Displaying 1 - 62 of 62
  • Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatosova, S., Rehnstrom, K., Peltonen, L., Wheelwright, S., Allison, C., Fisher, S. E., & Warrier, V. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: A preliminary study. PLoS One, 9(5): e96374. doi:10.1371/journal.pone.0096374.

    Abstract

    Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10−5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10−6). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10−4). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.
  • Brucato, N., DeLisi, L. E., Fisher, S. E., & Francks, C. (2014). Hypomethylation of the paternally inherited LRRTM1 promoter linked to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(7), 555-563. doi:10.1002/ajmg.b.32258.

    Abstract

    Epigenetic effects on psychiatric traits remain relatively under-studied, and it remains unclear what the sizes of individual epigenetic effects may be, or how they vary between different clinical populations. The gene LRRTM1 (chromosome 2p12) has previously been linked and associated with schizophrenia in a parent-of-origin manner in a set of affected siblings (LOD = 4.72), indirectly suggesting a disruption of paternal imprinting at this locus in these families. From the same set of siblings that originally showed strong linkage at this locus, we analyzed 99 individuals using 454-bisulfite sequencing, from whole blood DNA, to measure the level of DNA methylation in the promoter region of LRRTM1. We also assessed seven additional loci that would be informative to compare. Paternal identity-by-descent sharing at LRRTM1, within sibling pairs, was linked to their similarity of methylation at the gene's promoter. Reduced methylation at the promoter showed a significant association with schizophrenia. Sibling pairs concordant for schizophrenia showed more similar methylation levels at the LRRTM1 promoter than diagnostically discordant pairs. The alleles of common SNPs spanning the locus did not explain this epigenetic linkage, which can therefore be considered as largely independent of DNA sequence variation and would not be detected in standard genetic association analysis. Our data suggest that hypomethylation at the LRRTM1 promoter, particularly of the paternally inherited allele, was a risk factor for the development of schizophrenia in this set of siblings affected with familial schizophrenia, and that had previously showed linkage at this locus in an affected-sib-pair context.
  • Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.

    Abstract

    Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology
  • Ceroni, F., Simpson, N. H., Francks, C., Baird, G., Conti-Ramsden, G., Clark, A., Bolton, P. F., Hennessy, E. R., Donnelly, P., Bentley, D. R., Martin, H., IMGSAC, SLI Consortium, WGS500 Consortium, Parr, J., Pagnamenta, A. T., Maestrini, E., Bacchelli, E., Fisher, S. E., & Newbury, D. F. (2014). Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. European Journal of Human Genetics, 22, 1165-1171. doi:10.1038/ejhg.2014.4.

    Abstract

    Specific language impairment (SLI), an unexpected failure to develop appropriate language skills despite adequate non-verbal intelligence, is a heterogeneous multifactorial disorder with a complex genetic basis. We identified a homozygous microdeletion of 21,379 bp in the ZNF277 gene (NM_021994.2), encompassing exon 5, in an individual with severe receptive and expressive language impairment. The microdeletion was not found in the proband’s affected sister or her brother who had mild language impairment. However, it was inherited from both parents, each of whom carries a heterozygous microdeletion and has a history of language problems. The microdeletion falls within the AUTS1 locus, a region linked to autistic spectrum disorders (ASDs). Moreover, ZNF277 is adjacent to the DOCK4 and IMMP2L genes, which have been implicated in ASD. We screened for the presence of ZNF277 microdeletions in cohorts of children with SLI or ASD and panels of control subjects. ZNF277 microdeletions were at an increased allelic frequency in SLI probands (1.1%) compared with both ASD family members (0.3%) and independent controls (0.4%). We performed quantitative RT-PCR analyses of the expression of IMMP2L, DOCK4 and ZNF277 in individuals carrying either an IMMP2L_DOCK4 microdeletion or a ZNF277 microdeletion. Although ZNF277 microdeletions reduce the expression of ZNF277, they do not alter the levels of DOCK4 or IMMP2L transcripts. Conversely, IMMP2L_DOCK4 microdeletions do not affect the expression levels of ZNF277. We postulate that ZNF277 microdeletions may contribute to the risk of language impairments in a manner that is independent of the autism risk loci previously described in this region.
  • Cousijn, H., Eissing, M., Fernández, G., Fisher, S. E., Franke, B., Zwers, M., Harrison, P. J., & Arias-Vasquez, A. (2014). No effect of schizophrenia risk genes MIR137, TCF4, and ZNF804A on macroscopic brain structure. Schizophrenia Research, 159, 329-332. doi:10.1016/j.schres.2014.08.007.

    Abstract

    Single nucleotide polymorphisms (SNPs) within the MIR137, TCF4, and ZNF804A genes show genome-wide association to schizophrenia. However, the biological basis for the associations is unknown. Here, we tested the effects of these genes on brain structure in 1300 healthy adults. Using volumetry and voxel-based morphometry, neither gene-wide effects—including the combined effect of the genes—nor single SNP effects—including specific psychosis risk SNPs—were found on total brain volume, grey matter, white matter, or hippocampal volume. These results suggest that the associations between these risk genes and schizophrenia are unlikely to be mediated via effects on macroscopic brain structure.
  • Dediu, D., & Graham, S. A. (2014). Genetics and Language. In M. Aronoff (Ed.), Oxford Bibliographies in Linguistics. New York: Oxford University Press. Retrieved from http://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0184.xml.

    Abstract

    This article surveys what is currently known about the complex interplay between genetics and the language sciences. It focuses not only on the genetic architecture of language and speech, but also on their interactions on the cultural and evolutionary timescales. Given the complexity of these issues and their current state of flux and high dynamism, this article surveys the main findings and topics of interest while also briefly introducing the main relevant methods, thus allowing the interested reader to fully appreciate and understand them in their proper context. Of course, not all the relevant publications and resources are mentioned, but this article aims to select the most relevant, promising, or accessible for nonspecialists.

    Files private

    Request files
  • Dediu, D. (2014). Language and biology: The multiple interactions between genetics and language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 686-707). Cambridge: Cambridge University Press.
  • Dediu, D., & Levinson, S. C. (2014). Language and speech are old: A review of the evidence and consequences for modern linguistic diversity. In E. A. Cartmill, S. G. Roberts, H. Lyn, & H. Cornish (Eds.), The Evolution of Language: Proceedings of the 10th International Conference (pp. 421-422). Singapore: World Scientific.
  • Dediu, D., & Levinson, S. C. (2014). The time frame of the emergence of modern language and its implications. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 184-195). Oxford: Oxford University Press.
  • Deriziotis, P., O'Roak, B. J., Graham, S. A., Estruch, S. B., Dimitropoulou, D., Bernier, R. A., Gerdts, J., Shendure, J., Eichler, E. E., & Fisher, S. E. (2014). De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 5: 4954. doi:10.1038/ncomms5954.

    Abstract

    Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.
  • Deriziotis, P., Graham, S. A., Estruch, S. B., & Fisher, S. E. (2014). Investigating protein-protein interactions in live cells using Bioluminescence Resonance Energy Transfer. Journal of visualized experiments, 87: e51438. doi:10.3791/51438.

    Abstract

    Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ‘donor’ luciferase enzyme to an ‘acceptor’ fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.

    Additional information

    video
  • Devanna, P., & Vernes, S. C. (2014). A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137. Scientific Reports, 4: 3994. doi:10.1038/srep03994.

    Abstract

    Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes
  • Devanna, P., Middelbeek, J., & Vernes, S. C. (2014). FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Frontiers in Cellular Neuroscience, 8: 305. doi:10.3389/fncel.2014.00305.

    Abstract

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells
  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.

    Abstract

    Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Gialluisi, A., Pippucci, T., & Romeo, G. (2014). Reply to ten Kate et al. European Journal of Human Genetics, 2, 157-158. doi:10.1038/ejhg.2013.153.
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Gussenhoven, C., Chen, Y., & Dediu, D. (Eds.). (2014). 4th International Symposium on Tonal Aspects of Language, Nijmegen, The Netherlands, May 13-16, 2014. ISCA Archive.
  • Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8: 473. doi:10.3389/fnhum.2014.00473.

    Abstract

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than ten times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques
  • Lewis, A., Freeman-Mills, L., de la Calle-Mustienes, E., Giráldez-Pérez, R. M., Davis, H., Jaeger, E., Becker, M., Hubner, N. C., Nguyen, L. N., Zeron-Medina, J., Bond, G., Stunnenberg, H. G., Carvajal, J. J., Gomez-Skarmeta, J. L., Leedham, S., & Tomlinson, I. (2014). A polymorphic enhancer near GREM1 influences bowel cancer risk through diifferential CDX2 and TCF7L2 binding. Cell Reports, 8(4), Pages 983-990. doi:10.1016/j.celrep.2014.07.020.

    Abstract

    A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes a Mendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ∼20% differential risk in the general population. We hypothesized the underlying cause to be moderate differences in GREM1 expression. We showed that rs16969681 lies in a region of active chromatin with allele- and tissue-specific enhancer activity. The CRC high-risk allele was associated with stronger gene expression, and higher Grem1 mRNA levels increased the intestinal tumor burden in ApcMin mice. The intestine-specific transcription factor CDX2 and Wnt effector TCF7L2 bound near rs16969681, with significantly higher affinity for the risk allele, and CDX2 overexpression in CDX2/GREM1-negative cells caused re-expression of GREM1. rs16969681 influences CRC risk through effects on Wnt-driven GREM1 expression in colorectal tumors.
  • Magi, A., Tattini, L., Palombo, F., Benelli, M., Gialluisi, A., Giusti, B., Abbate, R., Seri, M., Gensini, G. F., Romeo, G., & Pippucci, T. (2014). H3M2: Detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics, 2852-2859. doi:10.1093/bioinformatics/btu401.

    Abstract

    Motivation: Runs of homozygosity (ROH) are sizable chromosomal stretches of homozygous genotypes, ranging in length from tens of kilobases to megabases. ROHs can be relevant for population and medical genetics, playing a role in predisposition to both rare and common disorders. ROHs are commonly detected by single nucleotide polymorphism (SNP) microarrays, but attempts have been made to use whole-exome sequencing (WES) data. Currently available methods developed for the analysis of uniformly spaced SNP-array maps do not fit easily to the analysis of the sparse and non-uniform distribution of the WES target design. Results: To meet the need of an approach specifically tailored to WES data, we developed (HM2)-M-3, an original algorithm based on heterogeneous hidden Markov model that incorporates inter-marker distances to detect ROH from WES data. We evaluated the performance of H-3 M-2 to correctly identify ROHs on synthetic chromosomes and examined its accuracy in detecting ROHs of different length (short, medium and long) from real 1000 genomes project data. H3M2 turned out to be more accurate than GERMLINE and PLINK, two state-of-the-art algorithms, especially in the detection of short and medium ROHs
  • Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., Hennessy, E. R., SLI Consortium, Monaco, A. P., Fairfax, B. P., Knight, J. C., Winney, B., Fisher, S. E., & Newbury, D. F. (2014). Associations of HLA alleles with specific language impairment. Journal of Neurodevelopmental Disorders, 6: 1. doi:10.1186/1866-1955-6-1.

    Abstract

    Background Human leukocyte antigen (HLA) loci have been implicated in several neurodevelopmental disorders in which language is affected. However, to date, no studies have investigated the possible involvement of HLA loci in specific language impairment (SLI), a disorder that is defined primarily upon unexpected language impairment. We report association analyses of single-nucleotide polymorphisms (SNPs) and HLA types in a cohort of individuals affected by language impairment. Methods We perform quantitative association analyses of three linguistic measures and case-control association analyses using both SNP data and imputed HLA types. Results Quantitative association analyses of imputed HLA types suggested a role for the HLA-A locus in susceptibility to SLI. HLA-A A1 was associated with a measure of short-term memory (P = 0.004) and A3 with expressive language ability (P = 0.006). Parent-of-origin effects were found between HLA-B B8 and HLA-DQA1*0501 and receptive language. These alleles have a negative correlation with receptive language ability when inherited from the mother (P = 0.021, P = 0.034, respectively) but are positively correlated with the same trait when paternally inherited (P = 0.013, P = 0.029, respectively). Finally, case control analyses using imputed HLA types indicated that the DR10 allele of HLA-DRB1 was more frequent in individuals with SLI than population controls (P = 0.004, relative risk = 2.575), as has been reported for individuals with attention deficit hyperactivity disorder (ADHD). Conclusion These preliminary data provide an intriguing link to those described by previous studies of other neurodevelopmental disorders and suggest a possible role for HLA loci in language disorders.
  • Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., Hennessy, E. R., The SLli consortium, Ring, S. M., Smith, G. D., Francks, C., Paracchini, S., Monaco, A. P., Fisher, S. E., & Newbury, D. F. (2014). Genome-wide association analyses of child genotype effects and parent-of origin effects in specific language impairment. Genes, Brain and Behavior, 13, 418-429. doi:10.1111/gbb.12127.

    Abstract

    Specific language impairment (SLI) is a neurodevelopmental disorder that affects
    linguistic abilities when development is otherwise normal. We report the results of a genomewide association study of SLI which included parent-of-origin effects and child genotype effects and used 278 families of language-impaired children. The child genotype effects analysis did not identify significant associations. We found genome-wide significant paternal
    parent-of-origin effects on chromosome 14q12 (P=3.74×10-8) and suggestive maternal parent-of-origin-effects on chromosome 5p13 (P=1.16×10-7). A subsequent targeted association of six single-nucleotide-polymorphisms (SNPs) on chromosome 5 in 313 language-impaired individuals from the ALSPAC cohort replicated the maternal effects,
    albeit in the opposite direction (P=0.001); as fathers’ genotypes were not available in the ALSPAC study, the replication analysis did not include paternal parent-of-origin effects. The paternally-associated SNP on chromosome 14 yields a non-synonymous coding change within the NOP9 gene. This gene encodes an RNA-binding protein that has been reported to be significantly dysregulated in individuals with schizophrenia. The region of maternal
    association on chromosome 5 falls between the PTGER4 and DAB2 genes, in a region
    previously implicated in autism and ADHD. The top SNP in this association locus is a
    potential expression QTL of ARHGEF19 (also called WGEF) on chromosome 1. Members of this protein family have been implicated in intellectual disability. In sum, this study implicates parent-of-origin effects in language impairment, and adds an interesting new dimension to the emerging picture of shared genetic etiology across various neurodevelopmental disorders.
  • Onnink, A. M. H., Zwiers, M. P., Hoogman, M., Mostert, J. C., Kan, C. C., Buitelaar, J., & Franke, B. (2014). Brain alterations in adult ADHD: Effects of gender, treatment and comorbid depression. European Neuropsychopharmacology, 24(3), 397-409. doi:10.1016/j.euroneuro.2013.11.011.

    Abstract

    Children with attention-deficit/hyperactivity disorder (ADHD) have smaller volumes of total brain matter and subcortical regions, but it is unclear whether these represent delayed maturation or persist into adulthood. We performed a structural MRI study in 119 adult ADHD patients and 107 controls and investigated total gray and white matter and volumes of accumbens, caudate, globus pallidus, putamen, thalamus, amygdala and hippocampus. Additionally, we investigated effects of gender, stimulant treatment and history of major depression (MDD). There was no main effect of ADHD on the volumetric measures, nor was any effect observed in a secondary voxel-based morphometry (VBM) analysis of the entire brain. However, in the volumetric analysis a significant gender by diagnosis interaction was found for caudate volume. Male patients showed reduced right caudate volume compared to male controls, and caudate volume correlated with hyperactive/impulsive symptoms. Furthermore, patients using stimulant treatment had a smaller right hippocampus volume compared to medication-naïve patients and controls. ADHD patients with previous MDD showed smaller hippocampus volume compared to ADHD patients with no MDD. While these data were obtained in a cross-sectional sample and need to be replicated in a longitudinal study, the findings suggest that developmental brain differences in ADHD largely normalize in adulthood. Reduced caudate volume in male patients may point to distinct neurobiological deficits underlying ADHD in the two genders. Smaller hippocampus volume in ADHD patients with previous MDD is consistent with neurobiological alterations observed in MDD.

    Files private

    Request files
  • Pippucci, T., Magi, A., Gialluisi, A., & Romeo, G. (2014). Detection of runs of homozygosity from whole exome sequencing data: State of the art and perspectives for clinical, population and epidemiological studies. Human Heredity, 77, 63-72. doi:10.1159/000362412.

    Abstract

    Runs of homozygosity (ROH) are sizeable stretches of homozygous genotypes at consecutive polymorphic DNA marker positions, traditionally captured by means of genome-wide single nucleotide polymorphism (SNP) genotyping. With the advent of next-generation sequencing (NGS) technologies, a number of methods initially devised for the analysis of SNP array data (those based on sliding-window algorithms such as PLINK or GERMLINE and graphical tools like HomozygosityMapper) or specifically conceived for NGS data have been adopted for the detection of ROH from whole exome sequencing (WES) data. In the latter group, algorithms for both graphical representation (AgileVariantMapper, HomSI) and computational detection (H3M2) of WES-derived ROH have been proposed. Here we examine these different approaches and discuss available strategies to implement ROH detection in WES analysis. Among sliding-window algorithms, PLINK appears to be well-suited for the detection of ROH, especially of the long ones. As a method specifically tailored for WES data, H3M2 outperforms existing algorithms especially on short and medium ROH. We conclude that, notwithstanding the irregular distribution of exons, WES data can be used with some approximation for unbiased genome-wide analysis of ROH features, with promising applications to homozygosity mapping of disease genes, comparative analysis of populations and epidemiological studies based on consanguinity
  • Presciuttini, S., Gialluisi, A., Barbuti, S., Curcio, M., Scatena, F., Carli, G., & Santarcangelo, E. L. (2014). Hypnotizability and Catechol-O-Methyltransferase (COMT) polymorphysms in Italians. Frontiers in Human Neuroscience, 7: 929. doi:10.3389/fnhum.2013.00929.

    Abstract

    Higher brain dopamine content depending on lower activity of Catechol-O-Methyltransferase (COMT) in subjects with high hypnotizability scores (highs) has been considered responsible for their attentional characteristics. However, the results of the previous genetic studies on association between hypnotizability and the COMT single nucleotide polymorphism (SNP) rs4680 (Val158Met) were inconsistent. Here, we used a selective genotyping approach to re-evaluate the association between hypnotizability and COMT in the context of a two-SNP haplotype analysis, considering not only the Val158Met polymorphism, but also the closely located rs4818 SNP. An Italian sample of 53 highs, 49 low hypnotizable subjects (lows), and 57 controls, were genotyped for a segment of 805 bp of the COMT gene, including Val158Met and the closely located rs4818 SNP. Our selective genotyping approach had 97.1% power to detect the previously reported strongest association at the significance level of 5%. We found no evidence of association at the SNP, haplotype, and diplotype levels. Thus, our results challenge the dopamine-based theory of hypnosis and indirectly support recent neuropsychological and neurophysiological findings reporting the lack of any association between hypnotizability and focused attention abilities.
  • Roberts, S. G., Dediu, D., & Levinson, S. C. (2014). Detecting differences between the languages of Neandertals and modern humans. In E. A. Cartmill, S. G. Roberts, H. Lyn, & H. Cornish (Eds.), The Evolution of Language: Proceedings of the 10th International Conference (pp. 501-502). Singapore: World Scientific.

    Abstract

    Dediu and Levinson (2013) argue that Neandertals had essentially modern language and speech, and that they were in genetic contact with the ancestors of modern humans during our dispersal out of Africa. This raises the possibility of cultural and linguistic contact between the two human lineages. If such contact did occur, then it might have influenced the cultural evolution of the languages. Since the genetic traces of contact with Neandertals are limited to the populations outside of Africa, Dediu & Levinson predict that there may be structural differences between the present-day languages derived from languages in contact with Neanderthals, and those derived from languages that were not influenced by such contact. Since the signature of such deep contact might reside in patterns of features, they suggested that machine learning methods may be able to detect these differences. This paper attempts to test this hypothesis and to estimate particular linguistic features that are potential candidates for carrying a signature of Neandertal languages.
  • Roberts, S. G., Dediu, D., & Moisik, S. R. (2014). How to speak Neanderthal. New Scientist, 222(2969), 40-41. doi:10.1016/S0262-4079(14)60970-2.
  • Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: Complex functions to complex disorders. European Journal of Human Genetics, 22(2), 171-178. doi:10.1038/ejhg.2013.100.

    Abstract

    The genetic basis of complex neurological disorders involving language are poorly understood, partly due to the multiple additive genetic risk factors that are thought to be responsible. Furthermore, these conditions are often syndromic in that they have a range of endophenotypes that may be associated with the disorder and that may be present in different combinations in patients. However, the emergence of individual genes implicated across multiple disorders has suggested that they might share similar underlying genetic mechanisms. The CNTNAP2 gene is an excellent example of this, as it has recently been implicated in a broad range of phenotypes including autism spectrum disorder (ASD), schizophrenia, intellectual disability, dyslexia and language impairment. This review considers the evidence implicating CNTNAP2 in these conditions, the genetic risk factors and mutations that have been identified in patient and population studies and how these relate to patient phenotypes. The role of CNTNAP2 is examined in the context of larger neurogenetic networks during development and disorder, given what is known regarding the regulation and function of this gene. Understanding the role of CNTNAP2 in diverse neurological disorders will further our understanding of how combinations of individual genetic risk factors can contribute to complex conditions
  • Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W., & Graybiel, A. M. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 111, 14253-14258. doi:10.1073/pnas.1414542111.

    Abstract

    The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2hum), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2hum/hum mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2hum/hum mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.

    Files private

    Request files
  • Simpson, N. H., Addis, L., Brandler, W. M., Slonims, V., Clark, A., Watson, J., Scerri, T. S., Hennessy, E. R., Stein, J., Talcott, J., Conti-Ramsden, G., O'Hare, A., Baird, G., Fairfax, B. P., Knight, J. C., Paracchini, S., Fisher, S. E., Newbury, D. F., & The SLI Consortium (2014). Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia. Developmental Medicine and Child Neurology, 56, 346-353. doi:10.1111/dmcn.12294.

    Abstract

    Aim Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals.
  • Terwisscha van Scheltinga, A. F., Bakker, S. C., Van Haren, N. E., Boos, H. B., Schnack, H. G., Cahn, W., Hoogman, M., Zwiers, M. P., Fernandez, G., Franke, B., Hulshoff Pol, H. E., & Kahn, R. S. (2014). Association study of fibroblast growth factor genes and brain volumes in schizophrenic patients and healthy controls. Psychiatric Genetics, 24, 283-284. doi:10.1097/YPG.0000000000000057.
  • Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B., Wright, M. J., Martin, N. G., Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N. C., Andreassen, O. A. and 269 moreThompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B., Wright, M. J., Martin, N. G., Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N. C., Andreassen, O. A., Apostolova, L. G., Appel, K., Armstrong, N. J., Aribisala, B., Bastin, M. E., Bauer, M., Bearden, C. E., Bergmann, Ø., Binder, E. B., Blangero, J., Bockholt, H. J., Bøen, E., Bois, C., Boomsma, D. I., Booth, T., Bowman, I. J., Bralten, J., Brouwer, R. M., Brunner, H. G., Brohawn, D. G., Buckner, R. L., Buitelaar, J., Bulayeva, K., Bustillo, J. R., Calhoun, V. D., Cannon, D. M., Cantor, R. M., Carless, M. A., Caseras, X., Cavalleri, G. L., Chakravarty, M. M., Chang, K. D., Ching, C. R. K., Christoforou, A., Cichon, S., Clark, V. P., Conrod, P., Coppola, G., Crespo-Facorro, B., Curran, J. E., Czisch, M., Deary, I. J., de Geus, E. J. C., den Braber, A., Delvecchio, G., Depondt, C., de Haan, L., de Zubicaray, G. I., Dima, D., Dimitrova, R., Djurovic, S., Dong, H., Donohoe, G., Duggirala, R., Dyer, T. D., Ehrlich, S., Ekman, C. J., Elvsåshagen, T., Emsell, L., Erk, S., Espeseth, T., Fagerness, J., Fears, S., Fedko, I., Fernández, G., Fisher, S. E., Foroud, T., Fox, P. T., Francks, C., Frangou, S., Frey, E. M., Frodl, T., Frouin, V., Garavan, H., Giddaluru, S., Glahn, D. C., Godlewska, B., Goldstein, R. Z., Gollub, R. L., Grabe, H. J., Grimm, O., Gruber, O., Guadalupe, T., Gur, R. E., Gur, R. C., Göring, H. H. H., Hagenaars, S., Hajek, T., Hall, G. B., Hall, J., Hardy, J., Hartman, C. A., Hass, J., Hatton, S. N., Haukvik, U. K., Hegenscheid, K., Heinz, A., Hickie, I. B., Ho, B.-C., Hoehn, D., Hoekstra, P. J., Hollinshead, M., Holmes, A. J., Homuth, G., Hoogman, M., Hong, L. E., Hosten, N., Hottenga, J.-J., Pol, H. E. H., Hwang, K. S., Jr, C. R. J., Jenkinson, M., Johnston, C., Jönsson, E. G., Kahn, R. S., Kasperaviciute, D., Kelly, S., Kim, S., Kochunov, P., Koenders, L., Krämer, B., Kwok, J. B. J., Lagopoulos, J., Laje, G., Landen, M., Landman, B. A., Lauriello, J., Lawrie, S. M., Lee, P. H., Le Hellard, S., Lemaître, H., Leonardo, C. D., Li, C.-s., Liberg, B., Liewald, D. C., Liu, X., Lopez, L. M., Loth, E., Lourdusamy, A., Luciano, M., Macciardi, F., Machielsen, M. W. J., MacQueen, G. M., Malt, U. F., Mandl, R., Manoach, D. S., Martinot, J.-L., Matarin, M., Mather, K. A., Mattheisen, M., Mattingsdal, M., Meyer-Lindenberg, A., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Meisenzahl, E., Melle, I., Milaneschi, Y., Mohnke, S., Montgomery, G. W., Morris, D. W., Moses, E. K., Mueller, B. A., Maniega, S. M., Mühleisen, T. W., Müller-Myhsok, B., Mwangi, B., Nauck, M., Nho, K., Nichols, T. E., Nilsson, L.-G., Nugent, A. C., Nyberg, L., Olvera, R. L., Oosterlaan, J., Ophoff, R. A., Pandolfo, M., Papalampropoulou-Tsiridou, M., Papmeyer, M., Paus, T., Pausova, Z., Pearlson, G. D., Penninx, B. W., Peterson, C. P., Pfennig, A., Phillips, M., Pike, G. B., Poline, J.-B., Potkin, S. G., Pütz, B., Ramasamy, A., Rasmussen, J., Rietschel, M., Rijpkema, M., Risacher, S. L., Roffman, J. L., Roiz-Santiañez, R., Romanczuk-Seiferth, N., Rose, E. J., Royle, N. A., Rujescu, D., Ryten, M., Sachdev, P. S., Salami, A., Satterthwaite, T. D., Savitz, J., Saykin, A. J., Scanlon, C., Schmaal, L., Schnack, H. G., Schork, A. J., Schulz, S. C., Schür, R., Seidman, L., Shen, L., Shoemaker, J. M., Simmons, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soares, J. C., Sponheim, S. R., Sprooten, E., Starr, J. M., Steen, V. M., Strakowski, S., Strike, L., Sussmann, J., Sämann, P. G., Teumer, A., Toga, A. W., Tordesillas-Gutierrez, D., Trabzuni, D., Trost, S., Turner, J., Van den Heuvel, M., van der Wee, N. J., van Eijk, K., van Erp, T. G. M., van Haren, N. E. M., van Ent, D. ‘., van Tol, M.-J., Hernández, M. C. V., Veltman, D. J., Versace, A., Völzke, H., Walker, R., Walter, H., Wang, L., Wardlaw, J. M., Weale, M. E., Weiner, M. W., Wen, W., Westlye, L. T., Whalley, H. C., Whelan, C. D., White, T., Winkler, A. M., Wittfeld, K., Woldehawariat, G., Wolf, C., Zilles, D., Zwiers, M. P., Thalamuthu, A., Schofield, P. R., Freimer, N. B., Lawrence, N. S., & Drevets, W. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153-182. doi:10.1007/s11682-013-9269-5.

    Abstract

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA’s first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way
  • Tosato, S., Zanoni, M., Bonetto, C., Tozzi, F., Francks, C., Ira, E., Tomassi, S., Bertani, M., Rujescu, D., Giegling, I., St Clair, D., Tansella, M., Ruggeri, M., & Muglia, P. (2014). No association between NRG1 and ErbB4 genes and psychopathological symptoms of Schizophrenia. Neuromolecular Medicine, 16, 742-751. doi:10.1007/s12017-014-8323-9.

    Abstract

    Neuregulin 1 (NRG1) and v-erb-a erythroblastic leukemia viral oncogene homolog 4 (ErbB4) have been extensively studied in schizophrenia susceptibility because of their pivotal role in key neurodevelopmental processes. One of the reasons for the inconsistencies in results could be the fact that the phenotype investigated has mostly the diagnosis of schizophrenia per se, which is widely heterogeneous, both clinically and biologically. In the present study we tested, in a large cohort of 461 schizophrenia patients recruited in Scotland, whether several SNPs in NRG1 and/or ErbB4 are associated with schizophrenia symptom dimensions as evaluated by the Positive and Negative Syndrome Scale (PANSS). We then followed up nominally significant results in a second cohort of 439 schizophrenia subjects recruited in Germany. Using linear regression, we observed two different groups of polymorphisms in NRG1 gene: one showing a nominal association with higher scores of the PANSS positive dimension and the other one with higher scores of the PANSS negative dimension. Regarding ErbB4, a small cluster located in the 5' end of the gene was detected, showing nominal association mainly with negative, general and total dimensions of the PANSS. These findings suggest that some regions of NRG1 and ErbB4 are functionally involved in biological processes that underlie some of the phenotypic manifestations of schizophrenia. Because of the lack of significant association after correction for multiple testing, our analyses should be considered as exploratory and hypothesis generating for future studies.
  • Van Schouwenburg, M. R., Onnink, A. M. H., Ter Huurne, N., Kan, C. C., Zwiers, M. P., Hoogman, M., Franke, B., Buitelaar, J. K., & Cools, R. (2014). Cognitive flexibility depends on white matter microstructure of the basal ganglia. Neuropsychologia, 53, 171-177. doi:10.1016/j.neuropsychologia.2013.11.015.

    Abstract

    Ample evidence shows that the basal ganglia play an important role in cognitive flexibility. However, traditionally, cognitive processes have most commonly been associated with the prefrontal cortex. Indeed, current theoretical models of basal ganglia function suggest the basal ganglia interact with the prefrontal cortex and thalamus, via anatomical fronto-striato-thalamic circuits, to implement cognitive flexibility. Here we aimed to assess this hypothesis in humans by associating individual differences in cognitive flexibility with white matter microstructure of the basal ganglia. To this end we employed an attention switching paradigm in adults with ADHD and controls, leading to a broad range in task performance. Attention switching performance could be predicted based on individual differences in white matter microstructure in/around the basal ganglia. Crucially, local white matter showing this association projected to regions in the prefrontal cortex and thalamus. Our findings highlight the crucial role of the basal ganglia and the fronto-striato-thalamic circuit for cognitive flexibility.
  • Vernes, S. C. (2014). Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports, 4: 4412. doi:10.1038/srep04412.

    Abstract

    The fruitless gene (fru) encodes a set of transcription factors (Fru) that display sexually dimorphic gene expression in the brain of the fruit-fly;Drosophila melanogaster . Behavioural studies have demonstrated that fru isessentialforcourtshipbehaviour inthemale flyandisthoughttoact bydirectingthe development of sex-specific neural circuitry that encodes this innate behavioural response. This study reports the identification of direct regulatory targets of the sexually dimorphic isoforms of the Fru protein using an in vitro model system. Genome wide binding sites were identified for each of the isoforms using Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-Seq). Putative target genes were found to be involved in processes such as neurotransmission, ion-channel signalling and neuron development. All isoforms showed asignificant bias towards genes located on the X-chromosome,which may reflect a specific role for Fru in regulating x-linked genes. Taken together with expression analysis carried out in Fru positive neurons specifically isolated from the male fly brain, it appears that the Fru protein acts as a transcriptional activator. Understanding the regulatory cascades induced by Fru will help to shed light on the molecular mechanisms that are important for specification of neural circuitry underlying complex behaviour
  • Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.

    Abstract

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.
  • Willems, R. M., & Francks, C. (2014). Your left-handed brain. Frontiers for Young Minds, 2: 13. doi:10.3389/frym.2014.00013.

    Abstract

    While most people prefer to use their right hand to brush their teeth, throw a ball, or hold a tennis racket, left-handers prefer to use their left hand. This is the case for around 10 per cent of all people. There was a time (not so long ago) when left-handers were stigmatized in Western (and other) communities: it was considered a bad sign if you were left-handed, and left-handed children were often forced to write with their right hand. This is nonsensical: there is nothing wrong with being left-handed, and trying to write with the non-preferred hand is frustrating for almost everybody. As a matter of fact, science can learn from left-handers, and in this paper, we discuss how this may be the case. We review why some people are left-handed and others are not, how left-handers' brains differ from right-handers’, and why scientists study left-handedness in the first place
  • Ayub, Q., Yngvadottir, B., Chen, Y., Xue, Y., Hu, M., Vernes, S. C., Fisher, S. E., & Tyler-Smith, C. (2013). FOXP2 targets show evidence of positive selection in European populations. American Journal of Human Genetics, 92, 696-706. doi:10.1016/j.ajhg.2013.03.019.

    Abstract

    Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction.
  • Baron-Cohen, S., Johnson, D., Asher, J. E., Wheelwright, S., Fisher, S. E., Gregersen, P. K., & Allison, C. (2013). Is synaesthesia more common in autism? Molecular Autism, 4(1): 40. doi:10.1186/2040-2392-4-40.

    Abstract

    BACKGROUND:
    Synaesthesia is a neurodevelopmental condition in which a sensation in one modality triggers a perception in a second modality. Autism (shorthand for Autism Spectrum Conditions) is a neurodevelopmental condition involving social-communication disability alongside resistance to change and unusually narrow interests or activities. Whilst on the surface they appear distinct, they have been suggested to share common atypical neural connectivity.

    METHODS:
    In the present study, we carried out the first prevalence study of synaesthesia in autism to formally test whether these conditions are independent. After exclusions, 164 adults with autism and 97 controls completed a synaesthesia questionnaire, autism spectrum quotient, and test of genuineness-revised (ToG-R) online.

    RESULTS:
    The rate of synaesthesia in adults with autism was 18.9% (31 out of 164), almost three times greater than in controls (7.22%, 7 out of 97, P <0.05). ToG-R proved unsuitable for synaesthetes with autism.

    CONCLUSIONS:
    The significant increase in synaesthesia prevalence in autism suggests that the two conditions may share some common underlying mechanisms. Future research is needed to develop more feasible validation methods of synaesthesia in autism.

    Files private

    Request files
  • Brandler, W. M., Morris, A. P., Evans, D. M., Scerri, T. S., Kemp, J. P., Timpson, N. J., St Pourcain, B., Davey Smith, G., Ring, S. M., Stein, J., Monaco, A. P., Talcott, J. B., Fisher, S. E., Webber, C., & Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9(9): e1003751. doi:10.1371/journal.pgen.1003751.

    Abstract

    Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.
  • Capredon, M., Brucato, N., Tonasso, L., Choesmel-Cadamuro, V., Ricaut, F.-X., Razafindrazaka, H., Ratolojanahary, M. A., Randriamarolaza, L.-P., Champion, B., & Dugoujon, J.-M. (2013). Tracing Arab-Islamic Inheritance in Madagascar: Study of the Y-chromosome and Mitochondrial DNA in the Antemoro. PLoS One, 8(11): e80932. doi:10.1371/journal.pone.0080932.

    Abstract

    Madagascar is located at the crossroads of the Asian and African worlds and is therefore of particular interest for studies on human population migration. Within the large human diversity of the Great Island, we focused our study on a particular ethnic group, the Antemoro. Their culture presents an important Arab-Islamic influence, but the question of an Arab biological inheritance remains unresolved. We analyzed paternal (n=129) and maternal (n=135) lineages of this ethnic group. Although the majority of Antemoro genetic ancestry comes from sub-Saharan African and Southeast Asian gene pools, we observed in their paternal lineages two specific haplogroups (J1 and T1) linked to Middle Eastern origins. This inheritance was restricted to some Antemoro sub-groups. Statistical analyses tended to confirm significant Middle Eastern genetic contribution. This study gives a new perspective to the large human genetic diversity in Madagascar
  • Carrion Castillo, A., Franke, B., & Fisher, S. E. (2013). Molecular genetics of dyslexia: An overview. Dyslexia, 19(4), 214-240. doi:10.1002/dys.1464.

    Abstract

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs
  • Dediu, D., Cysouw, M., Levinson, S. C., Baronchelli, A., Christiansen, M. H., Croft, W., Evans, N., Garrod, S., Gray, R., Kandler, A., & Lieven, E. (2013). Cultural evolution of language. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 303-332). Cambridge, Mass: MIT Press.

    Abstract

    This chapter argues that an evolutionary cultural approach to language not only has already proven fruitful, but it probably holds the key to understand many puzzling aspects of language, its change and origins. The chapter begins by highlighting several still common misconceptions about language that might seem to call into question a cultural evolutionary approach. It explores the antiquity of language and sketches a general evolutionary approach discussing the aspects of function, fi tness, replication, and selection, as well the relevant units of linguistic evolution. In this context, the chapter looks at some fundamental aspects of linguistic diversity such as the nature of the design space, the mechanisms generating it, and the shape and fabric of language. Given that biology is another evolutionary system, its complex coevolution with language needs to be understood in order to have a proper theory of language. Throughout the chapter, various challenges are identifi ed and discussed, sketching promising directions for future research. The chapter ends by listing the necessary data, methods, and theoretical developments required for a grounded evolutionary approach to language.
  • Dediu, D. (2013). Genes: Interactions with language on three levels — Inter-individual variation, historical correlations and genetic biasing. In P.-M. Binder, & K. Smith (Eds.), The language phenomenon: Human communication from milliseconds to millennia (pp. 139-161). Berlin: Springer. doi:10.1007/978-3-642-36086-2_7.

    Abstract

    The complex inter-relationships between genetics and linguistics encompass all four scales highlighted by the contributions to this book and, together with cultural transmission, the genetics of language holds the promise to offer a unitary understanding of this fascinating phenomenon. There are inter-individual differences in genetic makeup which contribute to the obvious fact that we are not identical in the way we understand and use language and, by studying them, we will be able to both better treat and enhance ourselves. There are correlations between the genetic configuration of human groups and their languages, reflecting the historical processes shaping them, and there also seem to exist genes which can influence some characteristics of language, biasing it towards or against certain states by altering the way language is transmitted across generations. Besides the joys of pure knowledge, the understanding of these three aspects of genetics relevant to language will potentially trigger advances in medicine, linguistics, psychology or the understanding of our own past and, last but not least, a profound change in the way we regard one of the emblems of being human: our capacity for language.
  • Dediu, D., & Levinson, S. C. (2013). On the antiquity of language: The reinterpretation of Neandertal linguistic capacities and its consequences. Frontiers in Language Sciences, 4: 397. doi:10.3389/fpsyg.2013.00397.

    Abstract

    It is usually assumed that modern language is a recent phenomenon, coinciding with the emergence of modern humans themselves. Many assume as well that this is the result of a single, sudden mutation giving rise to the full “modern package”. However, we argue here that recognizably modern language is likely an ancient feature of our genus pre-dating at least the common ancestor of modern humans and Neandertals about half a million years ago. To this end, we adduce a broad range of evidence from linguistics, genetics, palaeontology and archaeology clearly suggesting that Neandertals shared with us something like modern speech and language. This reassessment of the antiquity of modern language, from the usually quoted 50,000-100,000 years to half a million years, has profound consequences for our understanding of our own evolution in general and especially for the sciences of speech and language. As such, it argues against a saltationist scenario for the evolution of language, and towards a gradual process of culture-gene co-evolution extending to the present day. Another consequence is that the present-day linguistic diversity might better reflect the properties of the design space for language and not just the vagaries of history, and could also contain traces of the languages spoken by other human forms such as the Neandertals.
  • Dediu, D., & Cysouw, M. A. (2013). Some structural aspects of language are more stable than others: A comparison of seven methods. PLoS One, 8: e55009. doi:10.1371/journal.pone.0055009.

    Abstract

    Understanding the patterns and causes of differential structural stability is an area of major interest for the study of language change and evolution. It is still debated whether structural features have intrinsic stabilities across language families and geographic areas, or if the processes governing their rate of change are completely dependent upon the specific context of a given language or language family. We conducted an extensive literature review and selected seven different approaches to conceptualising and estimating the stability of structural linguistic features, aiming at comparing them using the same dataset, the World Atlas of Language Structures. We found that, despite profound conceptual and empirical differences between these methods, they tend to agree in classifying some structural linguistic features as being more stable than others. This suggests that there are intrinsic properties of such structural features influencing their stability across methods, language families and geographic areas. This finding is a major step towards understanding the nature of structural linguistic features and their interaction with idiosyncratic, lineage- and area-specific factors during language change and evolution.
  • Deriziotis, P., & Fisher, S. E. (2013). Neurogenomics of speech and language disorders: The road ahead. Genome Biology, 14: 204. doi:10.1186/gb-2013-14-4-204.

    Abstract

    Next-generation sequencing is set to transform the discovery of genes underlying neurodevelopmental disorders, and so off er important insights into the biological bases of spoken language. Success will depend on functional assessments in neuronal cell lines, animal models and humans themselves.
  • Fisher, S. E. (2013). Building bridges between genes, brains and language. In J. J. Bolhuis, & M. Everaert (Eds.), Birdsong, speech and language: Exploring the evolution of mind and brain (pp. 425-454). Cambridge, Mass: MIT Press.
  • Fisher, S. E., & Ridley, M. (2013). Culture, genes, and the human revolution. Science, 340(6135), 929-930. doi:10.1126/science.1236171.

    Abstract

    State-of-the-art DNA sequencing is providing ever more detailed insights into the genomes of humans, extant apes, and even extinct hominins (1–3), offering unprecedented opportunities to uncover the molecular variants that make us human. A common assumption is that the emergence of behaviorally modern humans after 200,000 years ago required—and followed—a specific biological change triggered by one or more genetic mutations. For example, Klein has argued that the dawn of human culture stemmed from a single genetic change that “fostered the uniquely modern ability to adapt to a remarkable range of natural and social circumstance” (4). But are evolutionary changes in our genome a cause or a consequence of cultural innovation (see the figure)?

    Files private

    Request files
  • Gialluisi, A., Incollu, S., Pippucci, T., Lepori, M. B., Zappu, A., Loudianos, G., & Romeo, G. (2013). The homozygosity index (HI) approach reveals high allele frequency for Wilson disease in the Sardinian population. European Journal of Human Genetics, 21, 1308-1311. doi:10.1038/ejhg.2013.43.

    Abstract

    Wilson disease (WD) is an autosomal recessive disorder resulting in pathological progressive copper accumulation in liver and other tissues. The worldwide prevalence (P) is about 30/million, while in Sardinia it is in the order of 1/10 000. However, all of these estimates are likely to suffer from an underdiagnosis bias. Indeed, a recent molecular neonatal screening in Sardinia reported a WD prevalence of 1:2707. In this study, we used a new approach that makes it possible to estimate the allelic frequency (q) of an autosomal recessive disorder if one knows the proportion between homozygous and compound heterozygous patients (the homozygosity index or HI) and the inbreeding coefficient (F) in a sample of affected individuals. We applied the method to a set of 178 Sardinian individuals (3 of whom born to consanguineous parents), each with a clinical and molecular diagnosis of WD. Taking into account the geographical provenance of the parents of every patient within Sardinia (to make F computation more precise), we obtained a q=0.0191 (F=7.8 × 10-4, HI=0.476) and a corresponding prevalence P=1:2732. This result confirms that the prevalence of WD is largely underestimated in Sardinia. On the other hand, the general reliability and applicability of the HI approach to other autosomal recessive disorders is confirmed, especially if one is interested in the genetic epidemiology of populations with high frequency of consanguineous marriages.
  • Gialluisi, A., Dediu, D., Francks, C., & Fisher, S. E. (2013). Persistence and transmission of recessive deafness and sign language: New insights from village sign languages. European Journal of Human Genetics, 21, 894-896. doi:10.1038/ejhg.2012.292.

    Abstract

    First paragraph: The study of the transmission of sign languages can give novel insights into the transmission of spoken languages1 and, more generally, into gene–culture coevolution. Over the years, several papers related to the persistence of sign language have been
    reported.2–6 All of these studies have emphasized the role of assortative (non-random) mating by deafness state (ie, a tendency for deaf individuals to partner together) for increasing the frequency of recessive deafness, and hence for the persistence of sign language in a population.
  • Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43-51. doi:10.1016/j.conb.2012.11.006.

    Abstract

    Researchers are beginning to uncover the neurogenetic pathways that underlie our unparalleled capacity for spoken language. Initial clues come from identification of genetic risk factors implicated in developmental language disorders. The underlying genetic architecture is complex, involving a range of molecular mechanisms. For example, rare protein-coding mutations of the FOXP2 transcription factor cause severe problems with sequencing of speech sounds, while common genetic risk variants of small effect size in genes like CNTNAP2, ATP2C2 and CMIP are associated with typical forms of language impairment. In this article, we describe how investigations of these and other candidate genes, in humans, animals and cellular models, are unravelling the connections between genes and cognition. This depends on interdisciplinary research at multiple levels, from determining molecular interactions and functional roles in neural cell-biology all the way through to effects on brain structure and activity.
  • Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. E., Asher, J. E., Ballard, D., Freudenberg, J., & Li, W. (2013). Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 22, 2097-2104. doi:10.1093/hmg/ddt059.

    Abstract

    Absolute pitch and synesthesia are two uncommon cognitive traits that reflect increased neuronal connectivity and have been anecdotally reported to occur together in a same individual. Here we systematically evaluate the occurrence of syesthesia in a population of 768 subjects with documented absolute pitch. Out of these 768 subjects, 151(20.1%) reported synesthesia, most commonly with color. These self-reports of synesthesia were validated in a subset of 21 study subjects using an established methodology. We further carried out combined linkage analysis of 53 multiplex families with absolute pitch and 36 multiplex families with synesthesia. We observed a peak NPL LOD=4.68 on chromosome 6q, as well as evidence of linkage on chromosome 2 using a dominant model. These data establish the close phenotypic and genetic relationship between absolute pitch and synesthesia. The chromosome 6 linkage region contains 73 genes; several leading candidate genes involved in neurodevelopment were investigated by exon resequencing. However, further studies will be required to definitively establish the identity of the causative gene(s) in the region.
  • Ladd, D. R., & Dediu, D. (2013). Genes and linguistic tone. In H. Pashler (Ed.), Encyclopedia of the mind (pp. 372-373). London: Sage Publications.

    Abstract

    It is usually assumed that the language spoken by a human community is independent of the community's genetic makeup, an assumption supported by an overwhelming amount of evidence. However, the possibility that language is influenced by its speakers' genes cannot be ruled out a priori, and a recently discovered correlation between the geographic distribution of tone languages and two human genes seems to point to a genetically influenced bias affecting language. This entry describes this specific correlation and highlights its major implications. Voice pitch has a variety of communicative functions. Some of these are probably universal, such as conveying information about the speaker's sex, age, and emotional state. In many languages, including the European languages, voice pitch also conveys certain sentence-level meanings such as signaling that an utterance is a question or an exclamation; these uses of pitch are known as intonation. Some languages, however, known as tone languages, nian ...
  • Ladd, D. R., Turnbull, R., Browne, C., Caldwell-Harris, C., Ganushchak, L. Y., Swoboda, K., Woodfield, V., & Dediu, D. (2013). Patterns of individual differences in the perception of missing-fundamental tones. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1386-1397. doi:10.1037/a0031261.

    Abstract

    Recent experimental findings suggest stable individual differences in the perception of auditory stimuli lacking energy at the fundamental frequency (F0), here called missing fundamental (MF) tones. Specifically, some individuals readily identify the pitch of such tones with the missing F0 ("F0 listeners"), and some base their judgment on the frequency of the partials that make up the tones ("spectral listeners"). However, the diversity of goals and methods in recent research makes it difficult to draw clear conclusions about individual differences. The first purpose of this article is to discuss the influence of methodological choices on listeners' responses. The second goal is to report findings on individual differences in our own studies of the MF phenomenon. In several experiments, participants judged the direction of pitch change in stimuli composed of two MF tones, constructed so as to reveal whether the pitch percept was based on the MF or the partials. The reported difference between F0 listeners and spectral listeners was replicated, but other stable patterns of responses were also observed. Test-retest reliability is high. We conclude that there are genuine, stable individual differences underlying the diverse findings, but also that there are more than two general types of listeners, and that stimulus variables strongly affect some listeners' responses. This suggests that it is generally misleading to classify individuals as "F0 listeners" or "spectral listeners." It may be more accurate to speak of two modes of perception ("F0 listening" and "spectral listening"), both of which are available to many listeners. The individual differences lie in what conditions the choice between the two modes.
  • Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 219-232). Cambridge, Mass: MIT Press.
  • Newbury, D. F., Mari, F., Akha, E. S., MacDermot, K. D., Canitano, R., Monaco, A. P., Taylor, J. C., Renieri, A., Fisher, S. E., & Knight, S. J. L. (2013). Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 21, 361-365. doi:10.1038/ejhg.2012.166.

    Abstract

    In this issue, Raca et al1 present two cases of childhood apraxia of speech (CAS) arising from microdeletions of chromosome 16p11.2. They propose that comprehensive phenotypic profiling may assist in the delineation and classification of such cases. To complement this study, we would like to report on a third, unrelated, child who presents with CAS and a chromosome 16p11.2 heterozygous deletion. We use genetic data from this child and his family to illustrate how comprehensive genetic profiling may also assist in the characterisation of 16p11.2 microdeletion syndrome.
  • Stephens, S., Hartz, S., Hoft, N., Saccone, N., Corley, R., Hewitt, J., Hopfer, C., Breslau, N., Coon, H., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Han, Y., Hansel, N., Jiang, C., Korhonen, T., Lind, P., Liu, J. and 105 moreStephens, S., Hartz, S., Hoft, N., Saccone, N., Corley, R., Hewitt, J., Hopfer, C., Breslau, N., Coon, H., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Han, Y., Hansel, N., Jiang, C., Korhonen, T., Lind, P., Liu, J., Michel, M., Lyytikäinen, L.-P., Shaffer, J., Short, S., Sun, J., Teumer, A., Thompson, J., Vogelzangs, N., Vink, J., Wenzlaff, A., Wheeler, W., Yang, B.-Z., Aggen, S., Balmforth, A., Baumesiter, S., Beaty, T., Benjamin, D., Bergen, A., Broms, U., Cesarini, D., Chatterjee, N., Chen, J., Cheng, Y.-C., Cichon, S., Couper, D., Cucca, F., Dick, D., Foround, T., Furberg, H., Giegling, I., Gillespie, N., Gu, F.,.Hall, A., Hällfors, J., Han, S., Hartmann, A., Heikkilä, K., Hickie, I., Hottenga, J., Jousilahti, P., Kaakinen, M., Kähönen, M., Koellinger, P., Kittner, S., Konte, B., Landi, M.-T., Laatikainen, T., Leppert, M., Levy, S., Mathias, R., McNeil, D., Medlund, S., Montgomery, G., Murray, T., Nauck, M., North, K., Paré, P., Pergadia, M., Ruczinski, I., Salomaa, V., Viikari, J., Willemsen, G., Barnes, K., Boerwinkle, E., Boomsma, D., Caporaso, N., Edenberg, H., Francks, C., Gelernter, J., Grabe, H., Hops, H., Jarvelin, M.-R., Johannesson, M., Kendler, K., Lehtimäki, T., Magnusson, P., Marazita, M., Marchini, J., Mitchell, B., Nöthen, M., Penninx, B., Raitakari, O., Rietschel, M., Rujescu, D., Samani, N., Schwartz, A., Shete, S., Spitz, M., Swan, G., Völzke, H., Veijola, J., Wei, Q., Amos, C., Canon, D., Grucza, R., Hatsukami, D., Heath, A., Johnson, E., Kaprio, J., Madden, P., Martin, N., Stevens, V., Weiss, R., Kraft, P., Bierut, L., & Ehringer, M. (2013). Distinct Loci in the CHRNA5/CHRNA3/CHRNB4 Gene Cluster are Associated with Onset of Regular Smoking. Genetic Epidemiology, 37, 846-859. doi:10.1002/gepi.21760.

    Abstract

    Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotype

    Files private

    Request files
  • Vernes, S. C., & Fisher, S. E. (2013). Genetic pathways implicated in speech and language. In S. Helekar (Ed.), Animal models of speech and language disorders (pp. 13-40). New York: Springer. doi:10.1007/978-1-4614-8400-4_2.

    Abstract

    Disorders of speech and language are highly heritable, providing strong
    support for a genetic basis. However, the underlying genetic architecture is complex,
    involving multiple risk factors. This chapter begins by discussing genetic loci associated
    with common multifactorial language-related impairments and goes on to
    detail the only gene (known as FOXP2) to be directly implicated in a rare monogenic
    speech and language disorder. Although FOXP2 was initially uncovered in
    humans, model systems have been invaluable in progressing our understanding of
    the function of this gene and its associated pathways in language-related areas of the
    brain. Research in species from mouse to songbird has revealed effects of this gene
    on relevant behaviours including acquisition of motor skills and learned vocalisations
    and demonstrated a role for Foxp2 in neuronal connectivity and signalling,
    particularly in the striatum. Animal models have also facilitated the identification of
    wider neurogenetic networks thought to be involved in language development and
    disorder and allowed the investigation of new candidate genes for disorders involving
    language, such as CNTNAP2 and FOXP1. Ongoing work in animal models promises
    to yield new insights into the genetic and neural mechanisms underlying human
    speech and language
  • Walters, J., Rujescu, D., Franke, B., Giegling, I., Vasquez, A., Hargreaves, A., Russo, G., Morris, D., Hoogman, M., Da Costa, A., Moskvina, V., Fernandez, G., Gill, M., Corvin, A., O'Donovan, M., Donohoe, G., & Owen, M. (2013). The role of the major histocompatibility complex region in cognition and brain structure: A schizophrenia GWAS follow-up. American Journal of Psychiatry, 170, 877-885. doi:10.1176/appi.ajp.2013.12020226.

    Abstract

    Objective The authors investigated the effects of recently identified genome-wide significant schizophrenia genetic risk variants on cognition and brain structure. Method A panel of six single-nucleotide polymorphisms (SNPs) was selected to represent genome-wide significant loci from three recent genome-wide association studies (GWAS) for schizophrenia and was tested for association with cognitive measures in 346 patients with schizophrenia and 2,342 healthy comparison subjects. Nominally significant results were evaluated for replication in an independent case-control sample. For SNPs showing evidence of association with cognition, associations with brain structural volumes were investigated in a large independent healthy comparison sample. Results Five of the six SNPs showed no significant association with any cognitive measure. One marker in the major histocompatibility complex (MHC) region, rs6904071, showed independent, replicated evidence of association with delayed episodic memory and was significant when both samples were combined. In the combined sample of up to 3,100 individuals, this SNP was associated with widespread effects across cognitive domains, although these additional associations were no longer significant after adjusting for delayed episodic memory. In the large independent structural imaging sample, the same SNP was also associated with decreased hippocampal volume. Conclusions The authors identified a SNP in the MHC region that was associated with cognitive performance in patients with schizophrenia and healthy comparison subjects. This SNP, rs6904071, showed a replicated association with episodic memory and hippocampal volume. These findings implicate the MHC region in hippocampal structure and functioning, consistent with the role of MHC proteins in synaptic development and function. Follow-up of these results has the potential to provide insights into the pathophysiology of schizophrenia and cognition.

    Additional information

    Hoogman_2013_JourAmePsy.supp.pdf

Share this page