delivered art might have well-being impacts is still lacking. In the present study, we used a Monet interactive art exhibition from Google Arts and Culture to deepen our understanding of the role of pleasure, meaning, and individual differences in the responsiveness to art. Beyond replicating the previous group-level effects, we confirmed our pre-registered hypothesis that trait-level inter-individual differences in aesthetic responsiveness predict some of the benefits that online art viewing has on well-being and further that such inter-individual differences at the trait level were mediated by subjective experiences of pleasure and especially meaningfulness felt during the online-art intervention. The role that participants' experiences play as a possible mechanism during art interventions is discussed in light of recent theoretical models.Additional information
supplementary material -
Vessel, E. A., Pasqualette, L., Uran, C., Koldehoff, S., Bignardi, G., & Vinck, M. (2023). Self-relevance predicts the aesthetic appeal of real and synthetic artworks generated via neural style transfer. Psychological Science, 34(9), 1007-1023. doi:10.1177/09567976231188107.
Abstract
What determines the aesthetic appeal of artworks? Recent work suggests that aesthetic appeal can, to some extent, be predicted from a visual artwork’s image features. Yet a large fraction of variance in aesthetic ratings remains unexplained and may relate to individual preferences. We hypothesized that an artwork’s aesthetic appeal depends strongly on self-relevance. In a first study (N = 33 adults, online replication N = 208), rated aesthetic appeal for real artworks was positively predicted by rated self-relevance. In a second experiment (N = 45 online), we created synthetic, self-relevant artworks using deep neural networks that transferred the style of existing artworks to photographs. Style transfer was applied to self-relevant photographs selected to reflect participant-specific attributes such as autobiographical memories. Self-relevant, synthetic artworks were rated as more aesthetically appealing than matched control images, at a level similar to human-made artworks. Thus, self-relevance is a key determinant of aesthetic appeal, independent of artistic skill and image features.Additional information
supplementary materials -
Vingerhoets, G., Verhelst, H., Gerrits, R., Badcock, N., Bishop, D. V. M., Carey, D., Flindall, J., Grimshaw, G., Harris, L. J., Hausmann, M., Hirnstein, M., Jäncke, L., Joliot, M., Specht, K., Westerhausen, R., & LICI consortium (2023). Laterality indices consensus initiative (LICI): A Delphi expert survey report on recommendations to record, assess, and report asymmetry in human behavioural and brain research. Laterality, 28(2-3), 122-191. doi:10.1080/1357650X.2023.2199963.
Abstract
Laterality indices (LIs) quantify the left-right asymmetry of brain and behavioural variables and provide a measure that is statistically convenient and seemingly easy to interpret. Substantial variability in how structural and functional asymmetries are recorded, calculated, and reported, however, suggest little agreement on the conditions required for its valid assessment. The present study aimed for consensus on general aspects in this context of laterality research, and more specifically within a particular method or technique (i.e., dichotic listening, visual half-field technique, performance asymmetries, preference bias reports, electrophysiological recording, functional MRI, structural MRI, and functional transcranial Doppler sonography). Experts in laterality research were invited to participate in an online Delphi survey to evaluate consensus and stimulate discussion. In Round 0, 106 experts generated 453 statements on what they considered good practice in their field of expertise. Statements were organised into a 295-statement survey that the experts then were asked, in Round 1, to independently assess for importance and support, which further reduced the survey to 241 statements that were presented again to the experts in Round 2. Based on the Round 2 input, we present a set of critically reviewed key recommendations to record, assess, and report laterality research for various methods.Additional information
data that support the findings of this study are openly available in OSFFiles private
Request files -
Whelan, L., Dockery, A., Stephenson, K. A. J., Zhu, J., Kopčić, E., Post, I. J. M., Khan, M., Corradi, Z., Wynne, N., O’ Byrne, J. J., Duignan, E., Silvestri, G., Roosing, S., Cremers, F. P. M., Keegan, D. J., Kenna, P. F., & Farrar, G. J. (2023). Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Scientific Reports, 13: 9380. doi:10.1038/s41598-023-35889-9.
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.Additional information
supplemental material -
Brucato, N., Cassar, O., Tonasso, L., Tortevoye, P., Migot-Nabias, F., Plancoulaine, S., Guitard, E., Larrouy, G., Gessain, A., & Dugoujon, J.-M. (2010). The imprint of the Slave Trade in an African American population: Mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana. BMC Evolutionary Biology, 10, 314. doi:10.1186/1471-2148-10-314.
Abstract
Background Retracing the genetic histories of the descendant populations of the Slave Trade (16th-19th centuries) is particularly challenging due to the diversity of African ethnic groups involved and the different hybridisation processes with Europeans and Amerindians, which have blurred their original genetic inheritances. The Noir Marron in French Guiana are the direct descendants of maroons who escaped from Dutch plantations in the current day Surinam. They represent an original ethnic group with a highly blended culture. Uniparental markers (mtDNA and NRY) coupled with HTLV-1 sequences (env and LTR) were studied to establish the genetic relationships linking them to African American and African populations. Results All genetic systems presented a high conservation of the African gene pool (African ancestry: mtDNA = 99.3%; NRY = 97.6%; HTLV-1 env = 20/23; HTLV-1 LTR = 6/8). Neither founder effect nor genetic drift was detected and the genetic diversity is within a range commonly observed in Africa. Higher genetic similarities were observed with the populations inhabiting the Bight of Benin (from Ivory Coast to Benin). Other ancestries were identified but they presented an interesting sex-bias. Whilst male origins spread throughout the north of the bight (from Benin to Senegal), female origins were spread throughout the south (from the Ivory Coast to Angola). Conclusions The Noir Marron are unique in having conserved their African genetic ancestry, despite major cultural exchanges with Amerindians and Europeans through inhabiting the same region for four centuries. Their maroon identity and the important number of slaves deported in this region have maintained the original African diversity. All these characteristics permit to identify a major origin located in the former region of the Gold Coast and the Bight of Benin; regions highly impacted by slavery, from which goes a sex-biased longitudinal gradient of ancestry.Additional information
Additional 1. References of the populations compiled in the databases used for … Additional 2. MtDNA haplotypes and their respective haplogroup classification f… Additional 3. AMOVA analyses performed with mtDNA and NRY data to compare the N… Additional 4. NRY haplotypes and their respective haplogroup classification fou… Additional 5. LTR phylogenetic tree constructed by the neighbour-joining method… -
Dediu, D. (2010). Linguistic and genetic diversity - how and why are they related? In M. Brüne, F. Salter, & W. McGrew (
Eds. ), Building bridges between anthropology, medicine and human ethology: Tributes to Wulf Schiefenhövel (pp. 169-178). Bochum: Europäischer Universitätsverlag.Abstract
There are some 6000 languages spoken today, classfied in approximately 90 linguistic families and many isolates, and also differing across structural, typological, dimensions. Genetically, the human species is remarkably homogeneous, with the existant genetic diversity mostly explain by intra-population differences between individuals, but the remaining inter-population differences have a non-trivial structure. Populations splits and contacts influence both languages and genes, in principle allowing them to evolve in parallel ways. The farming/language co-dispersal hypothesis is a well-known such theory, whereby farmers spreading agriculture from its places of origin also spread their genes and languages. A different type of relationship was recently proposed, involving a genetic bias which influences the structural properties of language as it is transmitted across generations. Such a bias was proposed to explain the correlations between the distribution of tone languages and two brain development-related human genes and, if confirmed by experimental studies, it could represent a new factor explaining the distrbution of diversity. The present chapter overviews these related topics in the hope that a truly interdisciplinary approach could allow a better understanding of our complex (recent as well as evolutionary) history. -
Dugoujon, J.-M., Larrouy, G., Mazières, S., Brucato, N., Sevin, A., Cassar, O., & Gessain, A. (2010). Histoire et dynamique du peuplement humain en Amazonie: L’exemple de la Guyane. In A. Pavé, & G. Fornet (
Eds. ), Amazonie: Une aventure scientifique et humaine du CNRS (pp. 128-132). Paris: Galaade Éditions. -
Fisher, S. E. (2010). Genetic susceptibility to stuttering [Editorial]. New England Journal of Medicine, 362, 750-752. doi:10.1056/NEJMe0912594.
Files private
Request files -
Francks, C., Tozzi, F., Farmer, A., Vincent, J. B., Rujescu, D., St Clair, D., & Muglia, P. (2010). Population-based linkage analysis of schizophrenia and bipolar case-control cohorts identifies a potential susceptibility locus on 19q13. Molecular Psychiatry, 15, 319-325. doi:10.1038/mp.2008.100.
Abstract
Population-based linkage analysis is a new method for analysing genomewide single nucleotide polymorphism (SNP) genotype data in case-control samples, which does not assume a common disease, common variant model. The genome is scanned for extended segments that show increased identity-by-descent sharing within case-case pairs, relative to case-control or control-control pairs. The method is robust to allelic heterogeneity and is suited to mapping genes which contain multiple, rare susceptibility variants of relatively high penetrance. We analysed genomewide SNP datasets for two schizophrenia case-control cohorts, collected in Aberdeen (461 cases, 459 controls) and Munich (429 cases, 428 controls). Population-based linkage testing must be performed within homogeneous samples and it was therefore necessary to analyse the cohorts separately. Each cohort was first subjected to several procedures to improve genetic homogeneity, including identity-by-state outlier detection and multidimensional scaling analysis. When testing only cases who reported a positive family history of major psychiatric disease, consistent with a model of strongly penetrant susceptibility alleles, we saw a distinct peak on chromosome 19q in both cohorts that appeared in meta-analysis (P=0.000016) to surpass the traditional level for genomewide significance for complex trait linkage. The linkage signal was also present in a third case-control sample for familial bipolar disorder, such that meta-analysing all three datasets together yielded a linkage P=0.0000026. A model of rare but highly penetrant disease alleles may be more applicable to some instances of major psychiatric diseases than the common disease common variant model, and we therefore suggest that other genome scan datasets are analysed with this new, complementary method.Additional information
http://www.nature.com/mp/journal/v15/n3/suppinfo/mp2008100s1.html?url=/mp/journ… -
Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9, 390-401. doi:10.1111/j.1601-183X.2010.00570.x.
Abstract
Heterozygous mutations of the human FOXP2 gene are implicated in a severe speech and language disorder. Aetiological mutations of murine Foxp2 yield abnormal synaptic plasticity and impaired motor-skill learning in mutant mice, while knockdown of the avian orthologue in songbirds interferes with auditory-guided vocal learning. Here, we investigate influences of two distinct Foxp2 point mutations on vocalizations of 4-day-old mouse pups (Mus musculus). The R552H missense mutation is identical to that causing speech and language deficits in a large well-studied human family, while the S321X nonsense mutation represents a null allele that does not produce Foxp2 protein. We ask whether vocalizations, based solely on innate mechanisms of production, are affected by these alternative Foxp2 mutations. Sound recordings were taken in two different situations: isolation and distress, eliciting a range of call types, including broadband vocalizations of varying noise content, ultrasonic whistles and clicks. Sound production rates and several acoustic parameters showed that, despite absence of functional Foxp2, homozygous mutants could vocalize all types of sounds in a normal temporal pattern, but only at comparably low intensities. We suggest that altered vocal output of these homozygotes may be secondary to developmental delays and somatic weakness. Heterozygous mutants did not differ from wild-types in any of the measures that we studied (R552H ) or in only a few (S321X ), which were in the range of differences routinely observed for different mouse strains. Thus, Foxp2 is not essential for the innate production of emotional vocalizations with largely normal acoustic properties by mouse pups. -
Ingason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J. and 20 moreIngason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Walshe, M., Vassos, E., Di Forti, M., Murray, R., Bonetto, C., Tosato, S., Cantor, R. M., Rietschel, M., Craddock, N., Owen, M. J., Andreassen, O. A., Nothen, M. M., Peltonen, L., St. Clair, D., Ophoff, R. A., O’Donovan, M. C., Collier, D. A., Werge, T., & Rujescu, D. (2010). A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 19(7), 1379-1386. doi:10.1093/hmg/ddq009.
Abstract
The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample. Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both the replication study of new samples and the meta-analysis show evidence for significant overrepresentation of all tested alleles in patients compared with controls (meta-analysis; P = 8.2 x 10(-5)-1.7 x 10(-3), common OR = 1.09-1.11). The region contains two genes, AHI1 and C6orf217, and both genes-as well as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia.Additional information
http://hmg.oxfordjournals.org/content/19/7/1379/suppl/DC1 -
Liu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R. and 86 moreLiu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R., Kesaniemi, A., McPherson, R., Vincent, J. B., Strauss, J., Kennedy, J. L., Farmer, A., McGuffin, P., Day, R., Matthews, K., Bakke, P., Gulsvik, A., Lucae, S., Ising, M., Brueckl, T., Horstmann, S., Wichmann–, H.-E., Rawal, R., Dahmen, N., Lamina, C., Polasek, O., Zgaga, L., Huffman, J., Campbell, S., Kooner, J., Chambers, J. C., Burnett, M. S., Devaney, J. M., Pichard, A. D., Kent, K. M., Satler, L., Lindsay, J. M., Waksman, R., Epstein, S., Wilson, J. F., Wild, S. H., Campbell, H., Vitart, V., Reilly, M. P., Li, M., Qu, L., Wilensky, R., Matthai, W., Hakonarson, H. H., Rader, D. J., Franke, A., Wittig, M., Schäfer, A., Uda, M., Terracciano, A., Xiao, X., Busonero, F., Scheet, P., Schlessinger, D., St. Clair, D., Rujescu, D., Abecasis, G. R., Grabe, H. J., Teumer, A., Völzke, H., Petersmann, A., John, U., Rudan, I., Hayward, C., Wright, A. F., Kolcic, I., Wright, B. J., Thompson, J. R., Balmforth, A. J., Hall, A. S., Samani, N. J., Anderson, C. A., Ahmad, T., Mathew, C. G., Parkes, M., Satsangi, J., Caulfield, M., Munroe, P. B., Farrall, M., Dominiczak, A., Worthington, J., Thomson, W., Eyre, S., Barton, A., Mooser, V., Francks, C., & Marchini, J. (2010). Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 42(5), 436-440. doi:10.1038/ng.572.
Abstract
Smoking is a leading global cause of disease and mortality. We established the Oxford-GlaxoSmithKline study (Ox-GSK) to perform a genome-wide meta-analysis of SNP association with smoking-related behavioral traits. Our final data set included 41,150 individuals drawn from 20 disease, population and control cohorts. Our analysis confirmed an effect on smoking quantity at a locus on 15q25 (P = 9.45 x 10(-19)) that includes CHRNA5, CHRNA3 and CHRNB4, three genes encoding neuronal nicotinic acetylcholine receptor subunits. We used data from the 1000 Genomes project to investigate the region using imputation, which allowed for analysis of virtually all common SNPs in the region and offered a fivefold increase in marker density over HapMap2 (ref. 2) as an imputation reference panel. Our fine-mapping approach identified a SNP showing the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3. -
Maguire, W., McMahon, A., Heggarty, P., & Dediu, D. (2010). The past, present, and future of English dialects: Quantifying convergence, divergence, and dynamic equilibrium. Language Variation and Change, 22, 69-104. doi:10.1017/S0954394510000013.
Abstract
This article reports on research which seeks to compare and measure the similarities between phonetic transcriptions in the analysis of relationships between varieties of English. It addresses the question of whether these varieties have been converging, diverging, or maintaining equilibrium as a result of endogenous and exogenous phonetic and phonological changes. We argue that it is only possible to identify such patterns of change by the simultaneous comparison of a wide range of varieties of a language across a data set that has not been specifically selected to highlight those changes that are believed to be important. Our analysis suggests that although there has been an obvious reduction in regional variation with the loss of traditional dialects of English and Scots, there has not been any significant convergence (or divergence) of regional accents of English in recent decades, despite the rapid spread of a number of features such as TH-fronting. -
Muglia, P., Tozzi, F., Galwey, N. W., Francks, C., Upmanyu, R., Kong, X., Antoniades, A., Domenici, E., Perry, J., Rothen, S., Vandeleur, C. L., Mooser, V., Waeber, G., Vollenweider, P., Preisig, M., Lucae, S., Muller-Myhsok, B., Holsboer, F., Middleton, L. T., & Roses, A. D. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry, 15(6), 589-601. doi:10.1038/mp.2008.131.
Abstract
Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.Additional information
http://www.nature.com/mp/journal/v15/n6/suppinfo/mp2008131s1.html?url=/mp/journ… -
Newbury, D. F., Fisher, S. E., & Monaco, A. P. (2010). Recent advances in the genetics of language impairment. Genome Medicine, 2, 6. doi:10.1186/gm127.
Abstract
Specific language impairment (SLI) is defined as an unexpected and persistent impairment in language ability despite adequate opportunity and intelligence and in the absence of any explanatory medical conditions. This condition is highly heritable and affects between 5% and 8% of pre-school children. Over the past few years, investigations have begun to uncover genetic factors that may contribute to susceptibility to language impairment. So far, variants in four specific genes have been associated with spoken language disorders - forkhead box P2 (FOXP2) and contactin-associated protein-like 2 (CNTNAP2) on chromosome7 and calcium-transporting ATPase 2C2 (ATP2C2) and c-MAF inducing protein (CMIP) on chromosome 16. Here, we describe the different ways in which these genes were identified as candidates for language impairment. We discuss how characterization of these genes, and the pathways in which they are involved, may enhance our understanding of language disorders and improve our understanding of the biological foundations of language acquisition. -
Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., Rudolf, G., Khalife, M., Hirsch, E., Fisher, S. E., & Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19, 4848-4860. doi:10.1093/hmg/ddq415.
Abstract
It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), while mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2 binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites, and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired FOXP2 regulation of SRPX2 promoter activity, while that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNPA2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.Additional information
Roll_et_al_2010_Suppl_Material.doc -
Zhernakova, A., Elbers, C. C., Ferwerda, B., Romanos, J., Trynka, G., Dubois, P. C., De Kovel, C. G. F., Franke, L., Oosting, M., Barisani, D., Bardella, M. T., Joosten, L. A. B., Saavalainen, P., van Heel, D. A., Catassi, C., Netea, M. G., Wijmenga, C., & Finnish Celiac Dis Study, G. (2010). Evolutionary and Functional Analysis of Celiac Risk Loci Reveals SH2B3 as a Protective Factor against Bacterial Infection. American Journal of Human Genetics, 86(6), 970-977. doi:10.1016/j.ajhg.2010.05.004.
Abstract
Celiac disease (CD) is an intolerance to dietary proteins of wheat, barley, and rye. CD may have substantial morbidity, yet it is quite common with a prevalence of 1%-2% in Western populations. It is not clear why the CD phenotype is so prevalent despite its negative effects on human health, especially because appropriate treatment in the form of a gluten-free diet has only been available since the 1950s, when dietary gluten was discovered to be the triggering factor. The high prevalence of CD might suggest that genes underlying this disease may have been favored by the process of natural selection. We assessed signatures of selection for ten confirmed CD-associated loci in several genome-wide data sets, comprising 8154 controls from four European populations and 195 individuals from a North African population, by studying haplotype lengths via the integrated haplotype score (iHS) method. Consistent signs of positive selection for CD-associated derived alleles were observed in three loci: IL12A, IL18RAP, and SH2B3. For the SH2B3 risk allele, we also show a difference in allele frequency distribution (F(st)) between HapMap phase II populations. Functional investigation of the effect of the SH2B3 genotype in response to lipopolysaccharide and muramyl dipeptide revealed that carriers of the SH2B3 rs3184504*A risk allele showed stronger activation of the NOD2 recognition pathway. This suggests that SH2B3 plays a role in protection against bacteria infection, and it provides a possible explanation for the selective sweep on SH2B3, which occurred sometime between 1200 and 1700 years ago.Additional information
http://www.sciencedirect.com/science/article/pii/S000292971000251X#appd002
Share this page