Displaying 1 - 69 of 69
-
Ahluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C. and 106 moreAhluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C., Marioni, R. E., McLachlan, S., Milaneschi, Y., Nolte, I. M., Petrelis, A. M., Porcu, E., Sabater-Lleal, M., Naderi, E., Seppälä, I., Shah, T., Singhal, G., Standl, M., Teumer, A., Thalamuthu, A., Thiering, E., Trompet, S., Ballantyne, C. M., Benjamin, E. J., Casas, J. P., Toben, C., Dedoussis, G., Deelen, J., Durda, P., Engmann, J., Feitosa, M. F., Grallert, H., Hammarstedt, A., Harris, S. E., Homuth, G., Hottenga, J.-J., Jalkanen, S., Jamshidi, Y., Jawahar, M. C., Jess, T., Kivimaki, M., Kleber, M. E., Lahti, J., Liu, Y., Marques-Vidal, P., Mellström, D., Mooijaart, S. P., Müller-Nurasyid, M., Penninx, B., Revez, J. A., Rossing, P., Räikkönen, K., Sattar, N., Scharnagl, H., Sennblad, B., Silveira, A., St Pourcain, B., Timpson, N. J., Trollor, J., CHARGE Inflammation Working Group, Van Dongen, J., Van Heemst, D., Visvikis-Siest, S., Vollenweider, P., Völker, U., Waldenberger, M., Willemsen, G., Zabaneh, D., Morris, R. W., Arnett, D. K., Baune, B. T., Boomsma, D. I., Chang, Y.-P.-C., Deary, I. J., Deloukas, P., Eriksson, J. G., Evans, D. M., Ferreira, M. A., Gaunt, T., Gudnason, V., Hamsten, A., Heinrich, J., Hingorani, A., Humphries, S. E., Jukema, J. W., Koenig, W., Kumari, M., Kutalik, Z., Lawlor, D. A., Lehtimäki, T., März, W., Mather, K. A., Naitza, S., Nauck, M., Ohlsson, C., Price, J. F., Raitakari, O., Rice, K., Sachdev, P. S., Slagboom, E., Sørensen, T. I. A., Spector, T., Stacey, D., Stathopoulou, M. G., Tanaka, T., Wannamethee, S. G., Whincup, P., Rotter, J. I., Dehghan, A., Boerwinkle, E., Psaty, B. M., Snieder, H., & Alizadeh, B. Z. (2021). Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics, 5(1), 393-409. doi:10.1093/hmg/ddab023.
Abstract
Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10−11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10−10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10−122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology. -
Braden, R. O., Amor, D. J., Fisher, S. E., Mei, C., Myers, C. T., Mefford, H., Gill, D., Srivastava, S., Swanson, L. C., Goel, H., Scheffer, I. E., & Morgan, A. T. (2021). Severe speech impairment is a distinguishing feature of FOXP1-related disorder. Developmental Medicine & Child Neurology, 63(12), 1417-1426. doi:10.1111/dmcn.14955.
Abstract
Aim
To delineate the speech and language phenotype of a cohort of individuals with FOXP1-related disorder.
Method
We administered a standardized test battery to examine speech and oral motor function, receptive and expressive language, non-verbal cognition, and adaptive behaviour. Clinical history and cognitive assessments were analysed together with speech and language findings.
Results
Twenty-nine patients (17 females, 12 males; mean age 9y 6mo; median age 8y [range 2y 7mo–33y]; SD 6y 5mo) with pathogenic FOXP1 variants (14 truncating, three missense, three splice site, one in-frame deletion, eight cytogenic deletions; 28 out of 29 were de novo variants) were studied. All had atypical speech, with 21 being verbal and eight minimally verbal. All verbal patients had dysarthric and apraxic features, with phonological deficits in most (14 out of 16). Language scores were low overall. In the 21 individuals who carried truncating or splice site variants and small deletions, expressive abilities were relatively preserved compared with comprehension.
Interpretation
FOXP1-related disorder is characterized by a complex speech and language phenotype with prominent dysarthria, broader motor planning and programming deficits, and linguistic-based phonological errors. Diagnosis of the speech phenotype associated with FOXP1-related dysfunction will inform early targeted therapy. -
Carrion Castillo, A., Estruch, S. B., Maassen, B., Franke, B., Francks, C., & Fisher, S. E. (2021). Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Human Genetics, 140, 1183-1200. doi:10.1007/s00439-021-02289-w.
Abstract
Dyslexia is a common heritable developmental disorder involving impaired reading abilities. Its genetic underpinnings are thought to be complex and heterogeneous, involving common and rare genetic variation. Multigenerational families segregating apparent monogenic forms of language-related disorders can provide useful entrypoints into biological pathways. In the present study, we performed a genome-wide linkage scan in a three-generational family in which dyslexia affects 14 of its 30 members and seems to be transmitted with an autosomal dominant pattern of inheritance. We identified a locus on chromosome 7q21.11 which cosegregated with dyslexia status, with the exception of two cases of phenocopy (LOD = 2.83). Whole-genome sequencing of key individuals enabled the assessment of coding and noncoding variation in the family. Two rare single-nucleotide variants (rs144517871 and rs143835534) within the first intron of the SEMA3C gene cosegregated with the 7q21.11 risk haplotype. In silico characterization of these two variants predicted effects on gene regulation, which we functionally validated for rs144517871 in human cell lines using luciferase reporter assays. SEMA3C encodes a secreted protein that acts as a guidance cue in several processes, including cortical neuronal migration and cellular polarization. We hypothesize that these intronic variants could have a cis-regulatory effect on SEMA3C expression, making a contribution to dyslexia susceptibility in this family. -
Cuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M. and 98 moreCuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M., Duffy, D. L., Eriksson, J. G., Esko, T., Feenstra, B., Geller, F., Gieger, C., Giegling, I., Gordon, S. D., Han, J., Hansen, T. F., Hartmann, A. M., Hayward, C., Heikkilä, K., Hicks, A. A., Hirschhorn, J. N., Hottenga, J.-J., Huffman, J. E., Hwang, L.-D., Ikram, M. A., Kaprio, J., Kemp, J. P., Khaw, K.-T., Klopp, N., Konte, B., Kutalik, Z., Lahti, J., Li, X., Loos, R. J. F., Luciano, M., Magnusson, S. H., Mangino, M., Marques-Vidal, P., Martin, N. G., McArdle, W. L., McCarthy, M. I., Medina-Gomez, C., Melbye, M., Melville, S. A., Metspalu, A., Milani, L., Mooser, V., Nelis, M., Nyholt, D. R., O'Connell, K. S., Ophoff, R. A., Palmer, C., Palotie, A., Palviainen, T., Pare, G., Paternoster, L., Peltonen, L., Penninx, B. W. J. H., Polasek, O., Pramstaller, P. P., Prokopenko, I., Raikkonen, K., Ripatti, S., Rivadeneira, F., Rudan, I., Rujescu, D., Smit, J. H., Smith, G. D., Smoller, J. W., Soranzo, N., Spector, T. D., St Pourcain, B., Starr, J. M., Stefánsson, H., Steinberg, S., Teder-Laving, M., Thorleifsson, G., Stefansson, K., Timpson, N. J., Uitterlinden, A. G., Van Duijn, C. M., Van Rooij, F. J. A., Vink, J. M., Vollenweider, P., Vuoksimaa, E., Waeber, G., Wareham, N. J., Warrington, N., Waterworth, D., Werge, T., Wichmann, H.-E., Widen, E., Willemsen, G., Wright, A. F., Wright, M. J., Xu, M., Zhao, J. H., Kraft, P., Hinds, D. A., Lindgren, C. M., Magi, R., Neale, B. M., Evans, D. M., & Medland, S. E. (2021). Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 5, 59-70. doi:10.1038/s41562-020-00956-y.
Abstract
Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10−8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.Additional information
supplementary tables -
Den Hoed, J., Devaraju, K., & Fisher, S. E. (2021). Molecular networks of the FOXP2 transcription factor in the brain. EMBO Reports, 22(8): e52803. doi:10.15252/embr.202152803.
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks. -
Den Hoed, J., De Boer, E., Voisin, N., Dingemans, A. J. M., Guex, N., Wiel, L., Nellaker, C., Amudhavalli, S. M., Banka, S., Bena, F. S., Ben-Zeev, B., Bonagura, V. R., Bruel, A.-L., Brunet, T., Brunner, H. G., Chew, H. B., Chrast, J., Cimbalistienė, L., Coon, H., The DDD study, Délot, E. C. and 77 moreDen Hoed, J., De Boer, E., Voisin, N., Dingemans, A. J. M., Guex, N., Wiel, L., Nellaker, C., Amudhavalli, S. M., Banka, S., Bena, F. S., Ben-Zeev, B., Bonagura, V. R., Bruel, A.-L., Brunet, T., Brunner, H. G., Chew, H. B., Chrast, J., Cimbalistienė, L., Coon, H., The DDD study, Délot, E. C., Démurger, F., Denommé-Pichon, A.-S., Depienne, C., Donnai, D., Dyment, D. A., Elpeleg, O., Faivre, L., Gilissen, C., Granger, L., Haber, B., Hachiya, Y., Hamzavi Abedi, Y., Hanebeck, J., Hehir-Kwa, J. Y., Horist, B., Itai, T., Jackson, A., Jewell, R., Jones, K. L., Joss, S., Kashii, H., Kato, M., Kattentidt-Mouravieva, A. A., Kok, F., Kotzaeridou, U., Krishnamurthy, V., Kučinskas, V., Kuechler, A., Lavillaureix, A., Liu, P., Manwaring, L., Matsumoto, N., Mazel, B., McWalter, K., Meiner, V., Mikati, M. A., Miyatake, S., Mizuguchi, T., Moey, L. H., Mohammed, S., Mor-Shaked, H., Mountford, H., Newbury-Ecob, R., Odent, S., Orec, L., Osmond, M., Palculict, T. B., Parker, M., Petersen, A., Pfundt, R., Preikšaitienė, E., Radtke, K., Ranza, E., Rosenfeld, J. A., Santiago-Sim, T., Schwager, C., Sinnema, M., Snijders Blok, L., Spillmann, R. C., Stegmann, A. P. A., Thiffault, I., Tran, L., Vaknin-Dembinsky, A., Vedovato-dos-Santos, J. H., Vergano, S. A., Vilain, E., Vitobello, A., Wagner, M., Waheeb, A., Willing, M., Zuccarelli, B., Kini, U., Newbury, D. F., Kleefstra, T., Reymond, A., Fisher, S. E., & Vissers, L. E. L. M. (2021). Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. The American Journal of Human Genetics, 108(2), 346-356. doi:10.1016/j.ajhg.2021.01.007.
Abstract
Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression and a severe phenotype. Contrastingly, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay and encode truncated proteins, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability. -
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C. and 29 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Kirsten, H., Müller, B., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 3004-3017. doi:10.1038/s41380-020-00898-x.
Abstract
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10−6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.Additional information
Supplementary File S1 Supplementary File S2 Supplementary File S3 Supplementary File S4 Acknowledgements -
Jansen, N. A., Braden, R. O., Srivastava, S., Otness, E. F., Lesca, G., Rossi, M., Nizon, M., Bernier, R. A., Quelin, C., Van Haeringen, A., Kleefstra, T., Wong, M. M. K., Whalen, S., Fisher, S. E., Morgan, A. T., & Van Bon, B. W. (2021). Clinical delineation of SETBP1 haploinsufficiency disorder. European Journal of Human Genetics, 29, 1198 -1205. doi:10.1038/s41431-021-00888-9.
Abstract
SETBP1 haploinsufficiency disorder (MIM#616078) is caused by haploinsufficiency of SETBP1 on chromosome 18q12.3, but there has not yet been any systematic evaluation of the major features of this monogenic syndrome, assessing penetrance and expressivity. We describe the first comprehensive study to delineate the associated clinical phenotype, with findings from 34 individuals, including 24 novel cases, all of whom have a SETBP1 loss-of-function variant or single (coding) gene deletion, confirmed by molecular diagnostics. The most commonly reported clinical features included mild motor developmental delay, speech impairment, intellectual disability, hypotonia, vision impairment, attention/concentration deficits, and hyperactivity. Although there is a mild overlap in certain facial features, the disorder does not lead to a distinctive recognizable facial gestalt. As well as providing insight into the clinical spectrum of SETBP1 haploinsufficiency disorder, this reports puts forward care recommendations for patient management.Additional information
supplementary table -
Kong, X., Postema, M., Schijven, D., Carrion Castillo, A., Pepe, A., Crivello, F., Joliot, M., Mazoyer, B., Fisher, S. E., & Francks, C. (2021). Large-scale phenomic and genomic analysis of brain asymmetrical skew. Cerebral Cortex, 31(9), 4151-4168. doi:10.1093/cercor/bhab075.
Abstract
The human cerebral hemispheres show a left–right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4–13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry. -
Lowndes, R., Molz, B., Warriner, L., Herbik, A., De Best, P. B., Raz, N., Gouws, A., Ahmadi, K., McLean, R. J., Gottlob, I., Kohl, S., Choritz, L., Maguire, J., Kanowski, M., Käsmann-Kellner, B., Wieland, I., Banin, E., Levin, N., Hoffmann, M. B., Morland, A. B. and 1 moreLowndes, R., Molz, B., Warriner, L., Herbik, A., De Best, P. B., Raz, N., Gouws, A., Ahmadi, K., McLean, R. J., Gottlob, I., Kohl, S., Choritz, L., Maguire, J., Kanowski, M., Käsmann-Kellner, B., Wieland, I., Banin, E., Levin, N., Hoffmann, M. B., Morland, A. B., & Baseler, H. A. (2021). Structural differences across multiple visual cortical regions in the absence of cone function in congenital achromatopsia. Frontiers in Neuroscience, 15: 718958. doi:10.3389/fnins.2021.718958.
Abstract
Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness, and cortical surface area) of multiple visual cortical regions in ACHM (n = 15) compared to normally sighted controls (n = 42) to determine the cortical changes that are associated with the retinal characteristics of ACHM. Surface-based morphometry was applied to T1-weighted MRI in atlas-defined early, ventral and dorsal visual regions of interest. Reduced grey matter volume in V1, V2, V3, and V4 was found in ACHM compared to controls, driven by a reduction in cortical surface area as there was no significant reduction in cortical thickness. Cortical surface area (but not thickness) was reduced in a wide range of areas (V1, V2, V3, TO1, V4, and LO1). Reduction in early visual areas with large foveal representations (V1, V2, and V3) suggests that the lack of foveal input to the visual cortex was a major driving factor in morphological changes in ACHM. However, the significant reduction in ventral area V4 coupled with the lack of difference in dorsal areas V3a and V3b suggest that deprivation of chromatic signals to visual cortex in ACHM may also contribute to changes in cortical morphology. This research shows that the congenital lack of cone input to the visual cortex can lead to widespread structural changes across multiple visual areas.Additional information
table S1 -
Morgan, A., Braden, R., Wong, M. M. K., Colin, E., Amor, D., Liégeois, F., Srivastava, S., Vogel, A., Bizaoui, V., Ranguin, K., Fisher, S. E., & Van Bon, B. W. (2021). Speech and language deficits are central to SETBP1 haploinsufficiency disorder. European Journal of Human Genetics, 29, 1216-1225. doi:10.1038/s41431-021-00894-x.
Abstract
Expressive communication impairment is associated with haploinsufficiency of SETBP1, as reported in small case series. Heterozygous pathogenic loss-of-function (LoF) variants in SETBP1 have also been identified in independent cohorts ascertained for childhood apraxia of speech (CAS), warranting further investigation of the roles of this gene in speech development. Thirty-one participants (12 males, aged 0; 8–23; 2 years, 28 with pathogenic SETBP1 LoF variants, 3 with 18q12.3 deletions) were assessed for speech, language and literacy abilities. Broader development was examined with standardised motor, social and daily life skills assessments. Gross and fine motor deficits (94%) and intellectual impairments (68%) were common. Protracted and aberrant speech development was consistently seen, regardless of motor or intellectual ability. We expand the linguistic phenotype associated with SETBP1 LoF syndrome (SETBP1 haploinsufficiency disorder), revealing a striking speech presentation that implicates both motor (CAS, dysarthria) and language (phonological errors) systems, with CAS (80%) being the most common diagnosis. In contrast to past reports, the understanding of language was rarely better preserved than language expression (29%). Language was typically low, to moderately impaired, with commensurate expression and comprehension ability. Children were sociable with a strong desire to communicate. Minimally verbal children (32%) augmented speech with sign language, gestures or digital devices. Overall, relative to general development, spoken language and literacy were poorer than social, daily living, motor and adaptive behaviour skills. Our findings show that poor communication is a central feature of SETBP1 haploinsufficiency disorder, confirming this gene as a strong candidate for speech and language disorders. -
Postema, M. (2021). Left-right asymmetry of the human brain: Associations with neurodevelopmental disorders and genetic factors. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Postema, M., Hoogman, M., Ambrosino, S., Asherson, P., Banaschewski, T., Bandeira, C. E., Baranov, A., Bau, C. H. D., Baumeister, S., Baur-Streubel, R., Bellgrove, M. A., Biederman, J., Bralten, J., Brandeis, D., Brem, S., Buitelaar, J. K., Busatto, G. F., Castellanos, F. X., Cercignani, M., Chaim-Avancini, T. M. and 85 morePostema, M., Hoogman, M., Ambrosino, S., Asherson, P., Banaschewski, T., Bandeira, C. E., Baranov, A., Bau, C. H. D., Baumeister, S., Baur-Streubel, R., Bellgrove, M. A., Biederman, J., Bralten, J., Brandeis, D., Brem, S., Buitelaar, J. K., Busatto, G. F., Castellanos, F. X., Cercignani, M., Chaim-Avancini, T. M., Chantiluke, K. C., Christakou, A., Coghill, D., Conzelmann, A., Cubillo, A. I., Cupertino, R. B., De Zeeuw, P., Doyle, A. E., Durston, S., Earl, E. A., Epstein, J. N., Ethofer, T., Fair, D. A., Fallgatter, A. J., Faraone, S. V., Frodl, T., Gabel, M. C., Gogberashvili, T., Grevet, E. H., Haavik, J., Harrison, N. A., Hartman, C. A., Heslenfeld, D. J., Hoekstra, P. J., Hohmann, S., Høvik, M. F., Jernigan, T. L., Kardatzki, B., Karkashadze, G., Kelly, C., Kohls, G., Konrad, K., Kuntsi, J., Lazaro, L., Lera-Miguel, S., Lesch, K.-P., Louza, M. R., Lundervold, A. J., Malpas, C. B., Mattos, P., McCarthy, H., Namazova-Baranova, L., Nicolau, R., Nigg, J. T., Novotny, S. E., Oberwelland Weiss, E., O'Gorman Tuura, R. L., Oosterlaan, J., Oranje, B., Paloyelis, Y., Pauli, P., Picon, F. A., Plessen, K. J., Ramos-Quiroga, J. A., Reif, A., Reneman, L., Rosa, P. G. P., Rubia, K., Schrantee, A., Schweren, L. J. S., Seitz, J., Shaw, P., Silk, T. J., Skokauskas, N., Soliva Vila, J. C., Stevens, M. C., Sudre, G., Tamm, L., Tovar-Moll, F., Van Erp, T. G. M., Vance, A., Vilarroya, O., Vives-Gilabert, Y., Von Polier, G. G., Walitza, S., Yoncheva, Y. N., Zanetti, M. V., Ziegler, G. C., Glahn, D. C., Jahanshad, N., Medland, S. E., ENIGMA ADHD Working Group, Thompson, P. M., Fisher, S. E., Franke, B., & Francks, C. (2021). Analysis of structural brain asymmetries in Attention-Deficit/Hyperactivity Disorder in 39 datasets. Journal of Child Psychology and Psychiatry, 62(10), 1202-1219. doi:10.1111/jcpp.13396.
Abstract
Objective: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here we performed the largest-ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium.
Methods: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modelling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries.
Results: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t=2.1, P=0.04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t=2.7, P=0.01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing.
Conclusion: Prior studies of altered structural brain asymmetry in ADHD were likely under-powered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.Additional information
jcpp13396-sup-0001-supinfo.pdf -
Raviv, L., De Heer Kloots, M., & Meyer, A. S. (2021). What makes a language easy to learn? A preregistered study on how systematic structure and community size affect language learnability. Cognition, 210: 104620. doi:10.1016/j.cognition.2021.104620.
Abstract
Cross-linguistic differences in morphological complexity could have important consequences for language learning. Specifically, it is often assumed that languages with more regular, compositional, and transparent grammars are easier to learn by both children and adults. Moreover, it has been shown that such grammars are more likely to evolve in bigger communities. Together, this suggests that some languages are acquired faster than others, and that this advantage can be traced back to community size and to the degree of systematicity in the language. However, the causal relationship between systematic linguistic structure and language learnability has not been formally tested, despite its potential importance for theories on language evolution, second language learning, and the origin of linguistic diversity. In this pre-registered study, we experimentally tested the effects of community size and systematic structure on adult language learning. We compared the acquisition of different yet comparable artificial languages that were created by big or small groups in a previous communication experiment, which varied in their degree of systematic linguistic structure. We asked (a) whether more structured languages were easier to learn; and (b) whether languages created by the bigger groups were easier to learn. We found that highly systematic languages were learned faster and more accurately by adults, but that the relationship between language learnability and linguistic structure was typically non-linear: high systematicity was advantageous for learning, but learners did not benefit from partly or semi-structured languages. Community size did not affect learnability: languages that evolved in big and small groups were equally learnable, and there was no additional advantage for languages created by bigger groups beyond their degree of systematic structure. Furthermore, our results suggested that predictability is an important advantage of systematic structure: participants who learned more structured languages were better at generalizing these languages to new, unfamiliar meanings, and different participants who learned the same more structured languages were more likely to produce similar labels. That is, systematic structure may allow speakers to converge effortlessly, such that strangers can immediately understand each other. -
Sha, Z., Schijven, D., & Francks, C. (2021). Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Molecular Psychiatry, 26(12), 7652-7660. doi:10.1038/s41380-021-01204-z.
Abstract
Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing versus empathizing cognitive styles, with resemblances to male versus female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes, and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness and subcortical volume measures in 32,256 participants from the UK Biobank. Polygenic risks for the two disorders were positively correlated (r=0.08, p=7.13×10-50), and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each polygenic risk score was associated with multivariate brain asymmetry after adjusting for sex, ASD r=0.03, p=2.17×10-9, schizophrenia r=0.04, p=2.61×10-11, but the multivariate patterns were mostly distinct for the two polygenic risks, and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both polygenic risks were associated with asymmetries of regions important for language and executive functions, consistent with behavioural associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risks for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies. -
Sha, Z., Pepe, A., Schijven, D., Carrion Castillo, A., Roe, J. M., Westerhausen, R., Joliot, M., Fisher, S. E., Crivello, F., & Francks, C. (2021). Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proceedings of the National Academy of Sciences of the United States of America, 118(47): e2113095118. doi:10.1073/pnas.2113095118.
Abstract
Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference. -
Sha, Z., Schijven, D., Carrion Castillo, A., Joliot, M., Mazoyer, B., Fisher, S. E., Crivello, F., & Francks, C. (2021). The genetic architecture of structural left–right asymmetry of the human brain. Nature Human Behaviour, 5, 1226-1236. doi:10.1038/s41562-021-01069-w.
Abstract
Left–right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain’s left–right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left–right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits. -
Shapland, C. Y., Verhoef, E., Smith, G. D., Fisher, S. E., Verhulst, B., Dale, P. S., & St Pourcain, B. (2021). Multivariate genome-wide covariance analyses of literacy, language and working memory skills reveal distinct etiologies. npj Science of Learning, 6: 23. doi:10.1038/s41539-021-00101-y.
Abstract
Several abilities outside literacy proper are associated with reading and spelling, both phenotypically and genetically, though our knowledge of multivariate genomic covariance structures is incomplete. Here, we introduce structural models describing genetic and residual influences between traits to study multivariate links across measures of literacy, phonological awareness, oral language, and phonological working memory (PWM) in unrelated UK youth (8-13 years, N=6,453). We find that all phenotypes share a large proportion of underlying genetic variation, although especially oral language and PWM reveal substantial differences in their genetic variance composition with substantial trait-specific genetic influences. Multivariate genetic and residual trait covariance showed concordant patterns, except for marked differences between oral language and literacy/phonological awareness, where strong genetic links contrasted near-zero residual overlap. These findings suggest differences in etiological mechanisms, acting beyond a pleiotropic set of genetic variants, and implicate variation in trait modifiability even among phenotypes that have high genetic correlations.Additional information
supplementary information -
Smeets, C. J. L. M., Ma, K. Y., Fisher, S. E., & Verbeek, D. S. (2021). Cerebellar developmental deficits underlie neurodegenerative disorder spinocerebellar ataxia type 23. Brain Pathology, 31(2), 239-252. doi:10.1111/bpa.12905.
Abstract
Spinocerebellar ataxia type 23 (SCA23) is a late‐onset neurodegenerative disorder characterized by slowly progressive gait and limb ataxia, for which there is no therapy available. It is caused by pathogenic variants in PDYN, which encodes prodynorphin (PDYN). PDYN is processed into the opioid peptides α‐neoendorphin and dynorphins (Dyn) A and B; inhibitory neurotransmitters that function in pain signaling, stress‐induced responses and addiction. Variants causing SCA23 mostly affect Dyn A, leading to loss of secondary structure and increased peptide stability. PDYNR212W mice express human PDYN containing the SCA23 variant p.R212W. These mice show progressive motor deficits from 3 months of age, climbing fiber (CF) deficits from 3 months of age, and Purkinje cell (PC) loss from 12 months of age. A mouse model for SCA1 showed similar CF deficits, and a recent study found additional developmental abnormalities, namely increased GABAergic interneuron connectivity and non‐cell autonomous disruption of PC function. As SCA23 mice show a similar pathology to SCA1 mice in adulthood, we hypothesized that SCA23 may also follow SCA1 pathology during development. Examining PDYNR212W cerebella during development, we uncovered developmental deficits from 2 weeks of age, namely a reduced number of GABAergic synapses on PC soma, possibly leading to the observed delay in early phase CF elimination between 2 and 3 weeks of age. Furthermore, CFs did not reach terminal height, leaving proximal PC dendrites open to be occupied by parallel fibers (PFs). The observed increase in vGlut1 protein—a marker for PF‐PC synapses—indicates that PFs indeed take over CF territory and have increased connectivity with PCs. Additionally, we detected altered expression of several critical Ca2+ channel subunits, potentially contributing to altered Ca2+ transients in PDYNR212W cerebella. These findings indicate that developmental abnormalities contribute to the SCA23 pathology and uncover a developmental role for PDYN in the cerebellum. -
Snijders Blok, L., Goosen, Y. M., Haaften, L., Hulst, K., Fisher, S. E., Brunner, H. G., Egger, J. I. M., & Kleefstra, T. (2021). Speech‐language profiles in the context of cognitive and adaptive functioning inSATB2‐associated syndrome. Genes, Brain and Behavior, 20(7): e12761. doi:10.1111/gbb.12761.
Abstract
SATB2-associated syndrome (SAS) is a neurodevelopmental disorder caused by heterozygous pathogenic variants in the SATB2 gene, and is typically characterized by intellectual disability and severely impaired communication skills. The goal of this study was to contribute to the understanding of speech and language impairments in SAS, in the context of general developmental skills and cognitive and adaptive functioning. We performed detailed oral motor, speech and language profiling in combination with neuropsychological assessments in 23 individuals with a molecularly confirmed SAS diagnosis: 11 primarily verbal individuals and 12 primarily nonverbal individuals, independent of their ages. All individuals had severe receptive language delays. For all verbal individuals, we were able to define underlying speech conditions. While childhood apraxia of speech was most prevalent, oral motor problems appeared frequent as well and were more present in the nonverbal group than in the verbal group. For seven individuals, age-appropriate Wechsler indices could be derived, showing that the level of intellectual functioning of these individuals varied from moderate–mild ID to mild ID-borderline intellectual functioning. Assessments of adaptive functioning with the Vineland Screener showed relatively high scores on the domain “daily functioning” and relatively low scores on the domain “communication” in most individuals. Altogether, this study provides a detailed delineation of oral motor, speech and language skills and neuropsychological functioning in individuals with SAS, and can provide families and caregivers with information to guide diagnosis, management and treatment approaches.Additional information
supporting information -
Snijders Blok, L. (2021). Let the genes speak! De novo variants in developmental disorders with speech and language impairment. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Snijders Blok, L., Vino, A., Den Hoed, J., Underhill, H. R., Monteil, D., Li, H., Reynoso Santos, F. J., Chung, W. K., Amaral, M. D., Schnur, R. E., Santiago-Sim, T., Si, Y., Brunner, H. G., Kleefstra, T., & Fisher, S. E. (2021). Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genetics in Medicine, 23, 534-542. doi:10.1038/s41436-020-01016-6.
Abstract
Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described.
We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants.
We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein.
Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities. -
Sønderby, I. E., Van der Meer, D., Moreau, C., Kaufmann, T., Walters, G. B., Ellegaard, M., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Bøen, R., Cahn, W. and 125 moreSønderby, I. E., Van der Meer, D., Moreau, C., Kaufmann, T., Walters, G. B., Ellegaard, M., Abdellaoui, A., Ames, D., Amunts, K., Andersson, M., Armstrong, N. J., Bernard, M., Blackburn, N. B., Blangero, J., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Bülow, R., Bøen, R., Cahn, W., Calhoun, V. D., Caspers, S., Ching, C. R. K., Cichon, S., Ciufolini, S., Crespo-Facorro, B., Curran, J. E., Dale, A. M., Dalvie, S., Dazzan, P., De Geus, E. J. C., De Zubicaray, G. I., De Zwarte, S. M. C., Desrivieres, S., Doherty, J. L., Donohoe, G., Draganski, B., Ehrlich, S., Eising, E., Espeseth, T., Fejgin, K., Fisher, S. E., Fladby, T., Frei, O., Frouin, V., Fukunaga, M., Gareau, T., Ge, T., Glahn, D. C., Grabe, H. J., Groenewold, N. A., Gústafsson, Ó., Haavik, J., Haberg, A. K., Hall, J., Hashimoto, R., Hehir-Kwa, J. Y., Hibar, D. P., Hillegers, M. H. J., Hoffmann, P., Holleran, L., Holmes, A. J., Homuth, G., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Jahanshad, N., Jockwitz, C., Johansson, S., Jönsson, E. G., Jørgensen, N. R., Kikuchi, M., Knowles, E. E. M., Kumar, K., Le Hellard, S., Leu, C., Linden, D. E., Liu, J., Lundervold, A., Lundervold, A. J., Maillard, A. M., Martin, N. G., Martin-Brevet, S., Mather, K. A., Mathias, S. R., McMahon, K. L., McRae, A. F., Medland, S. E., Meyer-Lindenberg, A., Moberget, T., Modenato, C., Monereo Sánchez, J., Morris, D. W., Mühleisen, T. W., Murray, R. M., Nielsen, J., Nordvik, J. E., Nyberg, L., Olde Loohuis, L. M., Ophoff, R. A., Owen, M. J., Paus, T., Pausova, Z., Peralta, J. M., Pike, B., Prieto, C., Quinlan, E. B., Reinbold, C. S., Reis Marques, T., Rucker, J. J. H., Sachdev, P. S., Sando, S. B., Schofield, P. R., Schork, A. J., Schumann, G., Shin, J., Shumskaya, E., Silva, A. I., Sisodiya, S. M., Steen, V. M., Stein, D. J., Strike, L. T., Suzuki, I. K., Tamnes, C. K., Teumer, A., Thalamuthu, A., Tordesillas-Gutiérrez, D., Uhlmann, A., Úlfarsson, M. Ö., Van 't Ent, D., Van den Bree, M. B. M., Vanderhaeghen, P., Vassos, E., Wen, W., Wittfeld, K., Wright, M. J., Agartz, I., Djurovic, S., Westlye, L. T., Stefánsson, H., Stefánsson, K., Jacquemont, S., Thompson, P. M., Andreassen, O. A., & the ENIGMA-CNV working group (2021). 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 11: 182. doi:10.1038/s41398-021-01213-0.
Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers—the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function. -
Tilot, A. K., Khramtsova, E. A., Liang, D., Grasby, K. L., Jahanshad, N., Painter, J., Colodro-Conde, L., Bralten, J., Hibar, D. P., Lind, P. A., Liu, S., Brotman, S. M., Thompson, P. M., Medland, S. E., Macciardi, F., Stranger, B. E., Davis, L. K., Fisher, S. E., & Stein, J. L. (2021). The evolutionary history of common genetic variants influencing human cortical surface area. Cerebral Cortex, 31(4), 1873-1887. doi:10.1093/cercor/bhaa327.
Abstract
Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens. We find that alleles with evidence of recent positive polygenic selection over the past 2000–3000 years are associated with increased surface area (SA) of the entire cortex, as well as specific regions, including those involved in spoken language and visual processing. Therefore, polygenic selective pressures impact the structure of specific cortical areas even over relatively recent timescales. Moreover, common sequence variation within human gained enhancers active in the prenatal cortex is associated with postnatal global SA. We show that such variation modulates the function of a regulatory element of the developmentally relevant transcription factor HEY2 in human neural progenitor cells and is associated with structural changes in the inferior frontal cortex. These results indicate that non-coding genomic regions active during prenatal cortical development are involved in the evolution of human brain structure and identify novel regulatory elements and genes impacting modern human brain structure.Additional information
supplemental_information_enigma_evol_bhaa327.pdf -
Ip, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E. and 129 moreIp, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E., Border, R., Peterson, R. E., Prinz, J. A., Thiering, E., Seppälä, I., Vilor-Tejedor, N., Ahluwalia, T. S., Day, F. R., Hottenga, J.-J., Allegrini, A. G., Rimfeld, K., Chen, Q., Lu, Y., Martin, J., Soler Artigas, M., Rovira, P., Bosch, R., Español, G., Ramos Quiroga, J. A., Neumann, A., Ensink, J., Grasby, K., Morosoli, J. J., Tong, X., Marrington, S., Middeldorp, C., Scott, J. G., Vinkhuyzen, A., Shabalin, A. A., Corley, R., Evans, L. M., Sugden, K., Alemany, S., Sass, L., Vinding, R., Ruth, K., Tyrrell, J., Davies, G. E., Ehli, E. A., Hagenbeek, F. A., De Zeeuw, E., Van Beijsterveldt, T. C., Larsson, H., Snieder, H., Verhulst, F. C., Amin, N., Whipp, A. M., Korhonen, T., Vuoksimaa, E., Rose, R. J., Uitterlinden, A. G., Heath, A. C., Madden, P., Haavik, J., Harris, J. R., Helgeland, Ø., Johansson, S., Knudsen, G. P. S., Njolstad, P. R., Lu, Q., Rodriguez, A., Henders, A. K., Mamun, A., Najman, J. M., Brown, S., Hopfer, C., Krauter, K., Reynolds, C., Smolen, A., Stallings, M., Wadsworth, S., Wall, T. L., Silberg, J. L., Miller, A., Keltikangas-Järvinen, L., Hakulinen, C., Pulkki-Råback, L., Havdahl, A., Magnus, P., Raitakari, O. T., Perry, J. R. B., Llop, S., Lopez-Espinosa, M.-J., Bønnelykke, K., Bisgaard, H., Sunyer, J., Lehtimäki, T., Arseneault, L., Standl, M., Heinrich, J., Boden, J., Pearson, J., Horwood, L. J., Kennedy, M., Poulton, R., Eaves, L. J., Maes, H. H., Hewitt, J., Copeland, W. E., Costello, E. J., Williams, G. M., Wray, N., Järvelin, M.-R., McGue, M., Iacono, W., Caspi, A., Moffitt, T. E., Whitehouse, A., Pennell, C. E., Klump, K. L., Burt, S. A., Dick, D. M., Reichborn-Kjennerud, T., Martin, N. G., Medland, S. E., Vrijkotte, T., Kaprio, J., Tiemeier, H., Davey Smith, G., Hartman, C. A., Oldehinkel, A. J., Casas, M., Ribasés, M., Lichtenstein, P., Lundström, S., Plomin, R., Bartels, M., Nivard, M. G., & Boomsma, D. I. (2021). Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 11: 413. doi:10.1038/s41398-021-01480-x.
-
Verhoef, E., Grove, J., Shapland, C. Y., Demontis, D., Burgess, S., Rai, D., Børglum, A. D., & St Pourcain, B. (2021). Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nature Communications, 12: 6534. doi:10.1038/s41467-021-26755-1.
Abstract
Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610–766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.Additional information
supplementary information -
Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental origins of genetic factors influencing language and literacy: Associations with early-childhood vocabulary. Journal of Child Psychology and Psychiatry, 62(6), 728-738. doi:10.1111/jcpp.13327.
Abstract
Background
The heritability of language and literacy skills increases from early‐childhood to adolescence. The underlying mechanisms are little understood and may involve (a) the amplification of genetic influences contributing to early language abilities, and/or (b) the emergence of novel genetic factors (innovation). Here, we investigate the developmental origins of genetic factors influencing mid‐childhood/early‐adolescent language and literacy. We evaluate evidence for the amplification of early‐childhood genetic factors for vocabulary, in addition to genetic innovation processes.
Methods
Expressive and receptive vocabulary scores at 38 months, thirteen language‐ and literacy‐related abilities and nonverbal cognition (7–13 years) were assessed in unrelated children from the Avon Longitudinal Study of Parents and Children (ALSPAC, Nindividuals ≤ 6,092). We investigated the multivariate genetic architecture underlying early‐childhood expressive and receptive vocabulary, and each of 14 mid‐childhood/early‐adolescent language, literacy or cognitive skills with trivariate structural equation (Cholesky) models as captured by genome‐wide genetic relationship matrices. The individual path coefficients of the resulting structural models were finally meta‐analysed to evaluate evidence for overarching patterns.
Results
We observed little support for the emergence of novel genetic sources for language, literacy or cognitive abilities during mid‐childhood or early adolescence. Instead, genetic factors of early‐childhood vocabulary, especially those unique to receptive skills, were amplified and represented the majority of genetic variance underlying many of these later complex skills (≤99%). The most predictive early genetic factor accounted for 29.4%(SE = 12.9%) to 45.1%(SE = 7.6%) of the phenotypic variation in verbal intelligence and literacy skills, but also for 25.7%(SE = 6.4%) in performance intelligence, while explaining only a fraction of the phenotypic variation in receptive vocabulary (3.9%(SE = 1.8%)).
Conclusions
Genetic factors contributing to many complex skills during mid‐childhood and early adolescence, including literacy, verbal cognition and nonverbal cognition, originate developmentally in early‐childhood and are captured by receptive vocabulary. This suggests developmental genetic stability and overarching aetiological mechanisms.
Additional information
supporting information -
Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental genetic architecture of vocabulary skills during the first three years of life: Capturing emerging associations with later-life reading and cognition. PLoS Genetics, 17(2): e1009144. doi:10.1371/journal.pgen.1009144.
Abstract
Individual differences in early-life vocabulary measures are heritable and associated with subsequent reading and cognitive abilities, although the underlying mechanisms are little understood. Here, we (i) investigate the developmental genetic architecture of expressive and receptive vocabulary in early-life and (ii) assess timing of emerging genetic associations with mid-childhood verbal and non-verbal skills. We studied longitudinally assessed early-life vocabulary measures (15–38 months) and later-life verbal and non-verbal skills (7–8 years) in up to 6,524 unrelated children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We dissected the phenotypic variance of rank-transformed scores into genetic and residual components by fitting multivariate structural equation models to genome-wide genetic-relationship matrices. Our findings show that the genetic architecture of early-life vocabulary involves multiple distinct genetic factors. Two of these genetic factors are developmentally stable and also contribute to genetic variation in mid-childhood skills: One genetic factor emerging with expressive vocabulary at 24 months (path coefficient: 0.32(SE = 0.06)) was also related to later-life reading (path coefficient: 0.25(SE = 0.12)) and verbal intelligence (path coefficient: 0.42(SE = 0.13)), explaining up to 17.9% of the phenotypic variation. A second, independent genetic factor emerging with receptive vocabulary at 38 months (path coefficient: 0.15(SE = 0.07)), was more generally linked to verbal and non-verbal cognitive abilities in mid-childhood (reading path coefficient: 0.57(SE = 0.07); verbal intelligence path coefficient: 0.60(0.10); performance intelligence path coefficient: 0.50(SE = 0.08)), accounting for up to 36.1% of the phenotypic variation and the majority of genetic variance in these later-life traits (≥66.4%). Thus, the genetic foundations of mid-childhood reading and cognitive abilities are diverse. They involve at least two independent genetic factors that emerge at different developmental stages during early language development and may implicate differences in cognitive processes that are already detectable during toddlerhood.Additional information
supporting information -
Verhoef, E. (2021). Why do we change how we speak? Multivariate genetic analyses of language and related traits across development and disorder. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Zhong, S., Wei, L., Zhao, C., Yang, L., Di, Z., Francks, C., & Gong, G. (2021). Interhemispheric relationship of genetic influence on human brain connectivity. Cerebral Cortex, 31(1), 77-88. doi:10.1093/cercor/bhaa207.
Abstract
To understand the origins of interhemispheric differences and commonalities/coupling in human brain wiring, it is crucial to determine how homologous interregional connectivities of the left and right hemispheres are genetically determined and related. To address this, in the present study, we analyzed human twin and pedigree samples with high-quality diffusion magnetic resonance imaging tractography and estimated the heritability and genetic correlation of homologous left and right white matter (WM) connections. The results showed that the heritability of WM connectivity was similar and coupled between the 2 hemispheres and that the degree of overlap in genetic factors underlying homologous WM connectivity (i.e., interhemispheric genetic correlation) varied substantially across the human brain: from complete overlap to complete nonoverlap. Particularly, the heritability was significantly stronger and the chance of interhemispheric complete overlap in genetic factors was higher in subcortical WM connections than in cortical WM connections. In addition, the heritability and interhemispheric genetic correlations were stronger for long-range connections than for short-range connections. These findings highlight the determinants of the genetics underlying WM connectivity and its interhemispheric relationships, and provide insight into genetic basis of WM connectivity asymmetries in both healthy and disease states.Additional information
Supplementary data -
Adams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S. and 322 moreAdams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beiser, A., Bernard, M., Bis, J. C., Blanken, L. M. E., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chauhan, G., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., Den Braber, A., Doan, N. T., Ehrlich, S., Filippi, I., Ge, T., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Greven, C. U., Grimm, O., Griswold, M. E., Guadalupe, T., Hass, J., Haukvik, U. K., Hilal, S., Hofer, E., Höhn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Karbalai, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee–, P. H., Liao, J., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A., Matarin, M., Mather, K. A., Mattheisen, M., Mazoyer, B., McKay, D. R., McWhirter, R., Milaneschi, Y., Muetzel, R. L., Muñoz Maniega, S., Nho, K., Nugent, A. C., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pappa, I., Pirpamer, L., Pudas, S., Pütz, B., Rajan, K. B., Ramasamy, A., Richards, J. S., Risacher, S. L., Roiz-Santiañez, R., Rommelse, N., Rose, E. J., Royle, N. A., Rundek, T., Sämann, P. G., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Thomson, R., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Vaidya, D., Van der Grond, J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., VanErp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Woldehawariat, G., Wolf, C., Wolfers, T., Xu, B., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Aggarwal, N. T., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, J. T., Becker, D. M., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Chen, C., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Erk, S., Espeseth, T., Evans, D. A., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Grabe, H. J., Green, R. C., Gruber, O., Guelfi, S., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Ikram, M. K., Jack Jr, C. R., Jenkinson, M., Johnson, R., Jönsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Launer, L. J., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Longstreth Jr, W. T., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Srikanth, V., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Tiemeier, H., Toga, A. W., Traynor, B., Troncoso, J., Turner, J. A., Tzourio, C., Uitterlinden, A. G., Valdés Hernández, M. C., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Duijn, C. M., Van Haren, N. E. M., Van 't Ent, D., Van Tol, M.-J., Vardarajan, B. N., Veltman, D. J., Vernooij, M. W., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. E., Weinberger, D. R., Weiner, M. W., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., the Alzheimer's Disease Neuroimaging Initiative, EPIGEN, IMAGEN, SYS, Deary, I. J., DeCarli, C., Schmidt, H., Martin, N. G., De Craen, A. J. M., Wright, M. J., Gudnason, V., Schumann, G., Fornage, M., Franke, B., Debette, S., Medland, S. E., Ikram, M. A., & Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 19, 1569-1582. doi:10.1038/nn.4398.
Abstract
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late
life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438
adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were
also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.
We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic
background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial
volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes
involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial
volume and provide genetic support for theories on brain reserve and brain overgrowth.Additional information
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4398.html#supplementa… -
Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.
Abstract
Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. -
Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 37(5), 1788-1800. doi:10.1002/hbm.23136.
Abstract
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. -
Becker, M. (2016). On the identification of FOXP2 gene enhancers and their role in brain development. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Carrion Castillo, A. (2016). Deciphering common and rare genetic effects on reading ability. PhD Thesis, Radboud University Nijmegen, Nijmegen.
-
Carrion Castillo, A., van Bergen, E., Vino, A., van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531-541. doi:10.1111/gbb.12299.
Abstract
Recent genome wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In the present study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (p < 10−6 in the original studies) in a new independent population dataset from the Netherlands: known as FIOLA (Familial Influences On Literacy Abilities). This dataset comprised 483 children from 307 nuclear families, plus 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness, and rapid automatized naming. Two SNPs (rs12636438, rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations in respects such as the language of testing, the exact tests used, and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.Additional information
gbb12299-sup-0001-AppendixS1.docx.docx -
Chabout, J., Sarkar, A., Patel, S., Radden, T., Dunson, D., Fisher, S. E., & Jarvis, E. (2016). A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice. Frontiers in Behavioral Neuroscience, 10: 197. doi:10.3389/fnbeh.2016.00197.
Abstract
Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans. -
Dediu, D. (2016). A multi-layered problem. IEEE CDS Newsletter, 13, 14-15.
Abstract
A response to Moving Beyond Nature-Nurture: a Problem of Science or Communication? by John Spencer, Mark Blumberg and David ShenkAdditional information
link to IEEE CDS Newsletter vol. 13 (2016) no. 1 -
Dediu, D., & Moisik, S. (2016). Defining and counting phonological classes in cross-linguistic segment databases. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (
Eds. ), Proceedings of LREC 2016: 10th International Conference on Language Resources and Evaluation (pp. 1955-1962). Paris: European Language Resources Association (ELRA).Abstract
Recently, there has been an explosion in the availability of large, good-quality cross-linguistic databases such as WALS (Dryer & Haspelmath, 2013), Glottolog (Hammarstrom et al., 2015) and Phoible (Moran & McCloy, 2014). Databases such as Phoible contain the actual segments used by various languages as they are given in the primary language descriptions. However, this segment-level representation cannot be used directly for analyses that require generalizations over classes of segments that share theoretically interesting features. Here we present a method and the associated R (R Core Team, 2014) code that allows the exible denition of such meaningful classes and that can identify the sets of segments falling into such a class for any language inventory. The method and its results are important for those interested in exploring cross-linguistic patterns of phonetic and phonological diversity and their relationship to extra-linguistic factors and processes such as climate, economics, history or human genetics.Additional information
http://www.lrec-conf.org/proceedings/lrec2016/summaries/151.html -
Dediu, D., & Moisik, S. R. (2016). Anatomical biasing of click learning and production: An MRI and 3d palate imaging study. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/57.html.Abstract
The current paper presents results for data on click learning obtained from a larger imaging study (using MRI and 3D intraoral scanning) designed to quantify and characterize intra- and inter-population variation of vocal tract structures and the relation of this to speech production. The aim of the click study was to ascertain whether and to what extent vocal tract morphology influences (1) the ability to learn to produce clicks and (2) the productions of those that successfully learn to produce these sounds. The results indicate that the presence of an alveolar ridge certainly does not prevent an individual from learning to produce click sounds (1). However, the subtle details of how clicks are produced may indeed be driven by palate shape (2). -
Dediu, D., & de Boer, B. (2016). Language evolution needs its own journal. Journal of Language Evolution, 1, 1-6. doi:10.1093/jole/lzv001.
Abstract
Interest in the origins and evolution of language has been around for as long as language has been around. However, only recently has the empirical study of language come of age. We argue that the field has sufficiently advanced that it now needs its own journal—the Journal of Language Evolution. -
Dediu, D., & Christiansen, M. H. (2016). Language evolution: Constraints and opportunities from modern genetics. Topics in Cognitive Science, 8, 361-370. doi:10.1111/tops.12195.
Abstract
Our understanding of language, its origins and subsequent evolution (including language change) is shaped not only by data and theories from the language sciences, but also fundamentally by the biological sciences. Recent developments in genetics and evolutionary theory offer both very strong constraints on what scenarios of language evolution are possible and probable but also offer exciting opportunities for understanding otherwise puzzling phenomena. Due to the intrinsic breathtaking rate of advancement in these fields, the complexity, subtlety and sometimes apparent non-intuitiveness of the phenomena discovered, some of these recent developments have either being completely missed by language scientists, or misperceived and misrepresented. In this short paper, we offer an update on some of these findings and theoretical developments through a selection of illustrative examples and discussions that cast new light on current debates in the language sciences. The main message of our paper is that life is much more complex and nuanced than anybody could have predicted even a few decades ago, and that we need to be flexible in our theorizing instead of embracing a priori dogmas and trying to patch paradigms that are no longer satisfactory. -
Dediu, D. (2016). Typology for the masses. Linguistic typology, 20(3), 579-581. doi:10.1515/lingty-2016-0029.
-
Dias, C., Estruch, S. B., Graham, S. A., McRae, J., Sawiak, S. J., Hurst, J. A., Joss, S. K., Holder, S. E., Morton, J. E., Turner, C., Thevenon, J., Mellul, K., Sánchez-Andrade, G., Ibarra-Soria, X., Derizioti, P., Santos, R. F., Lee, S.-C., Faivre, L., Kleefstra, T., Liu, P. and 3 moreDias, C., Estruch, S. B., Graham, S. A., McRae, J., Sawiak, S. J., Hurst, J. A., Joss, S. K., Holder, S. E., Morton, J. E., Turner, C., Thevenon, J., Mellul, K., Sánchez-Andrade, G., Ibarra-Soria, X., Derizioti, P., Santos, R. F., Lee, S.-C., Faivre, L., Kleefstra, T., Liu, P., Hurles, M. E., DDD Study, Fisher, S. E., & Logan, D. W. (2016). BCL11A haploinsufficiency causes an intellectual disability syndrome and dysregulates transcription. The American Journal of Human Genetics, 99(2), 253-274. doi:10.1016/j.ajhg.2016.05.030.
Abstract
Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes -
Dima, A. L., & Dediu, D. (2016). Computation of Adherence to Medications and Visualization of Medication Histories in R with AdhereR: Towards Transparent and Reproducible Use of Electronic Healthcare Data. PLoS One, 12(4): e0174426. doi:10.1371/journal.pone.0174426.
Abstract
Adherence to medications is an important indicator of the quality of medication management and impacts on health outcomes and cost-effectiveness of healthcare delivery. Electronic healthcare data (EHD) are increasingly used to estimate adherence in research and clinical practice, yet standardization and transparency of data processing are still a concern. Comprehensive and flexible open-source algorithms can facilitate the development of high-quality, consistent, and reproducible evidence in this field. Some EHD-based clinical decision support systems (CDSS) include visualization of medication histories, but this is rarely integrated in adherence analyses and not easily accessible for data exploration or implementation in new clinical settings. We introduce AdhereR, a package for the widely used open-source statistical environment R, designed to support researchers in computing EHD-based adherence estimates and in visualizing individual medication histories and adherence patterns. AdhereR implements a set of functions that are consistent with current adherence guidelines, definitions and operationalizations. We illustrate the use of AdhereR with an example dataset of 2-year records of 100 patients and describe the various analysis choices possible and how they can be adapted to different health conditions and types of medications. The package is freely available for use and its implementation facilitates the integration of medication history visualizations in open-source CDSS platforms. -
Estruch, S. B., Graham, S. A., Chinnappa, S. M., Deriziotis, P., & Fisher, S. E. (2016). Functional characterization of rare FOXP2 variants in neurodevelopmental disorder. Journal of Neurodevelopmental Disorders, 8: 44. doi:10.1186/s11689-016-9177-2.
Additional information
01. DNA sequences of primers used for molecular cloning 02. DNA sequences of primers used for site-directed mutagenesis 03. Western blots of YFP-tagged FOXP2 variants 04. Summary of studies examining FOXP2 polyglutamine tract length variation in … 05. FOXP2 polyglutamine tract lengths in selected vertebrates -
Estruch, S. B., Graham, S. A., Deriziotis, P., & Fisher, S. E. (2016). The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Scientific Reports, 6: 20911. doi:10.1038/srep20911.
Abstract
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and identified members of the PIAS family as novel FOXP2 interactors. PIAS proteins mediate post-translational modification of a range of target proteins with small ubiquitin-like modifiers (SUMOs). We found that FOXP2 can be modified with all three human SUMO proteins and that PIAS1 promotes this process. An aetiological FOXP2 mutation found in a family with speech and language disorder markedly reduced FOXP2 SUMOylation. We demonstrate that FOXP2 is SUMOylated at a single major site, which is conserved in all FOXP2 vertebrate orthologues and in the paralogues FOXP1 and FOXP4. Abolishing this site did not lead to detectable changes in FOXP2 subcellular localization, stability, dimerization or transcriptional repression in cellular assays, but the conservation of this site suggests a potential role for SUMOylation in regulating FOXP2 activity in vivo.Additional information
srep20911-s1.pdf -
Ho, Y. Y. W., Evans, D. M., Montgomery, G. W., Henders, A. K., Kemp, J. P., Timpson, N. J., St Pourcain, B., Heath, A. C., Madden, P. A. F., Loesch, D. Z., McNevin, D., Daniel, R., Davey-Smith, G., Martin, N. G., & Medland, S. E. (2016). Common genetic variants influence whorls in fingerprint patterns. Journal of Investigative Dermatology, 136(4), 859-862. doi:10.1016/j.jid.2015.10.062.
-
Everaerd, D., Klumpers, F., Zwiers, M., Guadalupe, T., Franke, B., Van Oostrum, I., Schene, A., Fernandez, G., & Tendolkar, I. (2016). Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology. Neuropsychopharmacology, 41, 1716-1723. doi:10.1038/npp.2015.344.
Abstract
Childhood adversity (CA) has been associated with long-term structural brain alterations and an increased risk for psychiatric disorders. Evidence is emerging that subtypes of CA, varying in the dimensions of threat and deprivation, lead to distinct neural and behavioral outcomes. However, these specific associations have yet to be established without potential confounders such as psychopathology. Moreover, differences in neural development and psychopathology necessitate the exploration of sexual dimorphism. Young healthy adult subjects were selected based on history of CA from a large database to assess gray matter (GM) differences associated with specific subtypes of adversity. We compared voxel-based morphometry data of subjects reporting specific childhood exposure to abuse (n = 127) or deprivation (n = 126) and a similar sized group of controls (n = 129) without reported CA. Subjects were matched on age, gender, and educational level. Differences between CA subtypes were found in the fusiform gyrus and middle occipital gyms, where subjects with a history of deprivation showed reduced GM compared with subjects with a history of abuse. An interaction between sex and CA subtype was found. Women showed less GM in the visual posterior precuneal region after both subtypes of CA than controls. Men had less GM in the postcentral gyms after childhood deprivation compared with abuse. Our results suggest that even in a healthy population, CA subtypes are related to specific alterations in brain structure, which are modulated by sex. These findings may help understand neurodevelopmental consequences related to CA -
Fan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y. and 17 moreFan, Q., Guo, X., Tideman, J. W. L., Williams, K. M., Yazar, S., Hosseini, S. M., Howe, L. D., St Pourcain, B., Evans, D. M., Timpson, N. J., McMahon, G., Hysi, P. G., Krapohl, E., Wang, Y. X., Jonas, J. B., Baird, P. N., Wang, J. J., Cheng, C. Y., Teo, Y. Y., Wong, T. Y., Ding, X., Wojciechowski, R., Young, T. L., Parssinen, O., Oexle, K., Pfeiffer, N., Bailey-Wilson, J. E., Paterson, A. D., Klaver, C. C. W., Plomin, R., Hammond, C. J., Mackey, D. A., He, M. G., Saw, S. M., Williams, C., Guggenheim, J. A., & Cream, C. (2016). Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 6: 25853. doi:10.1038/srep25853.
Abstract
Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Additional information
srep25853-s1.pdf -
Fan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C. and 83 moreFan, Q., Verhoeven, V. J., Wojciechowski, R., Barathi, V. A., Hysi, P. G., Guggenheim, J. A., Höhn, R., Vitart, V., Khawaja, A. P., Yamashiro, K., Hosseini, S. M., Lehtimäki, T., Lu, Y., Haller, T., Xie, J., Delcourt, C., Pirastu, M., Wedenoja, J., Gharahkhani, P., Venturini, C., Miyake, M., Hewitt, A. W., Guo, X., Mazur, J., Huffman, J. E., Williams, K. M., Polasek, O., Campbell, H., Rudan, I., Vatavuk, Z., Wilson, J. F., Joshi, P. K., McMahon, G., St Pourcain, B., Evans, D. M., Simpson, C. L., Schwantes-An, T.-H., Igo, R. P., Mirshahi, A., Cougnard-Gregoire, A., Bellenguez, C., Blettner, M., Raitakari, O., Kähönen, M., Seppälä, I., Zeller, T., Meitinger, T., Ried, J. S., Gieger, C., Portas, L., Van Leeuwen, E. M., Amin, N., Uitterlinden, A. G., Rivadeneira, F., Hofman, A., Vingerling, J. R., Wang, Y. X., Wang, X., Boh, E.-T.-H., Ikram, M. K., Sabanayagam, C., Gupta, P., Tan, V., Zhou, L., Ho, C. E., Lim, W., Beuerman, R. W., Siantar, R., Tai, E.-S., Vithana, E., Mihailov, E., Khor, C.-C., Hayward, C., Luben, R. N., Foster, P. J., Klein, B. E., Klein, R., Wong, H.-S., Mitchell, P., Metspalu, A., Aung, T., Young, T. L., He, M., Pärssinen, O., Van Duijn, C. M., Wang, J. J., Williams, C., Jonas, J. B., Teo, Y.-Y., Mackey, D. A., Oexle, K., Yoshimura, N., Paterson, A. D., Pfeiffer, N., Wong, T.-Y., Baird, P. N., Stambolian, D., Bailey-Wilson, J. E., Cheng, C.-Y., Hammond, C. J., Klaver, C. C., Saw, S.-M., & Consortium for Refractive Error and Myopia (CREAM) (2016). Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 7: 11008. doi:10.1038/ncomms11008.
Abstract
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10−5), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopiaAdditional information
Fan_etal_2016sup.pdf -
Fedorenko, E., Morgan, A., Murray, E., Cardinaux, A., Mei, C., Tager-Flusberg, H., Fisher, S. E., & Kanwisher, N. (2016). A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. European Journal of Human Genetics, 24(2), 302-306. doi:10.1038/ejhg.2015.149.
Abstract
Individuals with heterozygous 16p11.2 deletions reportedly suffer from a variety of difficulties with speech and language. Indeed, recent copy-number variant screens of children with childhood apraxia of speech (CAS), a specific and rare motor speech disorder, have identified three unrelated individuals with 16p11.2 deletions. However, the nature and prevalence of speech and language disorders in general, and CAS in particular, is unknown for individuals with 16p11.2 deletions. Here we took a genotype-first approach, conducting detailed and systematic characterization of speech abilities in a group of 11 unrelated children ascertained on the basis of 16p11.2 deletions. To obtain the most precise and replicable phenotyping, we included tasks that are highly diagnostic for CAS, and we tested children under the age of 18 years, an age group where CAS has been best characterized. Two individuals were largely nonverbal, preventing detailed speech analysis, whereas the remaining nine met the standard accepted diagnostic criteria for CAS. These results link 16p11.2 deletions to a highly penetrant form of CAS. Our findings underline the need for further precise characterization of speech and language profiles in larger groups of affected individuals, which will also enhance our understanding of how genetic pathways contribute to human communication disorders.Additional information
http://www.nature.com/ejhg/journal/vaop/ncurrent/suppinfo/ejhg2015149s1.html?ur… -
Fisher, S. E. (2016). A molecular genetic perspective on speech and language. In G. Hickok, & S. Small (
Eds. ), Neurobiology of Language (pp. 13-24). Amsterdam: Elsevier. doi:10.1016/B978-0-12-407794-2.00002-X.Abstract
The rise of genomic technologies has yielded exciting new routes for studying the biological foundations of language. Researchers have begun to identify genes implicated in neurodevelopmental disorders that disrupt speech and language skills. This chapter illustrates how such work can provide powerful entry points into the critical neural pathways using FOXP2 as an example. Rare mutations of this gene cause problems with learning to sequence mouth movements during speech, accompanied by wide-ranging impairments in language production and comprehension. FOXP2 encodes a regulatory protein, a hub in a network of other genes, several of which have also been associated with language-related impairments. Versions of FOXP2 are found in similar form in many vertebrate species; indeed, studies of animals and birds suggest conserved roles in the development and plasticity of certain sets of neural circuits. Thus, the contributions of this gene to human speech and language involve modifications of evolutionarily ancient functions. -
Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J. and 17 moreFranke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J., Ehrlich, S., Mather, K. A., Turner, J. A., Schwarz, E., Thalamuthu, A., Yao, Y., Ho, Y. Y. W., Martin, N. G., Wright, M. J., Guadalupe, T., Fisher, S. E., Francks, C., Schizophrenia Working Group of the Psychiatric Genomics Consortium, ENIGMA Consortium, O’Donovan, M. C., Thompson, P. M., Neale, B. M., Medland, S. E., & Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 19, 420-431. doi:10.1038/nn.4228.
Abstract
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disordersAdditional information
Franke_etal_2016_supp1.pdf -
Gaub, S., Fisher, S. E., & Ehret, G. (2016). Ultrasonic vocalizations of adult male Foxp2-mutant mice: Behavioral contexts of arousal and emotion. Genes, Brain and Behavior, 15(2), 243-259. doi:10.1111/gbb.12274.
Abstract
Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion, and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectro-temporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits.Additional information
gbb12274-sup-0001-AppendixS1.pdf gbb12274-sup-0002-TableS1.xls gbb12274-sup-0003-TableS2.xls -
Gialluisi, A., Visconti, A., Wilcutt, E. G., Smith, S., Pennington, B., Falchi, M., DeFries, J., Olson, R., Francks, C., & Fisher, S. E. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8: 17. doi:10.1186/s11689-016-9147-8.
Abstract
Background
Reading and language skills have overlapping genetic bases, most of which are still unknown. Part of the missing heritability may be caused by copy number variants (CNVs).
Methods
In a dataset of children recruited for a history of reading disability (RD, also known as dyslexia) or attention deficit hyperactivity disorder (ADHD) and their siblings, we investigated the effects of CNVs on reading and language performance. First, we called CNVs with PennCNV using signal intensity data from Illumina OmniExpress arrays (~723,000 probes). Then, we computed the correlation between measures of CNV genomic burden and the first principal component (PC) score derived from several continuous reading and language traits, both before and after adjustment for performance IQ. Finally, we screened the genome, probe-by-probe, for association with the PC scores, through two complementary analyses: we tested a binary CNV state assigned for the location of each probe (i.e., CNV+ or CNV−), and we analyzed continuous probe intensity data using FamCNV.
Results
No significant correlation was found between measures of CNV burden and PC scores, and no genome-wide significant associations were detected in probe-by-probe screening. Nominally significant associations were detected (p~10−2–10−3) within CNTN4 (contactin 4) and CTNNA3 (catenin alpha 3). These genes encode cell adhesion molecules with a likely role in neuronal development, and they have been previously implicated in autism and other neurodevelopmental disorders. A further, targeted assessment of candidate CNV regions revealed associations with the PC score (p~0.026–0.045) within CHRNA7 (cholinergic nicotinic receptor alpha 7), which encodes a ligand-gated ion channel and has also been implicated in neurodevelopmental conditions and language impairment. FamCNV analysis detected a region of association (p~10−2–10−4) within a frequent deletion ~6 kb downstream of ZNF737 (zinc finger protein 737, uncharacterized protein), which was also observed in the association analysis using CNV calls.
Conclusions
These data suggest that CNVs do not underlie a substantial proportion of variance in reading and language skills. Analysis of additional, larger datasets is warranted to further assess the potential effects that we found and to increase the power to detect CNV effects on reading and language.Additional information
11689_2016_9147_MOESM1_ESM.docx 11689_2016_9147_MOESM2_ESM.xlsx 11689_2016_9147_MOESM3_ESM.docx -
Hugh-Jones, D., Verweij, K. J. H., St Pourcain, B., & Abdellaoui, A. (2016). Assortative mating on educational attainment leads to genetic spousal resemblance for causal alleles. Intelligence, 59, 103-108. doi:10.1016/j.intell.2016.08.005.
Abstract
We examined whether assortative mating for educational attainment (“like marries like”) can be detected in the genomes of ~ 1600 UK spouse pairs of European descent. Assortative mating on heritable traits like educational attainment increases the genetic variance and heritability of the trait in the population, which may increase social inequalities. We test for genetic assortative mating in the UK on educational attainment, a phenotype that is indicative of socio-economic status and has shown substantial levels of assortative mating. We use genome-wide allelic effect sizes from a large genome-wide association study on educational attainment (N ~ 300 k) to create polygenic scores that are predictive of educational attainment in our independent sample (r = 0.23, p < 2 × 10− 16). The polygenic scores significantly predict partners' educational outcome (r = 0.14, p = 4 × 10− 8 and r = 0.19, p = 2 × 10− 14, for prediction from males to females and vice versa, respectively), and are themselves significantly correlated between spouses (r = 0.11, p = 7 × 10− 6). Our findings provide molecular genetic evidence for genetic assortative mating on education in the UK -
Janssen, R., Nolfi, S., Haselager, W. F. G., & Sprinkhuizen-Kuyper, I. G. (2016). Cyclic Incrementality in Competitive Coevolution: Evolvability through Pseudo-Baldwinian Switching-Genes. Artificial Life, 22(3), 319-352. doi:10.1162/ARTL_a_00208.
Abstract
Coevolving systems are notoriously difficult to understand. This is largely due to the Red Queen effect that dictates heterospecific fitness interdependence. In simulation studies of coevolving systems, master tournaments are often used to obtain more informed fitness measures by testing evolved individuals against past and future opponents. However, such tournaments still contain certain ambiguities. We introduce the use of a phenotypic cluster analysis to examine the distribution of opponent categories throughout an evolutionary sequence. This analysis, adopted from widespread usage in the bioinformatics community, can be applied to master tournament data. This allows us to construct behavior-based category trees, obtaining a hierarchical classification of phenotypes that are suspected to interleave during cyclic evolution. We use the cluster data to establish the existence of switching-genes that control opponent specialization, suggesting the retention of dormant genetic adaptations, that is, genetic memory. Our overarching goal is to reiterate how computer simulations may have importance to the broader understanding of evolutionary dynamics in general. We emphasize a further shift from a component-driven to an interaction-driven perspective in understanding coevolving systems. As yet, it is unclear how the sudden development of switching-genes relates to the gradual emergence of genetic adaptability. Likely, context genes gradually provide the appropriate genetic environment wherein the switching-gene effect can be exploited -
Janssen, R., Winter, B., Dediu, D., Moisik, S. R., & Roberts, S. G. (2016). Nonlinear biases in articulation constrain the design space of language. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/86.html.Abstract
In Iterated Learning (IL) experiments, a participant’s learned output serves as the next participant’s learning input (Kirby et al., 2014). IL can be used to model cultural transmission and has indicated that weak biases can be amplified through repeated cultural transmission (Kirby et al., 2007). So, for example, structural language properties can emerge over time because languages come to reflect the cognitive constraints in the individuals that learn and produce the language. Similarly, we propose that languages may also reflect certain anatomical biases. Do sound systems adapt to the affordances of the articulation space induced by the vocal tract?
The human vocal tract has inherent nonlinearities which might derive from acoustics and aerodynamics (cf. quantal theory, see Stevens, 1989) or biomechanics (cf. Gick & Moisik, 2015). For instance, moving the tongue anteriorly along the hard palate to produce a fricative does not result in large changes in acoustics in most cases, but for a small range there is an abrupt change from a perceived palato-alveolar [ʃ] to alveolar [s] sound (Perkell, 2012). Nonlinearities such as these might bias all human speakers to converge on a very limited set of phonetic categories, and might even be a basis for combinatoriality or phonemic ‘universals’.
While IL typically uses discrete symbols, Verhoef et al. (2014) have used slide whistles to produce a continuous signal. We conducted an IL experiment with human subjects who communicated using a digital slide whistle for which the degree of nonlinearity is controlled. A single parameter (α) changes the mapping from slide whistle position (the ‘articulator’) to the acoustics. With α=0, the position of the slide whistle maps Bark-linearly to the acoustics. As α approaches 1, the mapping gets more double-sigmoidal, creating three plateaus where large ranges of positions map to similar frequencies. In more abstract terms, α represents the strength of a nonlinear (anatomical) bias in the vocal tract.
Six chains (138 participants) of dyads were tested, each chain with a different, fixed α. Participants had to communicate four meanings by producing a continuous signal using the slide-whistle in a ‘director-matcher’ game, alternating roles (cf. Garrod et al., 2007).
Results show that for high αs, subjects quickly converged on the plateaus. This quick convergence is indicative of a strong bias, repelling subjects away from unstable regions already within-subject. Furthermore, high αs lead to the emergence of signals that oscillate between two (out of three) plateaus. Because the sigmoidal spaces are spatially constrained, participants increasingly used the sequential/temporal dimension. As a result of this, the average duration of signals with high α was ~100ms longer than with low α. These oscillations could be an expression of a basis for phonemic combinatoriality.
We have shown that it is possible to manipulate the magnitude of an articulator-induced non-linear bias in a slide whistle IL framework. The results suggest that anatomical biases might indeed constrain the design space of language. In particular, the signaling systems in our study quickly converged (within-subject) on the use of stable regions. While these conclusions were drawn from experiments using slide whistles with a relatively strong bias, weaker biases could possibly be amplified over time by repeated cultural transmission, and likely lead to similar outcomes. -
Janssen, R., Dediu, D., & Moisik, S. R. (2016). Simple agents are able to replicate speech sounds using 3d vocal tract model. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/97.html.Abstract
Many factors have been proposed to explain why groups of people use different speech sounds in their language. These range from cultural, cognitive, environmental (e.g., Everett, et al., 2015) to anatomical (e.g., vocal tract (VT) morphology). How could such anatomical properties have led to the similarities and differences in speech sound distributions between human languages?
It is known that hard palate profile variation can induce different articulatory strategies in speakers (e.g., Brunner et al., 2009). That is, different hard palate profiles might induce a kind of bias on speech sound production, easing some types of sounds while impeding others. With a population of speakers (with a proportion of individuals) that share certain anatomical properties, even subtle VT biases might become expressed at a population-level (through e.g., bias amplification, Kirby et al., 2007). However, before we look into population-level effects, we should first look at within-individual anatomical factors. For that, we have developed a computer-simulated analogue for a human speaker: an agent. Our agent is designed to replicate speech sounds using a production and cognition module in a computationally tractable manner.
Previous agent models have often used more abstract (e.g., symbolic) signals. (e.g., Kirby et al., 2007). We have equipped our agent with a three-dimensional model of the VT (the production module, based on Birkholz, 2005) to which we made numerous adjustments. Specifically, we used a 4th-order Bezier curve that is able to capture hard palate variation on the mid-sagittal plane (XXX, 2015). Using an evolutionary algorithm, we were able to fit the model to human hard palate MRI tracings, yielding high accuracy fits and using as little as two parameters. Finally, we show that the samples map well-dispersed to the parameter-space, demonstrating that the model cannot generate unrealistic profiles. We can thus use this procedure to import palate measurements into our agent’s production module to investigate the effects on acoustics. We can also exaggerate/introduce novel biases.
Our agent is able to control the VT model using the cognition module.
Previous research has focused on detailed neurocomputation (e.g., Kröger et al., 2014) that highlights e.g., neurobiological principles or speech recognition performance. However, the brain is not the focus of our current study. Furthermore, present-day computing throughput likely does not allow for large-scale deployment of these architectures, as required by the population model we are developing. Thus, the question whether a very simple cognition module is able to replicate sounds in a computationally tractable manner, and even generalize over novel stimuli, is one worthy of attention in its own right.
Our agent’s cognition module is based on running an evolutionary algorithm on a large population of feed-forward neural networks (NNs). As such, (anatomical) bias strength can be thought of as an attractor basin area within the parameter-space the agent has to explore. The NN we used consists of a triple-layered (fully-connected), directed graph. The input layer (three neurons) receives the formants frequencies of a target-sound. The output layer (12 neurons) projects to the articulators in the production module. A hidden layer (seven neurons) enables the network to deal with nonlinear dependencies. The Euclidean distance (first three formants) between target and replication is used as fitness measure. Results show that sound replication is indeed possible, with Euclidean distance quickly approaching a close-to-zero asymptote.
Statistical analysis should reveal if the agent can also: a) Generalize: Can it replicate sounds not exposed to during learning? b) Replicate consistently: Do different, isolated agents always converge on the same sounds? c) Deal with consolidation: Can it still learn new sounds after an extended learning phase (‘infancy’) has been terminated? Finally, a comparison with more complex models will be used to demonstrate robustness. -
Kavaklioglu, T., Ajmal, M., Hameed, A., & Francks, C. (2016). Whole exome sequencing for handedness in a large and highly consanguineous family. Neuropsychologia, 93, part B, 342-349. doi:10.1016/j.neuropsychologia.2015.11.010.
Abstract
Pinpointing genes involved in non-right-handedness has the potential to clarify developmental contributions to human brain lateralization. Major-gene models have been considered for human handedness which allow for phenocopy and reduced penetrance, i.e. an imperfect correspondence between genotype and phenotype. However, a recent genome-wide association scan did not detect any common polymorphisms with substantial genetic effects. Previous linkage studies in families have also not yielded significant findings. Genetic heterogeneity and/or polygenicity are therefore indicated, but it remains possible that relatively rare, or even unique, major-genetic effects may be detectable in certain extended families with many non-right-handed members. Here we applied whole exome sequencing to 17 members from a single, large consanguineous family from Pakistan. Multipoint linkage analysis across all autosomes did not yield clear candidate genomic regions for involvement in the trait and single-point analysis of exomic variation did not yield clear candidate mutations/genes. Any genetic contribution to handedness in this unusual family is therefore likely to have a complex etiology, as at the population level. -
Kos, A., Wanke, K., Gioio, A., Martens, G. J., Kaplan, B. B., & Aschrafi, A. (2016). Monitoring mRNA Translation in Neuronal Processes Using Fluorescent Non-Canonical Amino Acid Tagging. Journal of Histochemistry and Cytochemistry, 64(5), 323-333. doi:10.1369/0022155416641604.
Abstract
A steady accumulation of experimental data argues that protein synthesis in neurons is not merely restricted to the somatic compartment, but also occurs in several discrete cellular micro-domains. Local protein synthesis is critical for the establishment of synaptic plasticity in mature dendrites and in directing the growth cones of immature axons, and has been associated with cognitive impairment in mice and humans. Although in recent years a number of important mechanisms governing this process have been described, it remains technically challenging to precisely monitor local protein synthesis in individual neuronal cell parts independent from the soma. This report presents the utility of employing microfluidic chambers for the isolation and treatment of single neuronal cellular compartments. Furthermore, it is demonstrated that a protein synthesis assay, based on fluorescent non-canonical amino acid tagging (FUNCAT), can be combined with this cell culture system to label nascent proteins within a discrete structural and functional domain of the neuron. Together, these techniques could be employed for the detection of protein synthesis within developing and mature neurites, offering an effective approach to elucidate novel mechanisms controlling synaptic maintenance and plasticity. -
Middeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J. and 31 moreMiddeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., Hottenga, J.-J., Hudziak, J. J., Jugessur, A., Kemp, J. P., Krapohl, E., Martin, N. G., Murcia, M., Myhre, R., Ormel, J., Ring, S. M., Standl, M., Stergiakouli, E., Stoltenberg, C., Thiering, E., Timpson, N. J., Trzaskowski, M., van der Most, P. J., Wang, C., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Psychiatric Genomics Consortium ADHD Working Group, Nyholt, D. R., Medland, S. E., Neale, B., Jacobsson, B., Sunyer, J., Hartman, C. A., Whitehouse, A. J. O., Pennell, C. E., Heinrich, J., Plomin, R., Smith, G. D., Tiemeier, H., Posthuma, D., & Boomsma, D. I. (2016). A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Paediatric Cohorts. Journal of the American Academy of Child & Adolescent Psychiatry, 55(10), 896-905. doi:10.1016/j.jaac.2016.05.025.
Abstract
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. -
Morgan, A., Fisher, S. E., Scheffer, I., & Hildebrand, M. (2016). FOXP2-related speech and language disorders. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. Bean, T. D. Bird, C.-T. Fong, H. C. Mefford, R. J. Smith, & K. Stephens (
Eds. ), GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK368474/. -
Li, S., Morley, M., Lu, M., Zhou, S., Stewart, K., French, C. A., Tucker, H. O., Fisher, S. E., & Morrisey, E. E. (2016). Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Developmental Biology, 416(2), 338-346. doi:10.1016/j.ydbio.2016.06.020.
Abstract
The inhibitory mechanisms that prevent gene expression programs from one tissue to be expressed in another are poorly understood. Foxp1/2/4 are forkhead transcription factors that repress gene expression and are individually important for endoderm development. We show that combined loss of all three Foxp1/2/4 family members in the developing anterior foregut endoderm leads to a loss of lung endoderm lineage commitment and subsequent development. Foxp1/2/4 deficient lungs express high levels of transcriptional regulators not normally expressed in the developing lung, including Pax2, Pax8, Pax9 and the Hoxa9-13 cluster. Ectopic expression of these transcriptional regulators is accompanied by decreased expression of lung restricted transcription factors including Nkx2-1, Sox2, and Sox9. Foxp1 binds to conserved forkhead DNA binding sites within the Hoxa9-13 cluster, indicating a direct repression mechanism. Thus, Foxp1/2/4 are essential for promoting lung endoderm development by repressing expression of non-pulmonary transcription factors -
Robinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A. and 2 moreRobinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., Maller, J., Samocha, K. E., Sanders, S. J., Ripke, S., Martin, J., Hollegaard, M. V., Werge, T., Hougaard, D. M., i Psych- S. S. I. Broad Autism Group, Neale, B. M., Evans, D. M., Skuse, D., Mortensen, P. B., Borglum, A. D., Ronald, A., Smith, G. D., & Daly, M. J. (2016). Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 48, 552-555. doi:10.1038/ng.3529.
Abstract
Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology.Additional information
ng.3529-S1.pdf -
Selten, M., Meyer, F., Ba, W., Valles, A., Maas, D., Negwer, M., Eijsink, V. D., van Vugt, R. W. M., van Hulten, J. A., van Bakel, N. H. M., Roosen, J., van der Linden, R., Schubert, D., Verheij, M. M. M., Kasri, N. N., & Martens, G. J. M. (2016). Increased GABAB receptor signaling in a rat model for schizophrenia. Scientific Reports, 6: 34240. doi:10.1038/srep34240.
Abstract
Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an animal model displaying schizophrenia-relevant features, the apomorphine-susceptible (APO-SUS) rat and its phenotypic counterpart, the apomorphine-unsusceptible (APO-UNSUS) rat at postnatal day 20-22. We found changes in the expression of the GABA-synthesizing enzyme GAD67 specifically in the prelimbic-but not the infralimbic region of the medial prefrontal cortex (mPFC), indicative of reduced inhibitory function in this region in APO-SUS rats. While we did not observe changes in basal synaptic transmission onto LII/III pyramidal cells in the mPFC of APO-SUS compared to APO-UNSUS rats, we report reduced paired-pulse ratios at longer inter-stimulus intervals. The GABA(B) receptor antagonist CGP 55845 abolished this reduction, indicating that the decreased paired-pulse ratio was caused by increased GABA(B) signaling. Consistently, we find an increased expression of the GABA(B1) receptor subunit in APO-SUS rats. Our data provide physiological evidence for increased presynaptic GABAB signaling in the mPFC of APO-SUS rats, further supporting an important role for the GABAergic system in the pathophysiology of schizophrenia. -
Sollis, E., Graham, S. A., Vino, A., Froehlich, H., Vreeburg, M., Dimitropoulou, D., Gilissen, C., Pfundt, R., Rappold, G., Brunner, H. G., Deriziotis, P., & Fisher, S. E. (2016). Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Human Molecular Genetics, 25(3), 546-557. doi:10.1093/hmg/ddv495.
Abstract
De novo disruptions of the neural transcription factor FOXP1 are a recently discovered, rare cause of sporadic intellectual disability (ID). We report three new cases of FOXP1-related disorder identified through clinical whole-exome sequencing. Detailed phenotypic assessment confirmed that global developmental delay, autistic features, speech/language deficits, hypotonia and mild dysmorphic features are core features of the disorder. We expand the phenotypic spectrum to include sensory integration disorder and hypertelorism. Notably, the etiological variants in these cases include two missense variants within the DNA-binding domain of FOXP1. Only one such variant has been reported previously. The third patient carries a stop-gain variant. We performed functional characterization of the three missense variants alongside our stop-gain and two previously described truncating/frameshift variants. All variants severely disrupted multiple aspects of protein function. Strikingly, the missense variants had similarly severe effects on protein function as the truncating/frameshift variants. Our findings indicate that a loss of transcriptional repression activity of FOXP1 underlies the neurodevelopmental phenotype in FOXP1-related disorder. Interestingly, the three novel variants retained the ability to interact with wild-type FOXP1, suggesting these variants could exert a dominant-negative effect by interfering with the normal FOXP1 protein. These variants also retained the ability to interact with FOXP2, a paralogous transcription factor disrupted in rare cases of speech and language disorder. Thus, speech/language deficits in these individuals might be worsened through deleterious effects on FOXP2 function. Our findings highlight that de novo FOXP1 variants are a cause of sporadic ID and emphasize the importance of this transcription factor in neurodevelopment.Additional information
ddv495supp.pdf -
Woo, Y. J., Wang, T., Guadalupe, T., Nebel, R. A., Vino, A., Del Bene, V. A., Molholm, S., Ross, L. A., Zwiers, M. P., Fisher, S. E., Foxe, J. J., & Abrahams, B. S. (2016). A Common CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus. PLoS One, 11(6): e0158036. doi:10.1371/journal.pone.0158036.
Abstract
s Metrics Comments Related Content Abstract Introduction Materials and Methods Results Discussion Supporting Information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage Figures Abstract Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1-2) are associated with language-related difficulties and increased risk for developmental disorders in which language is compromised. Towards underlying mechanisms, we investigated relationships between single nucleotide polymorphisms (SNPs) across the region and quantitative measures of human brain structure obtained by magnetic resonance imaging of healthy subjects. We report an association between rs4778298, a common variant at CYFIP1, and inter-individual variation in surface area across the left supramarginal gyrus (lh.SMG), a cortical structure implicated in speech and language in independent discovery (n = 100) and validation cohorts (n = 2621). In silico analyses determined that this same variant, and others nearby, is also associated with differences in levels of CYFIP1 mRNA in human brain. One of these nearby polymorphisms is predicted to disrupt a consensus binding site for FOXP2, a transcription factor implicated in speech and language. Consistent with a model where FOXP2 regulates CYFIP1 levels and in turn influences lh.SMG surface area, analysis of publically available expression data identified a relationship between expression of FOXP2 and CYFIP1 mRNA in human brain. We propose that altered CYFIP1 dosage, through aberrant patterning of the lh.SMG, may contribute to language-related difficulties associated with BP1-2 CNVs. More generally, this approach may be useful in clarifying the contribution of individual genes at CNV risk loci.Additional information
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0158036#sec0…
Share this page