Displaying 1 - 45 of 45
-
Alagöz, G., Eising, E., Mekki, Y., Bignardi, G., Fontanillas, P., 23andMe Research Team, Nivard, M. G., Luciano, M., Cox, N. J., Fisher, S. E., & Gordon, R. L. (2025). The shared genetic architecture and evolution of human language and musical rhythm. Nature Human Behaviour, 9, 376-390. doi:10.1038/s41562-024-02051-y.
Abstract
Rhythm and language-related traits are phenotypically correlated, but their genetic overlap is largely unknown. Here, we leveraged two large-scale genome-wide association studies performed to shed light on the shared genetics of rhythm (N=606,825) and dyslexia (N=1,138,870). Our results reveal an intricate shared genetic and neurobiological architecture, and lay groundwork for resolving longstanding debates about the potential co-evolution of human language and musical traits. -
Bignardi, G., Wesseldijk, L. W., Mas-Herrero, E., Zatorre, R. J., Ullén, F., Fisher, S. E., & Mosing, M. A. (2025). Twin modelling reveals partly distinct genetic pathways to music enjoyment. Nature Communications, 16: 2904. doi:10.1038/s41467-025-58123-8.
Abstract
Humans engage with music for various reasons that range from emotional regulation and relaxation to social bonding. While there are large inter-individual differences in how much humans enjoy music, little is known about the origins of those differences. Here, we disentangle the genetic factors underlying such variation. We collect data on several facets of music reward sensitivity, as measured by the Barcelona Music Reward Questionnaire, plus music perceptual abilities and general reward sensitivity from a large sample of Swedish twins (N = 9169; 2305 complete pairs). We estimate that genetic effects contribute up to 54% of the variability in music reward sensitivity, with 70% of these effects being independent of music perceptual abilities and general reward sensitivity. Furthermore, multivariate analyses show that genetic and environmental influences on the different facets of music reward sensitivity are partly distinct, uncovering distinct pathways to music enjoyment and different patterns of genetic associations with objectively assessed music perceptual abilities. These results paint a complex picture in which partially distinct sources of variation contribute to different aspects of musical enjoyment. -
Ciulkinyte, A., Mountford, H. S., Fontanillas, P., 23andMe Research Team, Bates, T. C., Martin, N. G., Fisher, S. E., & Luciano, M. (2025). Genetic neurodevelopmental clustering and dyslexia. Molecular Psychiatry, 30, 140-150. doi:10.1038/s41380-024-02649-8.
Abstract
Dyslexia is a learning difficulty with neurodevelopmental origins, manifesting as reduced accuracy and speed in reading and spelling. It is substantially heritable and frequently co-occurs with other neurodevelopmental conditions, particularly attention deficit-hyperactivity disorder (ADHD). Here, we investigate the genetic structure underlying dyslexia and a range of psychiatric traits using results from genome-wide association studies of dyslexia, ADHD, autism, anorexia nervosa, anxiety, bipolar disorder, major depressive disorder, obsessive compulsive disorder,
schizophrenia, and Tourette syndrome. Genomic Structural Equation Modelling (GenomicSEM) showed heightened support for a model consisting of five correlated latent genomic factors described as: F1) compulsive disorders (including obsessive-compulsive disorder, anorexia nervosa, Tourette syndrome), F2) psychotic disorder (including bipolar disorder, schizophrenia), F3) internalising disorders (including anxiety disorder, major depressive disorder), F4) neurodevelopmental traits (including autism, ADHD), and F5) attention and learning difficulties (including ADHD, dyslexia). ADHD loaded more strongly on the attention and learning difficulties latent factor (F5) than on the neurodevelopmental traits latent factor (F4). The attention and learning difficulties latent factor (F5) was positively correlated with internalising disorders (.40), neurodevelopmental traits (.25) and psychotic disorders (.17) latent factors, and negatively correlated with the compulsive disorders (–.16) latent factor. These factor correlations are mirrored in genetic correlations observed between the attention and learning difficulties latent factor and other cognitive, psychological and wellbeing traits. We further investigated genetic variants underlying both dyslexia and ADHD, which implicated 49 loci (40 not previously found in GWAS of the individual traits) mapping to 174 genes (121 not found in GWAS of individual traits) as potential pleiotropic variants. Our study confirms the increased genetic relation between dyslexia and ADHD versus other psychiatric traits and uncovers novel pleiotropic variants affecting both traits. In future, analyses including additional co-occurring traits such as dyscalculia and dyspraxia will allow a clearer definition of the attention and learning difficulties latent factor, yielding further insights into factor structure and pleiotropic effects. -
Pu, Y., Francks, C., & Kong, X. (2025). Global brain asymmetry. Trends in Cognitive Sciences, 29(2), 114-117. doi:10.1016/j.tics.2024.10.008.
Abstract
Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain. -
Galke, L., & Raviv, L. (2025). Learning and communication pressures in neural networks: Lessons from emergent communication. Language Development Research, 5(1), 116-143. doi:10.34842/3vr5-5r49.
Abstract
Finding and facilitating commonalities between the linguistic behaviors of large language models and humans could lead to major breakthroughs in our understanding of the acquisition, processing, and evolution of language. However, most findings on human–LLM similarity can be attributed to training on human data. The field of emergent machine-to-machine communication provides an ideal testbed for discovering which pressures are neural agents naturally exposed to when learning to communicate in isolation, without any human language to start with. Here, we review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved thanks to introducing theoretically-motivated inductive biases. By contrasting humans, large language models, and emergent communication agents, we then identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors. We discuss their implications and relevance to the field of language evolution and acquisition. By mapping out the necessary inductive biases that make agents' emergent languages more human-like, we not only shed light on the underlying principles of human cognition and communication, but also inform and improve the very use of these models as valuable scientific tools for studying language learning, processing, use, and representation more broadly. -
Hegemann, L., Eilertsen, E., Hagen Pettersen, J., Corfield, E. C., Cheesman, R., Frach, L., Daae Bjørndal, L., Ask, H., St Pourcain, B., Havdahl, A., & Hannigan, L. J. (2025). Direct and indirect genetic effects on early neurodevelopmental traits. The Journal of Child Psychology and Psychiatry. Advance online publication. doi:10.1111/jcpp.14122.
Abstract
Background
Neurodevelopmental conditions are highly heritable. Recent studies have shown that genomic heritability estimates can be confounded by genetic effects mediated via the environment (indirect genetic effects). However, the relative importance of direct versus indirect genetic effects on early variability in traits related to neurodevelopmental conditions is unknown.
Methods
The sample included up to 24,692 parent-offspring trios from the Norwegian MoBa cohort. We use Trio-GCTA to estimate latent direct and indirect genetic effects on mother-reported neurodevelopmental traits at age of 3 years (restricted and repetitive behaviors and interests, inattention, hyperactivity, language, social, and motor development). Further, we investigate to what extent direct and indirect effects are attributable to common genetic variants associated with autism, ADHD, developmental dyslexia, educational attainment, and cognitive ability using polygenic scores (PGS) in regression modeling.
Results
We find evidence for contributions of direct and indirect latent common genetic effects to inattention (direct: explaining 4.8% of variance, indirect: 6.7%) hyperactivity (direct: 1.3%, indirect: 9.6%), and restricted and repetitive behaviors (direct: 0.8%, indirect: 7.3%). Direct effects best explained variation in social and communication, language, and motor development (5.1%–5.7%). Direct genetic effects on inattention were captured by PGS for ADHD, educational attainment, and cognitive ability, whereas direct genetic effects on language development were captured by cognitive ability, educational attainment, and autism PGS. Indirect genetic effects on neurodevelopmental traits were primarily captured by educational attainment and/or cognitive ability PGS.
Conclusions
Results were consistent with differential contributions to neurodevelopmental traits in early childhood from direct and indirect genetic effects. Indirect effects were particularly important for hyperactivity and restricted and repetitive behaviors and interests and may be linked to genetic variation associated with cognition and educational attainment. Our findings illustrate the importance of within-family methods for disentangling genetic processes that influence early neurodevelopmental traits, even when identifiable associations are small.
Additional information
supplemental material -
Korbmacher, M., Tranfa, M., Pontillo, G., Van der Meer, D., Wang, M.-Y., Andreassen, O. A., Westlye, L. T., & Maximov, I. I. (2025). White matter microstructure links with brain, bodily and genetic attributes in adolescence, mid- and late life. NeuroImage, 310: 121132. doi:10.1016/j.neuroimage.2025.121132.
Abstract
Advanced diffusion magnetic resonance imaging (dMRI) allows one to probe and assess brain white matter (WM) organisation and microstructure in vivo. Various dMRI models with different theoretical and practical assumptions have been developed, representing partly overlapping characteristics of the underlying brain biology with potentially complementary value in the cognitive and clinical neurosciences. To which degree the different dMRI metrics relate to clinically relevant geno- and phenotypes is still debated. Hence, we investigate how tract-based and whole WM skeleton parameters from different dMRI approaches associate with clinically relevant and white matter-related phenotypes (sex, age, pulse pressure (PP), body-mass-index (BMI), brain asymmetry) and genetic markers in the UK Biobank (UKB, n=52,140) and the Adolescent Brain Cognitive Development (ABCD) Study (n=5,844). In general, none of the imaging approaches could explain all examined phenotypes, though the approaches were overall similar in explaining variability of the examined phenotypes. Nevertheless, particular diffusion parameters of the used dMRI approaches stood out in explaining some important phenotypes known to correlate with general human health outcomes. A multi-compartment Bayesian dMRI approach provided the strongest WM associations with age, and together with diffusion tensor imaging, the largest accuracy for sex-classifications. We find a similar pattern of metric and tract-dependent asymmetries across datasets, with stronger asymmetries in ABCD data. The magnitude of WM associations with polygenic scores as well as PP depended more on the sample, and likely age, than dMRI metrics. However, kurtosis was most indicative of BMI and potentially of bipolar disorder polygenic scores. We conclude that WM microstructure is differentially associated with clinically relevant pheno- and genotypes at different points in life. -
Morales, A. E., Dong, Y., Brown, T., Baid, K., Kontopoulos, D.-.-G., Gonzalez, V., Huang, Z., Ahmed, A.-W., Bhuinya, A., Hilgers, L., Winkler, S., Hughes, G., Li, X., Lu, P., Yang, Y., Kirilenko, B. M., Devanna, P., Lama, T. M., Nissan, Y., Pippel, M. Morales, A. E., Dong, Y., Brown, T., Baid, K., Kontopoulos, D.-.-G., Gonzalez, V., Huang, Z., Ahmed, A.-W., Bhuinya, A., Hilgers, L., Winkler, S., Hughes, G., Li, X., Lu, P., Yang, Y., Kirilenko, B. M., Devanna, P., Lama, T. M., Nissan, Y., Pippel, M., Dávalos, L. M., Vernes, S. C., Puechmaille, S. J., Rossiter, S. J., Yovel, Y., Prescott, J. B., Kurth, A., Ray, D. A., Lim, B. K., Myers, E., Teeling, E. C., Banerjee, A., Irving, A. T., & Hiller, M. (2025). Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature, 638, 449-458. doi:10.1038/s41586-024-08471-0.
Abstract
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.Additional information
supplementary information -
Postema, A., Van Mierlo, H., Bakker, A. B., & Barendse, M. T. (2025). Study-to-sports spillover among competitive athletes: A field study. International Journal of Sport and Exercise Psychology, 23(3), lxviii-xci. doi:10.1080/1612197X.2022.2058054.
Abstract
Combining academics and athletics is challenging but important for the psychological and psychosocial development of those involved. However, little is known about how experiences in academics spill over and relate to athletics. Drawing on the enrichment mechanisms proposed by the Work-Home Resources model, we posit that study crafting behaviours are positively related to volatile personal resources, which, in turn, are related to higher athletic achievement. Via structural equation modelling, we examine a path model among 243 student-athletes, incorporating study crafting behaviours and personal resources (i.e., positive affect and study engagement), and self- and coach-rated athletic achievement measured two weeks later. Results show that optimising the academic environment by crafting challenging study demands relates positively to positive affect and study engagement. In turn, positive affect related positively to self-rated athletic achievement, whereas – unexpectedly – study engagement related negatively to coach-rated athletic achievement. Optimising the academic environment through cognitive crafting and crafting social study resources did not relate to athletic outcomes. We discuss how these findings offer new insights into the interplay between academics and athletics. -
Raykov, P. P., Daly, J., Fisher, S. E., Eising, E., Geerligs, L., & Bird, C. M. (2025). No effect of apolipoprotein E polymorphism on MRI brain activity during movie watching. Brain and Neuroscience Advances. Advance online publication, 9. doi:10.1177/23982128251314577.
Abstract
Apolipoprotein E ε4 is a major genetic risk factor for Alzheimer’s disease, and some apolipoprotein E ε4 carriers show Alzheimer’s disease–related neuropathology many years before cognitive changes are apparent. Therefore, studying healthy apolipoprotein E genotyped individuals offers an opportunity to investigate the earliest changes in brain measures that may signal the presence of disease-related processes. For example, subtle changes in functional magnetic resonance imaging functional connectivity, particularly within the default mode network, have been described when comparing healthy ε4 carriers to ε3 carriers. Similarly, very mild impairments of episodic memory have also been documented in healthy apolipoprotein E ε4 carriers. Here, we use a naturalistic activity (movie watching), and a marker of episodic memory encoding (transient changes in functional magnetic resonance imaging activity and functional connectivity around so-called ‘event boundaries’), to investigate potential phenotype differences associated with the apolipoprotein E ε4 genotype in a large sample of healthy adults. Using Bayes factor analyses, we found strong evidence against existence of differences associated with apolipoprotein E allelic status. Similarly, we did not find apolipoprotein E-associated differences when we ran exploratory analyses examining: functional system segregation across the whole brain, and connectivity within the default mode network. We conclude that apolipoprotein E genotype has little or no effect on how ongoing experiences are processed in healthy adults. The mild phenotype differences observed in some studies may reflect early effects of Alzheimer’s disease–related pathology in apolipoprotein E ε4 carriers. -
Rivera-Olvera, A., Houwing, D. J., Ellegood, J., Masifi, S., Martina, S., Silberfeld, A., Pourquie, O., Lerch, J. P., Francks, C., Homberg, J. R., Van Heukelum, S., & Grandjean, J. (2025). The universe is asymmetric, the mouse brain too. Molecular Psychiatry, 30, 489-496. doi:10.1038/s41380-024-02687-2.
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models in studying the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice. -
Sha, Z., & Francks, C. (2025). Large-scale genetic mapping for human brain asymmetry. In C. Papagno, & P. Corballis (
Eds. ), Handbook of Clinical Neurology: Cerebral Asymmetries (pp. 241-254). Amsterdam: Elsevier.Abstract
Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last five years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules, or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain’s left-right axis. Several of the implicated genes have also been associated with psychiatric or neurological disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders. -
Tsomokos, D. I., & Raviv, L. (2025). A bidirectional association between language development and prosocial behaviour in childhood: Evidence from a longitudinal birth cohort in the United Kingdom. Developmental Psychology, 61(2), 336-350. doi:10.1037/dev0001875.
Abstract
This study investigated a developmental cascade between prosocial and linguistic abilities in a large sample (N = 11,051) from the general youth population in the United Kingdom (50% female, 46% living in disadvantaged neighborhoods, 13% non-White). Cross-lagged panel models showed that verbal ability at age 3 predicted prosociality at age 7, which in turn predicted verbal ability at age 11. Latent growth models also showed that gains in prosociality between 3 and 5 years were associated with increased verbal ability between 5 and 11 years and vice versa. Theory of mind and social competence at age 5 mediated the association between early childhood prosociality and late childhood verbal ability. These results remained robust even after controlling for socioeconomic factors, maternal mental health, parenting microclimate in the home environment, and individual characteristics (sex, ethnicity, and special educational needs). The findings suggest that language skills could be boosted through mentalizing activities and prosocial behaviors. -
Acuna-Hidalgo, R., Deriziotis, P., Steehouwer, M., Gilissen, C., Graham, S. A., Van Dam, S., Hoover-Fong, J., Telegrafi, A. B., Destree, A., Smigiel, R., Lambie, L. A., Kayserili, H., Altunoglu, U., Lapi, E., Uzielli, M. L., Aracena, M., Nur, B. G., Mihci, E., Moreira, L. M. A., Ferreira, V. B. and 26 moreAcuna-Hidalgo, R., Deriziotis, P., Steehouwer, M., Gilissen, C., Graham, S. A., Van Dam, S., Hoover-Fong, J., Telegrafi, A. B., Destree, A., Smigiel, R., Lambie, L. A., Kayserili, H., Altunoglu, U., Lapi, E., Uzielli, M. L., Aracena, M., Nur, B. G., Mihci, E., Moreira, L. M. A., Ferreira, V. B., Horovitz, D. D. G., Da Rocha, K. M., Jezela-Stanek, A., Brooks, A. S., Reutter, H., Cohen, J. S., Fatemi, A., Smitka, M., Grebe, T. A., Di Donato, N., Deshpande, C., Vandersteen, A., Marques Lourenço, C., Dufke, A., Rossier, E., Andre, G., Baumer, A., Spencer, C., McGaughran, J., Franke, L., Veltman, J. A., De Vries, B. B. A., Schinzel, A., Fisher, S. E., Hoischen, A., & Van Bon, B. W. (2017). Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies. PLoS Genetics, 13: e1006683. doi:10.1371/journal.pgen.1006683.
Abstract
Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype. -
Bosman, A., Moisik, S. R., Dediu, D., & Waters-Rist, A. (2017). Talking heads: Morphological variation in the human mandible over the last 500 years in the Netherlands. HOMO - Journal of Comparative Human Biology, 68(5), 329-342. doi:10.1016/j.jchb.2017.08.002.
Abstract
The primary aim of this paper is to assess patterns of morphological variation in the mandible to investigate changes during the last 500 years in the Netherlands. Three-dimensional geometric morphometrics is used on data collected from adults from three populations living in the Netherlands during three time-periods. Two of these samples come from Dutch archaeological sites (Alkmaar, 1484-1574, n = 37; and Middenbeemster, 1829-1866, n = 51) and were digitized using a 3D laser scanner. The third is a modern sample obtained from MRI scans of 34 modern Dutch individuals. Differences between mandibles are dominated by size. Significant differences in size are found among samples, with on average, males from Alkmaar having the largest mandibles and females from Middenbeemster having the smallest. The results are possibly linked to a softening of the diet, due to a combination of differences in food types and food processing that occurred between these time-periods. Differences in shape are most noticeable between males from Alkmaar and Middenbeemster. Shape differences between males and females are concentrated in the symphysis and ramus, which is mostly the consequence of sexual dimorphism. The relevance of this research is a better understanding of the anatomical variation of the mandible that can occur over an evolutionarily short time, as well as supporting research that has shown plasticity of the mandibular form related to diet and food processing. This plasticity of form must be taken into account in phylogenetic research and when the mandible is used in sex estimation of skeletons. -
Carrion Castillo, A., Maassen, B., Franke, B., Heister, A., Naber, M., Van der Leij, A., Francks, C., & Fisher, S. E. (2017). Association analysis of dyslexia candidate genes in a Dutch longitudinal sample. European Journal of Human Genetics, 25(4), 452-460. doi:10.1038/ejhg.2016.194.
Abstract
Dyslexia is a common specific learning disability with a substantive genetic component. Several candidate genes have been proposed to be implicated in dyslexia susceptibility, such as DYX1C1, ROBO1, KIAA0319, and DCDC2. Associations with variants in these genes have also been reported with a variety of psychometric measures tapping into the underlying processes that might be impaired in dyslexic people. In this study, we first conducted a literature review to select single nucleotide polymorphisms (SNPs) in dyslexia candidate genes that had been repeatedly implicated across studies. We then assessed the SNPs for association in the richly phenotyped longitudinal data set from the Dutch Dyslexia Program. We tested for association with several quantitative traits, including word and nonword reading fluency, rapid naming, phoneme deletion, and nonword repetition. In this, we took advantage of the longitudinal nature of the sample to examine if associations were stable across four educational time-points (from 7 to 12 years). Two SNPs in the KIAA0319 gene were nominally associated with rapid naming, and these associations were stable across different ages. Genetic association analysis with complex cognitive traits can be enriched through the use of longitudinal information on trait development.Additional information
ejhg2016194x1.pdf The genotypic and phenotypic data have been deposited at The Language Archive -
Chen, X. S., Reader, R. H., Hoischen, A., Veltman, J. A., Simpson, N. H., Francks, C., Newbury, D. F., & Fisher, S. E. (2017). Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Scientific Reports, 7: 46105. doi:10.1038/srep46105.
Abstract
A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential “multiple-hit” cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation. -
Dediu, D. (2017). From biology to language change and diversity. In N. J. Enfield (
Ed. ), Dependencies in language: On the causal ontology of linguistics systems (pp. 39-52). Berlin: Language Science Press. -
Dediu, D., Janssen, R., & Moisik, S. R. (2017). Language is not isolated from its wider environment: Vocal tract influences on the evolution of speech and language. Language and Communication, 54, 9-20. doi:10.1016/j.langcom.2016.10.002.
Abstract
Language is not a purely cultural phenomenon somehow isolated from its wider environment, and we may only understand its origins and evolution by seriously considering its embedding in this environment as well as its multimodal nature. By environment here we understand other aspects of culture (such as communication technology, attitudes towards language contact, etc.), of the physical environment (ultraviolet light incidence, air humidity, etc.), and of the biological infrastructure for language and speech. We are specifically concerned in this paper with the latter, in the form of the biases, constraints and affordances that the anatomy and physiology of the vocal tract create on speech and language. In a nutshell, our argument is that (a) there is an under-appreciated amount of inter-individual variation in vocal tract (VT) anatomy and physiology, (b) variation that is non-randomly distributed across populations, and that (c) results in systematic differences in phonetics and phonology between languages. Relevant differences in VT anatomy include the overall shape of the hard palate, the shape of the alveolar ridge, the relationship between the lower and upper jaw, to mention just a few, and our data offer a new way to systematically explore such differences and their potential impact on speech. These differences generate very small biases that nevertheless can be amplified by the repeated use and transmission of language, affecting language diachrony and resulting in cross-linguistic synchronic differences. Moreover, the same type of biases and processes might have played an essential role in the emergence and evolution of language, and might allow us a glimpse into the speech and language of extinct humans by, for example, reconstructing the anatomy of parts of their vocal tract from the fossil record and extrapolating the biases we find in present-day humans. -
Deriziotis, P., & Fisher, S. E. (2017). Speech and Language: Translating the Genome. Trends in Genetics, 33(9), 642-656. doi:10.1016/j.tig.2017.07.002.
Abstract
Investigation of the biological basis of human speech and language is being transformed by developments in molecular technologies, including high-throughput genotyping and next-generation sequencing of whole genomes. These advances are shedding new light on the genetic architecture underlying language-related disorders (speech apraxia, specific language impairment, developmental dyslexia) as well as that contributing to variation in relevant skills in the general population. We discuss how state-of-the-art methods are uncovering a range of genetic mechanisms, from rare mutations of large effect to common polymorphisms that increase risk in a subtle way, while converging on neurogenetic pathways that are shared between distinct disorders. We consider the future of the field, highlighting the unusual challenges and opportunities associated with studying genomics of language-related traits. -
Fisher, S. E. (2017). Evolution of language: Lessons from the genome. Psychonomic Bulletin & Review, 24(1), 34-40. doi: 10.3758/s13423-016-1112-8.
Abstract
The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human. -
Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9-15. doi:10.1016/j.bandl.2016.07.002.
Abstract
Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N = 1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.Additional information
mmc1.docx -
Guadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T. and 141 moreGuadalupe, T., Mathias, S. R., Van Erp, T. G. M., Whelan, C. D., Zwiers, M. P., Abe, Y., Abramovic, L., Agartz, I., Andreassen, O. A., Arias-Vásquez, A., Aribisala, B. S., Armstrong, N. J., Arolt, V., Artiges, E., Ayesa-Arriola, R., Baboyan, V. G., Banaschewski, T., Barker, G., Bastin, M. E., Baune, B. T., Blangero, J., Bokde, A. L., Boedhoe, P. S., Bose, A., Brem, S., Brodaty, H., Bromberg, U., Brooks, S., Büchel, C., Buitelaar, J., Calhoun, V. D., Cannon, D. M., Cattrell, A., Cheng, Y., Conrod, P. J., Conzelmann, A., Corvin, A., Crespo-Facorro, B., Crivello, F., Dannlowski, U., De Zubicaray, G. I., De Zwarte, S. M., Deary, I. J., Desrivières, S., Doan, N. T., Donohoe, G., Dørum, E. S., Ehrlich, S., Espeseth, T., Fernández, G., Flor, H., Fouche, J.-P., Frouin, V., Fukunaga, M., Gallinat, J., Garavan, H., Gill, M., Suarez, A. G., Gowland, P., Grabe, H. J., Grotegerd, D., Gruber, O., Hagenaars, S., Hashimoto, R., Hauser, T. U., Heinz, A., Hibar, D. P., Hoekstra, P. J., Hoogman, M., Howells, F. M., Hu, H., Hulshoff Pol, H. E.., Huyser, C., Ittermann, B., Jahanshad, N., Jönsson, E. G., Jurk, S., Kahn, R. S., Kelly, S., Kraemer, B., Kugel, H., Kwon, J. S., Lemaitre, H., Lesch, K.-P., Lochner, C., Luciano, M., Marquand, A. F., Martin, N. G., Martínez-Zalacaín, I., Martinot, J.-L., Mataix-Cols, D., Mather, K., McDonald, C., McMahon, K. L., Medland, S. E., Menchón, J. M., Morris, D. W., Mothersill, O., Maniega, S. M., Mwangi, B., Nakamae, T., Nakao, T., Narayanaswaamy, J. C., Nees, F., Nordvik, J. E., Onnink, A. M. H., Opel, N., Ophoff, R., Martinot, M.-L.-P., Orfanos, D. P., Pauli, P., Paus, T., Poustka, L., Reddy, J. Y., Renteria, M. E., Roiz-Santiáñez, R., Roos, A., Royle, N. A., Sachdev, P., Sánchez-Juan, P., Schmaal, L., Schumann, G., Shumskaya, E., Smolka, M. N., Soares, J. C., Soriano-Mas, C., Stein, D. J., Strike, L. T., Toro, R., Turner, J. A., Tzourio-Mazoyer, N., Uhlmann, A., Valdés Hernández, M., Van den Heuvel, O. A., Van der Meer, D., Van Haren, N. E.., Veltman, D. J., Venkatasubramanian, G., Vetter, N. C., Vuletic, D., Walitza, S., Walter, H., Walton, E., Wang, Z., Wardlaw, J., Wen, W., Westlye, L. T., Whelan, R., Wittfeld, K., Wolfers, T., Wright, M. J., Xu, J., Xu, X., Yun, J.-Y., Zhao, J., Franke, B., Thompson, P. M., Glahn, D. C., Mazoyer, B., Fisher, S. E., & Francks, C. (2017). Human subcortical asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 11(5), 1497-1514. doi:10.1007/s11682-016-9629-z.
Abstract
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.Additional information
11682_2016_9629_MOESM1_ESM.pdf -
Guadalupe, T. (2017). The biology of variation in anatomical brain asymmetries. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Hibar, D. P., Adams, H. H. H., Jahanshad, N., Chauhan, G., Stein, J. L., Hofer, E., Rentería, M. E., Bis, J. C., Arias-Vasquez, A., Ikram, M. K., Desrivieres, S., Vernooij, M. W., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K., Aribisala, B. S., Armstrong, N. J., Athanasiu, L. and 312 moreHibar, D. P., Adams, H. H. H., Jahanshad, N., Chauhan, G., Stein, J. L., Hofer, E., Rentería, M. E., Bis, J. C., Arias-Vasquez, A., Ikram, M. K., Desrivieres, S., Vernooij, M. W., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beecham, A. H., Beiser, A., Bernard, M., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chen, Q., Ching, C. R. K., Chouraki, V., Cuellar-Partida, G., Crivello, F., den Brabander, A., Doan, N. T., Ehrlich, S., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Grimm, O., Griswold, M. E., Guadalupe, T., Gutman, B. A., Hass, J., Haukvik, U. K., Hoehn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Jørgensen, K. N., Mirza-Schreiber, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee, P. H., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A. F., Matarin, M., Mather, K. A., Mattheisen, M., McKay, D. R., Milaneschi, Y., Maniega, S. M., Nho, K., Nugent, A. C., Nyquist, P., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pirpamer, L., Pütz, B., Ramasamy, A., Richards, J. S., Risacher, S., Roiz-Santiañez, R., Rommelse, N., Ropele, S., Rose, E., Royle, N. A., Rundek, T., Sämann, P. G., Saremi, A., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Trompet, S., Vaidya, D., Van der Grond, J., Van der Lee, S. J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., van Erp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Wittfeld, K. M., Woldehawariat, G., Wolf, C., Wolfers, T., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, D. M., Becker, J. T., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Craen, A. J. M., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. i., Deary, I. J., Debette, S., DeCarli, C., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Enzinger, C., Erk, S., Espeseth, T., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Fornage, M., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Green, R. C., Gruber, O., Gudnason, V., Guelfi, S., Haberg, A. K., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Huentelman, M., Pol, H. E. H., Ikeda, M., Jack Jr., C. R., Jenkinson, M., Johnson, R., Jonsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., Mcintosh, A. M., McMahon, F., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schmidt, H., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Toga, A. W., Traynor, B. J., Troncoso, J., Tsolaki, M., Tzourio, C., Uitterlinden, A. G., Hernández, M. C. V., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Haren, N. E. M., Van Tol, M.-J., Vardarajan, B. N., Vellas, B., Veltman, D. J., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. e., Weinberger, D. R., Weiner, M., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., Martin, N. G., Van Duijn, C. M., Wright, M. J., Longstreth, W. W. T., Schumann, G., Grabe, H. J., Franke, B., Launer, L. J., Medland, S. E., Seshadri, S., Thompson, P. M., & Ikram, A. (2017). Novel genetic loci associated with hippocampal volume. Nature Communications, 8: 13624. doi:10.1038/ncomms13624.
Abstract
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness. -
Kavaklioglu, T., Guadalupe, T., Zwiers, M., Marquand, A. F., Onnink, M., Shumskaya, E., Brunner, H., Fernandez, G., Fisher, S. E., & Francks, C. (2017). Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Structure and Function, 22, 1611-1623. doi:10.1007/s00429-016-1295-9.
Abstract
There is evidence that the human cerebellum is involved not only in motor control but also in other cognitive functions. Several studies have shown that language-related activation is lateralized toward the right cerebellar hemisphere in most people, in accordance with leftward cerebral cortical lateralization for language and a general contralaterality of cerebral–cerebellar activations. In terms of behavior, hand use elicits asymmetrical activation in the cerebellum, while hand preference is weakly associated with language lateralization. However, it is not known how, or whether, these functional relations are reflected in anatomy. We investigated volumetric gray matter asymmetries of cerebellar lobules in an MRI data set comprising 2226 subjects. We tested these cerebellar asymmetries for associations with handedness, and for correlations with cerebral cortical anatomical asymmetries of regions important for language or hand motor control, as defined by two different automated image analysis methods and brain atlases, and supplemented with extensive visual quality control. No significant associations of cerebellar asymmetries to handedness were found. Some significant associations of cerebellar lobular asymmetries to cerebral cortical asymmetries were found, but none of these correlations were greater than 0.14, and they were mostly method-/atlas-dependent. On the basis of this large and highly powered study, we conclude that there is no overt structural manifestation of cerebellar functional lateralization and connectivity, in respect of hand motor control or language laterality -
Klein, M., Van Donkelaar, M., Verhoef, E., & Franke, B. (2017). Imaging genetics in neurodevelopmental psychopathology. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 174(5), 485-537. doi:10.1002/ajmg.b.32542.
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn. -
De Kovel, C. G. F., Lisgo, S., Karlebach, G., Ju, J., Cheng, G., Fisher, S. E., & Francks, C. (2017). Left-right asymmetry of maturation rates in human embryonic neural development. Biological Psychiatry, 82(3), 204-212. doi:10.1016/j.biopsych.2017.01.016.
Abstract
Background
Left-right asymmetry is a fundamental organizing feature of the human brain, and neuro-psychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks post conception, the majority of human fetuses move their right arms more than their left arms, but because nerve fibre tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role.
Methods
We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and left and right hindbrains, of 18 post-mortem human embryos aged 4-8 weeks post conception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia.
Results
The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages, to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared to the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05).
Conclusions
These are the earliest-stage left-right differences of human neural development ever reported. Disruption of the lateralised developmental programme may play a role in the genetic susceptibility to schizophrenia.Additional information
mmc1.pdf -
De Kovel, C. G. F., Syrbe, S., Brilstra, E. H., Verbeek, N., Kerr, B., Dubbs, H., Bayat, A., Desai, S., Naidu, S., Srivastava, S., Cagaylan, H., Yis, U., Saunders, C., Rook, M., Plugge, S., Muhle, H., Afawi, Z., Klein, K. M., Jayaraman, V., Rajagopalan, R. and 15 moreDe Kovel, C. G. F., Syrbe, S., Brilstra, E. H., Verbeek, N., Kerr, B., Dubbs, H., Bayat, A., Desai, S., Naidu, S., Srivastava, S., Cagaylan, H., Yis, U., Saunders, C., Rook, M., Plugge, S., Muhle, H., Afawi, Z., Klein, K. M., Jayaraman, V., Rajagopalan, R., Goldberg, E., Marsh, E., Kessler, S., Bergqvist, C., Conlin, L. K., Krok, B. L., Thiffault, I., Pendziwiat, M., Helbig, I., Polster, T., Borggraefe, I., Lemke, J. R., Van den Boogaardt, M. J., Moller, R. S., & Koeleman, B. P. C. (2017). Neurodevelopmental Disorders Caused by De Novo Variants in KCNB1 Genotypes and Phenotypes. JAMA Neurology, 74(10), 1228-1236. doi:10.1001/jamaneurol.2017.1714.
Abstract
Importance Knowing the range of symptoms seen in patients with a missense or loss-of-function variant in KCNB1 and how these symptoms correlate with the type of variant will help clinicians with diagnosis and prognosis when treating new patients. Objectives To investigate the clinical spectrum associated with KCNB1 variants and the genotype-phenotype correlations. Design, Setting, and Participants This study summarized the clinical and genetic information of patients with a presumed pathogenic variant in KCNB1.Patients were identified in research projects or during clinical testing. Information on patients from previously published articles was collected and authors contacted if feasible. All patients were seen at a clinic at one of the participating institutes because of presumed genetic disorder. They were tested in a clinical setting or included in a research project. Main Outcomes and Measures The genetic variant and its inheritance and information on the patient's symptoms and characteristics in a predefined format. All variants were identified with massive parallel sequencing and confirmed with Sanger sequencing in the patient. Absence of the variant in the parents could be confirmed with Sanger sequencing in all families except one. Results Of 26 patients (10 female, 15 male, 1 unknown; mean age at inclusion, 9.8 years; age range, 2-32 years) with developmental delay, 20 (77%) carried a missense variant in the ion channel domain of KCNB1, with a concentration of variants in region S5 to S6. Three variants that led to premature stops were located in the C-terminal and 3 in the ion channel domain. Twenty-one of 25 patients (84%) had seizures, with 9 patients (36%) starting with epileptic spasms between 3 and 18 months of age. All patients had developmental delay, with 17 (65%) experiencing severe developmental delay; 14 (82%) with severe delay had behavioral problems. The developmental delay was milder in 4 of 6 patients with stop variants and in a patient with a variant in the S2 transmembrane element rather than the S4 to S6 region. Conclusions and Relevance De novo KCNB1 missense variants in the ion channel domain and loss-of-function variants in this domain and the C-terminal likely cause neurodevelopmental disorders with or without seizures. Patients with presumed pathogenic variants in KCNB1 have a variable phenotype. However, the type and position of the variants in the protein are (imperfectly) correlated with the severity of the disorder. -
Moisik, S. R., & Dediu, D. (2017). Anatomical biasing and clicks: Evidence from biomechanical modeling. Journal of Language Evolution, 2(1), 37-51. doi:10.1093/jole/lzx004.
Abstract
It has been observed by several researchers that the Khoisan palate tends to lack a prominent alveolar ridge. A biomechanical model of click production was created to examine if these sounds might be subject to an anatomical bias associated with alveolar ridge size. Results suggest the bias is plausible, taking the form of decreased articulatory effort and improved volume change characteristics; however, further modeling and experimental research is required to solidify the claim.Additional information
lzx004_Supp.zip -
Moisik, S. R., & Gick, B. (2017). The quantal larynx: The stable regions of laryngeal biomechanics and implications for speech production. Journal of Speech, Language, and Hearing Research, 60, 540-560. doi:10.1044/2016_JSLHR-S-16-0019.
Abstract
Purpose: Recent proposals suggest that (a) the high dimensionality of speech motor control may be reduced via modular neuromuscular organization that takes advantage of intrinsic biomechanical regions of stability and (b) computational modeling provides a means to study whether and how such modularization works. In this study, the focus is on the larynx, a structure that is fundamental to speech production because of its role in phonation and numerous articulatory functions. Method: A 3-dimensional model of the larynx was created using the ArtiSynth platform (http://www.artisynth.org). This model was used to simulate laryngeal articulatory states, including inspiration, glottal fricative, modal prephonation, plain glottal stop, vocal–ventricular stop, and aryepiglotto– epiglottal stop and fricative. Results: Speech-relevant laryngeal biomechanics is rich with “quantal” or highly stable regions within muscle activation space. Conclusions: Quantal laryngeal biomechanics complement a modular view of speech control and have implications for the articulatory–biomechanical grounding of numerous phonetic and phonological phenomena -
Negwer, M., & Schubert, D. (2017). Talking convergence: Growing evidence links FOXP2 and retinoic acidin shaping speech-related motor circuitry. Frontiers in Neuroscience, 11: 19. doi:10.3389/fnins.2017.00019.
Abstract
A commentary on
FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways
by Devanna, P., Middelbeek, J., and Vernes, S. C. (2014). Front. Cell. Neurosci. 8:305. doi: 10.3389/fncel.2014.00305 -
Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. E. M., Abdellaoui, A., Bartels, M., Baselmans, B. M. L., Ligthart, L., St Pourcain, B., Boomsma, D. I., Munafò, M. R., & Middeldorp, C. M. (2017). Genetic overlap between schizophrenia and developmental psychopathology: Longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophrenia Bulletin, 43(6), 1197-1207. doi:10.1093/schbul/sbx031.
Abstract
Background: Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Methods: Polygenic risk scores (PRS), reflecting an individual’s genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Results: Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. Conclusion: By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology. -
Nivard, M. G., Lubke, G. H., Dolan, C. V., Evans, D. M., St Pourcain, B., Munafo, M. R., & Middeldorp, C. M. (2017). Joint developmental trajectories of internalizing and externalizing disorders between childhood and adolescence. Development and Psychopathology, 29(3), 919-928. doi:10.1017/S0954579416000572.
Abstract
This study sought to identify trajectories of DSM-IV based internalizing (INT) and externalizing (EXT) problem scores across childhood and adolescence and to provide insight into the comorbidity by modeling the co-occurrence of INT and EXT trajectories. INT and EXT were measured repeatedly between age 7 and age 15 years in over 7,000 children and analyzed using growth mixture models. Five trajectories were identified for both INT and EXT, including very low, low, decreasing, and increasing trajectories. In addition, an adolescent onset trajectory was identified for INT and a stable high trajectory was identified for EXT. Multinomial regression showed that similar EXT and INT trajectories were associated. However, the adolescent onset INT trajectory was independent of high EXT trajectories, and persisting EXT was mainly associated with decreasing INT. Sex and early life environmental risk factors predicted EXT and, to a lesser extent, INT trajectories. The association between trajectories indicates the need to consider comorbidity when a child presents with INT or EXT disorders, particularly when symptoms start early. This is less necessary when INT symptoms start at adolescence. Future studies should investigate the etiology of co-occurring INT and EXT and the specific treatment needs of these severely affected children. -
Ocklenburg, S., Schmitz, J., Moinfar, Z., Moser, D., Klose, R., Lor, S., Kunz, G., Tegenthoff, M., Faustmann, P., Francks, C., Epplen, J. T., Kumsta, R., & Güntürkün, O. (2017). Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife, 6: e22784. doi:10.7554/eLife.22784.001.
Abstract
Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest that molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans -
Sollis, E., Deriziotis, P., Saitsu, H., Miyake, N., Matsumoto, N., J.V.Hoffer, M. J. V., Ruivenkamp, C. A., Alders, M., Okamoto, N., Bijlsma, E. K., Plomp, A. S., & Fisher, S. E. (2017). Equivalent missense variant in the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. Human Mutation, 38(11), 1542-1554. doi:10.1002/humu.23303.
Abstract
The closely related paralogues FOXP2 and FOXP1 encode transcription factors with shared functions in the development of many tissues, including the brain. However, while mutations in FOXP2 lead to a speech/language disorder characterized by childhood apraxia of speech (CAS), the clinical profile of FOXP1 variants includes a broader neurodevelopmental phenotype with global developmental delay, intellectual disability and speech/language impairment. Using clinical whole-exome sequencing, we report an identical de novo missense FOXP1 variant identified in three unrelated patients. The variant, p.R514H, is located in the forkhead-box DNA-binding domain and is equivalent to the well-studied p.R553H FOXP2 variant that co-segregates with CAS in a large UK family. We present here for the first time a direct comparison of the molecular and clinical consequences of the same mutation affecting the equivalent residue in FOXP1 and FOXP2. Detailed functional characterization of the two variants in cell model systems revealed very similar molecular consequences, including aberrant subcellular localization, disruption of transcription factor activity and deleterious effects on protein interactions. Nonetheless, clinical manifestations were broader and more severe in the three cases carrying the p.R514H FOXP1 variant than in individuals with the p.R553H variant related to CAS, highlighting divergent roles of FOXP2 and FOXP1 in neurodevelopment.Additional information
humu23303-sup-0001-SuppMat.pdf -
Stergiakouli, E., Martin, J., Hamshere, M. L., Heron, J., St Pourcain, B., Timpson, N. J., Thapar, A., & Smith, G. D. (2017). Association between polygenic risk scores for attention-deficit hyperactivity disorder and educational and cognitive outcomes in the general population. International Journal of Epidemiology, 46(2), 421-428. doi:10.1093/ije/dyw216.
Abstract
Background: Children with a diagnosis of attention-deficit hyperactivity disorder (ADHD) have lower cognitive ability and are at risk of adverse educational outcomes; ADHD genetic risks have been found to predict childhood cognitive ability and other neurodevelopmental traits in the general population; thus genetic risks might plausibly also contribute to cognitive ability later in development and to educational underachievement.
Methods: We generated ADHD polygenic risk scores in the Avon Longitudinal Study of Parents and Children participants (maximum N: 6928 children and 7280 mothers) based on the results of a discovery clinical sample, a genome-wide association study of 727 cases with ADHD diagnosis and 5081 controls. We tested if ADHD polygenic risk scores were associated with educational outcomes and IQ in adolescents and their mothers.
Results: High ADHD polygenic scores in adolescents were associated with worse educational outcomes at Key Stage 3 [national tests conducted at age 13–14 years; β = −1.4 (−2.0 to −0.8), P = 2.3 × 10−6), at General Certificate of Secondary Education exams at age 15–16 years (β = −4.0 (−6.1 to −1.9), P = 1.8 × 10−4], reduced odds of sitting Key Stage 5 examinations at age 16–18 years [odds ratio (OR) = 0.90 (0.88 to 0.97), P = 0.001] and lower IQ scores at age 15.5 [β = −0.8 (−1.2 to −0.4), P = 2.4 × 10−4]. Moreover, maternal ADHD polygenic scores were associated with lower maternal educational achievement [β = −0.09 (−0.10 to −0.06), P = 0.005] and lower maternal IQ [β = −0.6 (−1.2 to −0.1), P = 0.03].
Conclusions: ADHD diagnosis risk alleles impact on functional outcomes in two generations (mother and child) and likely have intergenerational environmental effects. -
Stergiakouli, E., Smith, G. D., Martin, J., Skuse, D. H., Viechtbauer, W., Ring, S. M., Ronald, A., Evans, D. E., Fisher, S. E., Thapar, A., & St Pourcain, B. (2017). Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development. Molecular Autism, 8: 18. doi:10.1186/s13229-017-0131-2.
Abstract
Background: Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and
autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however,
subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD
and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and
cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk.
Methods: Social-communication difficulties (N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and
combined hyperactive-impulsive/inattentive ADHD symptoms (N ≤ 5678, Strengths and Difficulties Questionnaire,
SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary
statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls)
were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between
phenotypes were estimated using genome-wide data.
Results: In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout
development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait rg ≤ 1,
pmin = 3 × 10−4) as those between repeated measures of the same trait (within-trait rg ≤ 0.94, pmin = 7 × 10−4).
Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling
upregulated genes (p-meta = 6.4 × 10−4).
Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles
for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression
R2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during
childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores
were linked to genetic risk for disorder.
Conclusions: In the general population, genetic aetiologies between social-communication difficulties and ADHD
symptoms are shared throughout child and adolescent development and may implicate similar biological pathways
that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked
to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional
trait-disorder relationships. -
Tachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G. and 83 moreTachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G., Männistö, S., Matchan, A., Medina-Gomez, C., Metrustry, S. J., Nag, A., Ntalla, I., Paternoster, L., Rayner, N. W., Sala, C., Scott, W. R., Shihab, H. A., Southam, L., St Pourcain, B., Traglia, M., Trajanoska, K., Zaza, G., Zhang, W., Artigas, M. S., Bansal, N., Benn, M., Chen, Z., Danecek, P., Lin, W.-Y., Locke, A., Luan, J., Manning, A. K., Mulas, A., Sidore, C., Tybjaerg-Hansen, A., Varbo, A., Zoledziewska, M., Finan, C., Hatzikotoulas, K., Hendricks, A. E., Kemp, J. P., Moayyeri, A., Panoutsopoulou, K., Szpak, M., Wilson, S. G., Boehnke, M., Cucca, F., Di Angelantonio, E., Langenberg, C., Lindgren, C., McCarthy, M. I., Morris, A. P., Nordestgaard, B. G., Scott, R. A., Tobin, M. D., Wareham, N. J., Burton, P., Chambers, J. C., Smith, G. D., Dedoussis, G., Felix, J. F., Franco, O. H., Gambaro, G., Gasparini, P., Hammond, C. J., Hofman, A., Jaddoe, V. W. V., Kleber, M., Kooner, J. S., Perola, M., Relton, C., Ring, S. M., Rivadeneira, F., Salomaa, V., Spector, T. D., Stegle, O., Toniolo, D., Uitterlinden, A. G., Barroso, I., Greenwood, C. M. T., Perry, J. R. B., Walker, B. R., Butterworth, A. S., Xue, Y., Durbin, R., Small, K. S., Soranzo, N., Timpson, N. J., & Zeggini, E. (2017). Whole-Genome Sequencing coupled to imputation discovers genetic signals for anthropometric traits. The American Journal of Human Genetics, 100(6), 865-884. doi:10.1016/j.ajhg.2017.04.014.
Abstract
Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.Additional information
http://www.sciencedirect.com/science/article/pii/S0002929717301593#appd002 -
Thompson, P. M., Andreassen, O. A., Arias-Vasquez, A., Bearden, C. E., Boedhoe, P. S., Brouwer, R. M., Buckner, R. L., Buitelaar, J. K., Bulaeva, K. B., Cannon, D. M., Cohen, R. A., Conrod, P. J., Dale, A. M., Deary, I. J., Dennis, E. L., De Reus, M. A., Desrivieres, S., Dima, D., Donohoe, G., Fisher, S. E. and 51 moreThompson, P. M., Andreassen, O. A., Arias-Vasquez, A., Bearden, C. E., Boedhoe, P. S., Brouwer, R. M., Buckner, R. L., Buitelaar, J. K., Bulaeva, K. B., Cannon, D. M., Cohen, R. A., Conrod, P. J., Dale, A. M., Deary, I. J., Dennis, E. L., De Reus, M. A., Desrivieres, S., Dima, D., Donohoe, G., Fisher, S. E., Fouche, J.-P., Francks, C., Frangou, S., Franke, B., Ganjgahi, H., Garavan, H., Glahn, D. C., Grabe, H. J., Guadalupe, T., Gutman, B. A., Hashimoto, R., Hibar, D. P., Holland, D., Hoogman, M., Pol, H. E. H., Hosten, N., Jahanshad, N., Kelly, S., Kochunov, P., Kremen, W. S., Lee, P. H., Mackey, S., Martin, N. G., Mazoyer, B., McDonald, C., Medland, S. E., Morey, R. A., Nichols, T. E., Paus, T., Pausova, Z., Schmaal, L., Schumann, G., Shen, L., Sisodiya, S. M., Smit, D. J., Smoller, J. W., Stein, D. J., Stein, J. L., Toro, R., Turner, J. A., Van den Heuvel, M., Van den Heuvel, O. A., Van Erp, T. G., Van Rooij, D., Veltman, D. J., Walter, H., Wang, Y., Wardlaw, J. M., Whelan, C. D., Wright, M. J., & Ye, J. (2017). ENIGMA and the Individual: Predicting Factors that Affect the Brain in 35 Countries Worldwide. NeuroImage, 145, 389-408. doi:10.1016/j.neuroimage.2015.11.057.
-
Thompson, J. R., Minelli, C., Bowden, J., Del Greco, F. M., Gill, D., Jones, E. M., Shapland, C. Y., & Sheehan, N. A. (2017). Mendelian randomization incorporating uncertainty about pleiotropy. Statistics in Medicine, 36(29), 4627-4645. doi:10.1002/sim.7442.
Abstract
Mendelian randomization (MR) requires strong assumptions about the genetic instruments, of which the most difficult to justify relate to pleiotropy. In a two-sample MR, different methods of analysis are available if we are able to assume, M1: no pleiotropy (fixed effects meta-analysis), M2: that there may be pleiotropy but that the average pleiotropic effect is zero (random effects meta-analysis), and M3: that the average pleiotropic effect is nonzero (MR-Egger). In the latter 2 cases, we also require that the size of the pleiotropy is independent of the size of the effect on the exposure. Selecting one of these models without good reason would run the risk of misrepresenting the evidence for causality. The most conservative strategy would be to use M3 in all analyses as this makes the weakest assumptions, but such an analysis gives much less precise estimates and so should be avoided whenever stronger assumptions are credible. We consider the situation of a two-sample design when we are unsure which of these 3 pleiotropy models is appropriate. The analysis is placed within a Bayesian framework and Bayesian model averaging is used. We demonstrate that even large samples of the scale used in genome-wide meta-analysis may be insufficient to distinguish the pleiotropy models based on the data alone. Our simulations show that Bayesian model averaging provides a reasonable trade-off between bias and precision. Bayesian model averaging is recommended whenever there is uncertainty about the nature of the pleiotropyAdditional information
sim7442-sup-0001-Supplementary.pdf -
Udden, J., Snijders, T. M., Fisher, S. E., & Hagoort, P. (2017). A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. Brain and Language, 172, 16-21. doi:10.1016/j.bandl.2016.02.003.
Abstract
The CNTNAP2 gene encodes a cell-adhesion molecule that influences the properties of neural networks and the morphology and density of neurons and glial cells. Previous studies have shown association of CNTNAP2 variants with language-related phenotypes in health and disease. Here, we report associations of a common CNTNAP2 polymorphism (rs7794745) with variation in grey matter in a region in the dorsal visual stream. We tried to replicate an earlier study on 314 subjects by Tan and colleagues (2010), but now in a substantially larger group of more than 1700 subjects. Carriers of the T allele showed reduced grey matter volume in left superior occipital gyrus, while we did not replicate associations with grey matter volume in other regions identified by Tan et al (2010). Our work illustrates the importance of independent replication in neuroimaging genetic studies of language-related candidate genes. -
Wegman, J., Tyborowska, A., Hoogman, M., Vasquez, A. A., & Janzen, G. (2017). The brain-derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. European Journal of Neuroscience, 45(12), 1501-1511. doi:10.1111/ejn.13416.
Abstract
The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing -
De Zubicaray, G., & Fisher, S. E. (
Eds. ). (2017). Genes, brain and language [Special Issue]. Brain and Language, 172. -
De Zubicaray, G., & Fisher, S. E. (2017). Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 172, 1-2. doi:10.1016/j.bandl.2017.08.003.
Share this page