Displaying 1 - 70 of 70
-
Abbondanza, F., Dale, P. S., Wang, C. A., Hayiou‐Thomas, M. E., Toseeb, U., Koomar, T. S., Wigg, K. G., Feng, Y., Price, K. M., Kerr, E. N., Guger, S. L., Lovett, M. W., Strug, L. J., Van Bergen, E., Dolan, C. V., Tomblin, J. B., Moll, K., Schulte‐Körne, G., Neuhoff, N., Warnke, A. and 13 moreAbbondanza, F., Dale, P. S., Wang, C. A., Hayiou‐Thomas, M. E., Toseeb, U., Koomar, T. S., Wigg, K. G., Feng, Y., Price, K. M., Kerr, E. N., Guger, S. L., Lovett, M. W., Strug, L. J., Van Bergen, E., Dolan, C. V., Tomblin, J. B., Moll, K., Schulte‐Körne, G., Neuhoff, N., Warnke, A., Fisher, S. E., Barr, C. L., Michaelson, J. J., Boomsma, D. I., Snowling, M. J., Hulme, C., Whitehouse, A. J. O., Pennell, C. E., Newbury, D. F., Stein, J., Talcott, J. B., Bishop, D. V. M., & Paracchini, S. (2023). Language and reading impairments are associated with increased prevalence of non‐right‐handedness. Child Development, 94(4), 970-984. doi:10.1111/cdev.13914.
Abstract
Handedness has been studied for association with language-related disorders because of its link with language hemispheric dominance. No clear pattern has emerged, possibly because of small samples, publication bias, and heterogeneous criteria across studies. Non-right-handedness (NRH) frequency was assessed in N = 2503 cases with reading and/or language impairment and N = 4316 sex-matched controls identified from 10 distinct cohorts (age range 6–19 years old; European ethnicity) using a priori set criteria. A meta-analysis (Ncases = 1994) showed elevated NRH % in individuals with language/reading impairment compared with controls (OR = 1.21, CI = 1.06–1.39, p = .01). The association between reading/language impairments and NRH could result from shared pathways underlying brain lateralization, handedness, and cognitive functions.Additional information
supplementary information -
Barendse, M. T., & Rosseel, Y. (2023). Multilevel SEM with random slopes in discrete data using the pairwise maximum likelihood. British Journal of Mathematical and Statistical Psychology, 76(2), 327-352. doi:10.1111/bmsp.12294.
Abstract
Pairwise maximum likelihood (PML) estimation is a promising method for multilevel models with discrete responses. Multilevel models take into account that units within a cluster tend to be more alike than units from different clusters. The pairwise likelihood is then obtained as the product of bivariate likelihoods for all within-cluster pairs of units and items. In this study, we investigate the PML estimation method with computationally intensive multilevel random intercept and random slope structural equation models (SEM) in discrete data. In pursuing this, we first reconsidered the general ‘wide format’ (WF) approach for SEM models and then extend the WF approach with random slopes. In a small simulation study we the determine accuracy and efficiency of the PML estimation method by varying the sample size (250, 500, 1000, 2000), response scales (two-point, four-point), and data-generating model (mediation model with three random slopes, factor model with one and two random slopes). Overall, results show that the PML estimation method is capable of estimating computationally intensive random intercept and random slopes multilevel models in the SEM framework with discrete data and many (six or more) latent variables with satisfactory accuracy and efficiency. However, the condition with 250 clusters combined with a two-point response scale shows more bias.Additional information
figures -
Corradi, Z., Khan, M., Hitti-Malin, R., Mishra, K., Whelan, L., Cornelis, S. S., ABCA4-Study Group, Hoyng, C. B., Kämpjärvi, K., Klaver, C. C. W., Liskova, P., Stohr, H., Weber, B. H. F., Banfi, S., Farrar, G. J., Sharon, D., Zernant, J., Allikmets, R., Dhaenens, C.-M., & Cremers, F. P. M. (2023). Targeted sequencing and in vitro splice assays shed light on ABCA4-associated retinopathies missing heritability. Human Genetics and Genomics Advances, 4(4): 100237. doi:10.1016/j.xhgg.2023.100237.
Abstract
The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207/520 (39.8%) naïve or unsolved cases and 70/202 (34.7%) monoallelic cases, while additional causal variants were identified in 54/136 (39.7%) of probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in STGD1 cases. -
Dingemans, A. J. M., Hinne, M., Truijen, K. M. G., Goltstein, L., Van Reeuwijk, J., De Leeuw, N., Schuurs-Hoeijmakers, J., Pfundt, R., Diets, I. J., Den Hoed, J., De Boer, E., Coenen-Van der Spek, J., Jansen, S., Van Bon, B. W., Jonis, N., Ockeloen, C. W., Vulto-van Silfhout, A. T., Kleefstra, T., Koolen, D. A., Campeau, P. M. and 13 moreDingemans, A. J. M., Hinne, M., Truijen, K. M. G., Goltstein, L., Van Reeuwijk, J., De Leeuw, N., Schuurs-Hoeijmakers, J., Pfundt, R., Diets, I. J., Den Hoed, J., De Boer, E., Coenen-Van der Spek, J., Jansen, S., Van Bon, B. W., Jonis, N., Ockeloen, C. W., Vulto-van Silfhout, A. T., Kleefstra, T., Koolen, D. A., Campeau, P. M., Palmer, E. E., Van Esch, H., Lyon, G. J., Alkuraya, F. S., Rauch, A., Marom, R., Baralle, D., Van der Sluijs, P. J., Santen, G. W. E., Kooy, R. F., Van Gerven, M. A. J., Vissers, L. E. L. M., & De Vries, B. B. A. (2023). PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nature Genetics, 55, 1598-1607. doi:10.1038/s41588-023-01469-w.
Abstract
Several molecular and phenotypic algorithms exist that establish genotype–phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype–phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.Additional information
supplementary information -
Galke, L., Vagliano, I., Franke, B., Zielke, T., & Scherp, A. (2023). Lifelong learning on evolving graphs under the constraints of imbalanced classes and new classes. Neural networks, 164, 156-176. doi:10.1016/j.neunet.2023.04.022.
Abstract
Lifelong graph learning deals with the problem of continually adapting graph neural network (GNN) models to changes in evolving graphs. We address two critical challenges of lifelong graph learning in this work: dealing with new classes and tackling imbalanced class distributions. The combination of these two challenges is particularly relevant since newly emerging classes typically resemble only a tiny fraction of the data, adding to the already skewed class distribution. We make several contributions: First, we show that the amount of unlabeled data does not influence the results, which is an essential prerequisite for lifelong learning on a sequence of tasks. Second, we experiment with different label rates and show that our methods can perform well with only a tiny fraction of annotated nodes. Third, we propose the gDOC method to detect new classes under the constraint of having an imbalanced class distribution. The critical ingredient is a weighted binary cross-entropy loss function to account for the class imbalance. Moreover, we demonstrate combinations of gDOC with various base GNN models such as GraphSAGE, Simplified Graph Convolution, and Graph Attention Networks. Lastly, our k-neighborhood time difference measure provably normalizes the temporal changes across different graph datasets. With extensive experimentation, we find that the proposed gDOC method is consistently better than a naive adaption of DOC to graphs. Specifically, in experiments using the smallest history size, the out-of-distribution detection score of gDOC is 0.09 compared to 0.01 for DOC. Furthermore, gDOC achieves an Open-F1 score, a combined measure of in-distribution classification and out-of-distribution detection, of 0.33 compared to 0.25 of DOC (32% increase). -
González-Peñas, J., De Hoyos, L., Díaz-Caneja, C. M., Andreu-Bernabeu, Á., Stella, C., Gurriarán, X., Fañanás, L., Bobes, J., González-Pinto, A., Crespo-Facorro, B., Martorell, L., Vilella, E., Muntané, G., Molto, M. D., Gonzalez-Piqueras, J. C., Parellada, M., Arango, C., & Costas, J. (2023). Recent natural selection conferred protection against schizophrenia by non-antagonistic pleiotropy. Scientific Reports, 13: 15500. doi:10.1038/s41598-023-42578-0.
Abstract
Schizophrenia is a debilitating psychiatric disorder associated with a reduced fertility and decreased life expectancy, yet common predisposing variation substantially contributes to the onset of the disorder, which poses an evolutionary paradox. Previous research has suggested balanced selection, a mechanism by which schizophrenia risk alleles could also provide advantages under certain environments, as a reliable explanation. However, recent studies have shown strong evidence against a positive selection of predisposing loci. Furthermore, evolutionary pressures on schizophrenia risk alleles could have changed throughout human history as new environments emerged. Here in this study, we used 1000 Genomes Project data to explore the relationship between schizophrenia predisposing loci and recent natural selection (RNS) signatures after the human diaspora out of Africa around 100,000 years ago on a genome-wide scale. We found evidence for significant enrichment of RNS markers in derived alleles arisen during human evolution conferring protection to schizophrenia. Moreover, both partitioned heritability and gene set enrichment analyses of mapped genes from schizophrenia predisposing loci subject to RNS revealed a lower involvement in brain and neuronal related functions compared to those not subject to RNS. Taken together, our results suggest non-antagonistic pleiotropy as a likely mechanism behind RNS that could explain the persistence of schizophrenia common predisposing variation in human populations due to its association to other non-psychiatric phenotypes. -
Heim, F., Fisher, S. E., Scharff, C., Ten Cate, C., & Riebel, K. (2023). Effects of cortical FoxP1 knockdowns on learned song preference in female zebra finches. eNeuro, 10(3): ENEURO.0328-22.2023. doi:10.1523/ENEURO.0328-22.2023.
Abstract
The search for molecular underpinnings of human vocal communication has focused on genes encoding forkhead-box transcription factors, as rare disruptions of FOXP1, FOXP2, and FOXP4 have been linked to disorders involving speech and language deficits. In male songbirds, an animal model for vocal learning, experimentally altered expression levels of these transcription factors impair song production learning. The relative contributions of auditory processing, motor function or auditory-motor integration to the deficits observed after different FoxP manipulations in songbirds are unknown. To examine the potential effects on auditory learning and development, we focused on female zebra finches (Taeniopygia guttata) that do not sing but develop song memories, which can be assayed in operant preference tests. We tested whether the relatively high levels of FoxP1 expression in forebrain areas implicated in female song preference learning are crucial for the development and/or maintenance of this behavior. Juvenile and adult female zebra finches received FoxP1 knockdowns targeted to HVC (proper name) or to the caudomedial mesopallium (CMM). Irrespective of target site and whether the knockdown took place before (juveniles) or after (adults) the sensitive phase for song memorization, all groups preferred their tutor’s song. However, adult females with FoxP1 knockdowns targeted at HVC showed weaker motivation to hear song and weaker song preferences than sham-treated controls, while no such differences were observed after knockdowns in CMM or in juveniles. In summary, FoxP1 knockdowns in the cortical song nucleus HVC were not associated with impaired tutor song memory but reduced motivation to actively request tutor songs. -
Kaspi, A., Hildebrand, M. S., Jackson, V. E., Braden, R., Van Reyk, O., Howell, T., Debono, S., Lauretta, M., Morison, L., Coleman, M. J., Webster, R., Coman, D., Goel, H., Wallis, M., Dabscheck, G., Downie, L., Baker, E. K., Parry-Fielder, B., Ballard, K., Harrold, E. and 10 moreKaspi, A., Hildebrand, M. S., Jackson, V. E., Braden, R., Van Reyk, O., Howell, T., Debono, S., Lauretta, M., Morison, L., Coleman, M. J., Webster, R., Coman, D., Goel, H., Wallis, M., Dabscheck, G., Downie, L., Baker, E. K., Parry-Fielder, B., Ballard, K., Harrold, E., Ziegenfusz, S., Bennett, M. F., Robertson, E., Wang, L., Boys, A., Fisher, S. E., Amor, D. J., Scheffer, I. E., Bahlo, M., & Morgan, A. T. (2023). Genetic aetiologies for childhood speech disorder: Novel pathways co-expressed during brain development. Molecular Psychiatry, 28, 1647-1663. doi:10.1038/s41380-022-01764-8.
Abstract
Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.Additional information
supplemental methods and results supplemental table 1 supplementary tables 2 to 9 correction -
Lemaitre, H., Le Guen, Y., Tilot, A. K., Stein, J. L., Philippe, C., Mangin, J.-F., Fisher, S. E., & Frouin, V. (2023). Genetic variations within human gained enhancer elements affect human brain sulcal morphology. NeuroImage, 265: 119773. doi:10.1016/j.neuroimage.2022.119773.
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.Additional information
tables -
Morison, L., Meffert, E., Stampfer, M., Steiner-Wilke, I., Vollmer, B., Schulze, K., Briggs, T., Braden, R., Vogel, A. P., Thompson-Lake, D., Patel, C., Blair, E., Goel, H., Turner, S., Moog, U., Riess, A., Liegeois, F., Koolen, D. A., Amor, D. J., Kleefstra, T. and 3 moreMorison, L., Meffert, E., Stampfer, M., Steiner-Wilke, I., Vollmer, B., Schulze, K., Briggs, T., Braden, R., Vogel, A. P., Thompson-Lake, D., Patel, C., Blair, E., Goel, H., Turner, S., Moog, U., Riess, A., Liegeois, F., Koolen, D. A., Amor, D. J., Kleefstra, T., Fisher, S. E., Zweier, C., & Morgan, A. T. (2023). In-depth characterisation of a cohort of individuals with missense and loss-of-function variants disrupting FOXP2. Journal of Medical Genetics, 60(6), 597-607. doi:10.1136/jmg-2022-108734.
Abstract
Background
Heterozygous disruptions of FOXP2 were the first identified molecular cause for severe speech disorder; childhood apraxia of speech (CAS), yet few cases have been reported, limiting knowledge of the condition.
Methods
Here we phenotyped 29 individuals from 18 families with pathogenic FOXP2-only variants (13 loss-of-function, 5 missense variants; 14 males; aged 2 years to 62 years). Health and development (cognitive, motor, social domains) was examined, including speech and language outcomes with the first cross-linguistic analysis of English and German.
Results
Speech disorders were prevalent (24/26, 92%) and CAS was most common (23/26, 89%), with similar speech presentations across English and German. Speech was still impaired in adulthood and some speech sounds (e.g. ‘th’, ‘r’, ‘ch’, ‘j’) were never acquired. Language impairments (22/26, 85%) ranged from mild to severe. Comorbidities included feeding difficulties in infancy (10/27, 37%), fine (14/27, 52%) and gross (14/27, 52%) motor impairment, anxiety (6/28, 21%), depression (7/28, 25%), and sleep disturbance (11/15, 44%). Physical features were common (23/28, 82%) but with no consistent pattern. Cognition ranged from average to mildly impaired, and was incongruent with language ability; for example, seven participants with severe language disorder had average non-verbal cognition.
Conclusions
Although we identify increased prevalence of conditions like anxiety, depression and sleep disturbance, we confirm that the consequences of FOXP2 dysfunction remain relatively specific to speech disorder, as compared to other recently identified monogenic conditions associated with CAS. Thus, our findings reinforce that FOXP2 provides a valuable entrypoint for examining the neurobiological bases of speech disorder. -
Oliveira‑Stahl, G., Farboud, S., Sterling, M. L., Heckman, J. J., Van Raalte, B., Lenferink, D., Van der Stam, A., Smeets, C. J. L. M., Fisher, S. E., & Englitz, B. (2023). High-precision spatial analysis of mouse courtship vocalization behavior reveals sex and strain differences. Scientific Reports, 13: 5219. doi:10.1038/s41598-023-31554-3.
Abstract
Mice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, including sexually motivated dyadic interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential. The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 2–3-fold improvement in accuracy (13.1–14.3 mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset. We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals that vocalization behavior is dependent on the spatial relation between the interacting mice. Female mice vocalized more in close snout-to-snout interaction while male mice vocalized more when the male snout was in close proximity to the female's ano-genital region. Further, we find that the acoustic properties of the ultrasonic vocalizations (duration, Wiener Entropy, and sound level) are dependent on the spatial relation between the interacting mice as well as on the genotype. In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.Additional information
supplementary movies and figures -
Pender, R., Fearon, P., St Pourcain, B., Heron, J., & Mandy, W. (2023). Developmental trajectories of autistic social traits in the general population. Psychological Medicine, 53(3), 814-822. doi:10.1017/S0033291721002166.
Abstract
Background
Autistic people show diverse trajectories of autistic traits over time, a phenomenon labelled ‘chronogeneity’. For example, some show a decrease in symptoms, whilst others experience an intensification of difficulties. Autism spectrum disorder (ASD) is a dimensional condition, representing one end of a trait continuum that extends throughout the population. To date, no studies have investigated chronogeneity across the full range of autistic traits. We investigated the nature and clinical significance of autism trait chronogeneity in a large, general population sample.
Methods
Autistic social/communication traits (ASTs) were measured in the Avon Longitudinal Study of Parents and Children using the Social and Communication Disorders Checklist (SCDC) at ages 7, 10, 13 and 16 (N = 9744). We used Growth Mixture Modelling (GMM) to identify groups defined by their AST trajectories. Measures of ASD diagnosis, sex, IQ and mental health (internalising and externalising) were used to investigate external validity of the derived trajectory groups.
Results
The selected GMM model identified four AST trajectory groups: (i) Persistent High (2.3% of sample), (ii) Persistent Low (83.5%), (iii) Increasing (7.3%) and (iv) Decreasing (6.9%) trajectories. The Increasing group, in which females were a slight majority (53.2%), showed dramatic increases in SCDC scores during adolescence, accompanied by escalating internalising and externalising difficulties. Two-thirds (63.6%) of the Decreasing group were male.
Conclusions
Clinicians should note that for some young people autism-trait-like social difficulties first emerge during adolescence accompanied by problems with mood, anxiety, conduct and attention. A converse, majority-male group shows decreasing social difficulties during adolescence.
-
Raghavan, R., Raviv, L., & Peeters, D. (2023). What's your point? Insights from virtual reality on the relation between intention and action in the production of pointing gestures. Cognition, 240: 105581. doi:10.1016/j.cognition.2023.105581.
Abstract
Human communication involves the process of translating intentions into communicative actions. But how exactly do our intentions surface in the visible communicative behavior we display? Here we focus on pointing gestures, a fundamental building block of everyday communication, and investigate whether and how different types of underlying intent modulate the kinematics of the pointing hand and the brain activity preceding the gestural movement. In a dynamic virtual reality environment, participants pointed at a referent to either share attention with their addressee, inform their addressee, or get their addressee to perform an action. Behaviorally, it was observed that these different underlying intentions modulated how long participants kept their arm and finger still, both prior to starting the movement and when keeping their pointing hand in apex position. In early planning stages, a neurophysiological distinction was observed between a gesture that is used to share attitudes and knowledge with another person versus a gesture that mainly uses that person as a means to perform an action. Together, these findings suggest that our intentions influence our actions from the earliest neurophysiological planning stages to the kinematic endpoint of the movement itself. -
Raviv, L., & Kirby, S. (2023). Self domestication and the cultural evolution of language. In J. J. Tehrani, J. Kendal, & R. Kendal (
Eds. ), The Oxford Handbook of Cultural Evolution. Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780198869252.013.60.Abstract
The structural design features of human language emerge in the process of cultural evolution, shaping languages over the course of communication, learning, and transmission. What role does this leave biological evolution? This chapter highlights the biological bases and preconditions that underlie the particular type of prosocial behaviours and cognitive inference abilities that are required for languages to emerge via cultural evolution to begin with. -
Raviv, L., Jacobson, S. L., Plotnik, J. M., Bowman, J., Lynch, V., & Benítez-Burraco, A. (2023). Elephants as an animal model for self-domestication. Proceedings of the National Academy of Sciences of the United States of America, 120(15): e2208607120. doi:10.1073/pnas.2208607120.
Abstract
Humans are unique in their sophisticated culture and societal structures, their complex languages, and their extensive tool use. According to the human self-domestication hypothesis, this unique set of traits may be the result of an evolutionary process of self-induced domestication, in which humans evolved to be less aggressive and more cooperative. However, the only other species that has been argued to be self-domesticated besides humans so far is bonobos, resulting in a narrow scope for investigating this theory limited to the primate order. Here, we propose an animal model for studying self-domestication: the elephant. First, we support our hypothesis with an extensive cross-species comparison, which suggests that elephants indeed exhibit many of the features associated with self-domestication (e.g., reduced aggression, increased prosociality, extended juvenile period, increased playfulness, socially regulated cortisol levels, and complex vocal behavior). Next, we present genetic evidence to reinforce our proposal, showing that genes positively selected in elephants are enriched in pathways associated with domestication traits and include several candidate genes previously associated with domestication. We also discuss several explanations for what may have triggered a self-domestication process in the elephant lineage. Our findings support the idea that elephants, like humans and bonobos, may be self-domesticated. Since the most recent common ancestor of humans and elephants is likely the most recent common ancestor of all placental mammals, our findings have important implications for convergent evolution beyond the primate taxa, and constitute an important advance toward understanding how and why self-domestication shaped humans’ unique cultural niche.Additional information
supporting information -
Roe, J. M., Vidal-Piñeiro, D., Amlien, I. K., Pan, M., Sneve, M. H., Thiebaut de Schotten, M., Friedrich, P., Sha, Z., Francks, C., Eilertsen, E. M., Wang, Y., Walhovd, K. B., Fjell, A. M., & Westerhausen, R. (2023). Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife, 12: e84685. doi:10.7554/eLife.84685.
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is altered in neurodevelopmental disorders and aging. Achieving consensus on cortical asymmetries in humans is necessary to uncover the genetic-developmental mechanisms that shape them and factors moderating cortical lateralization. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories across life (4-89 years; observations = 3937; 70% longitudinal). We reveal asymmetry interrelationships, heritability, and test associations in UK Biobank (N=∼37,500). Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in development and declines in aging. Areal asymmetry correlates in specific regions, whereas thickness asymmetry is globally interrelated across cortex and suggests high directional variability in global thickness lateralization. Areal asymmetry is moderately heritable (max h2SNP ∼19%), and phenotypic correlations are reflected by high genetic correlations, whereas heritability of thickness asymmetry is low. Finally, we detected an asymmetry association with cognition and confirm recently-reported handedness links. Results suggest areal asymmetry is developmentally stable and arises in early life, whereas developmental changes in thickness asymmetry may lead to directional variability of global thickness lateralization. Our results bear enough reproducibility to serve as a standard for future brain asymmetry studies. -
Sajovic, J., Meglič, A., Corradi, Z., Khan, M., Maver, A., Vidmar, M. J., Hawlina, M., Cremers, F. P. M., & Fakin, A. (2023). ABCA4Variant c.5714+5G> A in trans with null alleles results in primary RPE damage. Investigative Opthalmology & Visual Science, 64(12): 33. doi:10.1167/iovs.64.12.33.
Abstract
Purpose: To determine the disease pathogenesis associated with the frequent ABCA4 variant c.5714+5G>A (p.[=,Glu1863Leufs*33]).
Methods: Patient-derived photoreceptor precursor cells were generated to analyze the effect of c.5714+5G>A on splicing and perform a quantitative analysis of c.5714+5G>A products. Patients with c.5714+5G>A in trans with a null allele (i.e., c.5714+5G>A patients; n = 7) were compared with patients with two null alleles (i.e., double null patients; n = 11); with a special attention to the degree of RPE atrophy (area of definitely decreased autofluorescence and the degree of photoreceptor impairment (outer nuclear layer thickness and pattern electroretinography amplitude).
Results: RT-PCR of mRNA from patient-derived photoreceptor precursor cells showed exon 40 and exon 39/40 deletion products, as well as the normal transcript. Quantification of products showed 52.4% normal and 47.6% mutant ABCA4 mRNA. Clinically, c.5714+5G>A patients displayed significantly better structural and functional preservation of photoreceptors (thicker outer nuclear layer, presence of tubulations, higher pattern electroretinography amplitude) than double null patients with similar degrees of RPE loss, whereas double null patients exhibited signs of extensive photoreceptor ,damage even in the areas with preserved RPE.
Conclusions: The prototypical STGD1 sequence of events of primary RPE and secondary photoreceptor damage is congruous with c.5714+5G>A, but not the double null genotype, which implies different and genotype-dependent disease mechanisms. We hypothesize that the relative photoreceptor sparing in c.5714+5G>A patients results from the remaining function of the ABCA4 transporter originating from the normally spliced product, possibly by decreasing the direct bisretinoid toxicity on photoreceptor membranes. -
Schijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A. and 129 moreSchijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A., Jönsson, E. G., Kochunov, P., Bruggemann, J. M., Catts, S. V., Michie, P. T., Mowry, B. J., Quidé, Y., Rasser, P. E., Schall, U., Scott, R. J., Carr, V. J., Green, M. J., Henskens, F. A., Loughland, C. M., Pantelis, C., Weickert, C. S., Weickert, T. W., De Haan, L., Brosch, K., Pfarr, J.-K., Ringwald, K. G., Stein, F., Jansen, A., Kircher, T. T., Nenadić, I., Krämer, B., Gruber, O., Satterthwaite, T. D., Bustillo, J., Mathalon, D. H., Preda, A., Calhoun, V. D., Ford, J. M., Potkin, S. G., Chen, J., Tan, Y., Wang, Z., Xiang, H., Fan, F., Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M. A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Van Amelsvoort, T., Dickie, E. W., Voineskos, A. N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R. M., Kim, W.-S., Chung, Y.-C., Andreou, C., Schmidt, A., Borgwardt, S., McIntosh, A. M., Whalley, H. C., Lawrie, S. M., Du Plessis, S., Luckhoff, H. K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J. T., Rootes-Murdy, K., Stephen, J. M., Mayer, A. R., Antonucci, L. A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C. M., Janssen, J., Lois, N. G., Arango, C., Tomyshev, A. S., Lebedeva, I., Cervenka, S., Sellgren, C. M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y. B., Oh, S., Kwon, J. S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F. M., Stein, D. J., Temmingh, H. S., Diaz-Zuluaga, A. M., Pineda-Zapata, J. A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S. E., Franke, B., Glahn, D. C., Gur, R. C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S. E., Thompson, P. M., Turner, J. A., Van Erp, T. G., & Francks, C. (2023). Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proceedings of the National Academy of Sciences of the United States of America, 120(14): e2213880120. doi:10.1073/pnas.2213880120.
Abstract
Left–right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case–control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case–control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case–control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case–control status. Subtle case–control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia. -
Sha, Z., Schijven, D., Fisher, S. E., & Francks, C. (2023). Genetic architecture of the white matter connectome of the human brain. Science Advances, 9(7): eadd2870. doi:10.1126/sciadv.add2870.
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.Additional information
figs. S1 to S14, legends for tables S1 to S31 tables S1 to S31 link to Preprint on bioRxiv -
Snijders Blok, L., Verseput, J., Rots, D., Venselaar, H., Innes, A. M., Stumpel, C., Õunap, K., Reinson, K., Seaby, E. G., McKee, S., Burton, B., Kim, K., Van Hagen, J. M., Waisfisz, Q., Joset, P., Steindl, K., Rauch, A., Li, D., Zackai, E. H., Sheppard, S. E. and 29 moreSnijders Blok, L., Verseput, J., Rots, D., Venselaar, H., Innes, A. M., Stumpel, C., Õunap, K., Reinson, K., Seaby, E. G., McKee, S., Burton, B., Kim, K., Van Hagen, J. M., Waisfisz, Q., Joset, P., Steindl, K., Rauch, A., Li, D., Zackai, E. H., Sheppard, S. E., Keena, B., Hakonarson, H., Roos, A., Kohlschmidt, N., Cereda, A., Iascone, M., Rebessi, E., Kernohan, K. D., Campeau, P. M., Millan, F., Taylor, J. A., Lochmüller, H., Higgs, M. R., Goula, A., Bernhard, B., Velasco, D. J., Schmanski, A. A., Stark, Z., Gallacher, L., Pais, L., Marcogliese, P. C., Yamamoto, S., Raun, N., Jakub, T. E., Kramer, J. M., Den Hoed, J., Fisher, S. E., Brunner, H. G., & Kleefstra, T. (2023). A clustering of heterozygous missense variants in the crucial chromatin modifier WDR5 defines a new neurodevelopmental disorder. Human Genetics and Genomics Advances, 4(1): 100157. doi:10.1016/j.xhgg.2022.100157.
Abstract
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals, and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (N=11), intellectual disability (N=9), epilepsy (N=7) and autism spectrum disorder (N=4). Additional phenotypic features included abnormal growth parameters (N=7), heart anomalies (N=2) and hearing loss (N=2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders. -
Soheili-Nezhad, S., Sprooten, E., Tendolkar, I., & Medici, M. (2023). Exploring the genetic link between thyroid dysfunction and common psychiatric disorders: A specific hormonal or a general autoimmune comorbidity. Thyroid, 33(2), 159-168. doi:10.1089/thy.2022.0304.
Abstract
Background: The hypothalamus-pituitary-thyroid axis coordinates brain development and postdevelopmental function. Thyroid hormone (TH) variations, even within the normal range, have been associated with the risk of developing common psychiatric disorders, although the underlying mechanisms remain poorly understood.
Methods: To get new insight into the potentially shared mechanisms underlying thyroid dysfunction and psychiatric disorders, we performed a comprehensive analysis of multiple phenotypic and genotypic databases. We investigated the relationship of thyroid disorders with depression, bipolar disorder (BIP), and anxiety disorders (ANXs) in 497,726 subjects from U.K. Biobank. We subsequently investigated genetic correlations between thyroid disorders, thyrotropin (TSH), and free thyroxine (fT4) levels, with the genome-wide factors that predispose to psychiatric disorders. Finally, the observed global genetic correlations were furthermore pinpointed to specific local genomic regions.
Results: Hypothyroidism was positively associated with an increased risk of major depressive disorder (MDD; OR = 1.31, p = 5.29 × 10−89), BIP (OR = 1.55, p = 0.0038), and ANX (OR = 1.16, p = 6.22 × 10−8). Hyperthyroidism was associated with MDD (OR = 1.11, p = 0.0034) and ANX (OR = 1.34, p = 5.99 × 10−⁶). Genetically, strong coheritability was observed between thyroid disease and both major depressive (rg = 0.17, p = 2.7 × 10−⁴) and ANXs (rg = 0.17, p = 6.7 × 10−⁶). This genetic correlation was particularly strong at the major histocompatibility complex locus on chromosome 6 (p < 10−⁵), but further analysis showed that other parts of the genome also contributed to this global effect. Importantly, neither TSH nor fT4 levels were genetically correlated with mood disorders.
Conclusions: Our findings highlight an underlying association between autoimmune hypothyroidism and mood disorders, which is not mediated through THs and in which autoimmunity plays a prominent role. While these findings could shed new light on the potential ineffectiveness of treating (minor) variations in thyroid function in psychiatric disorders, further research is needed to identify the exact underlying molecular mechanisms.Additional information
supplementary table S1 -
Sollis, E., Den Hoed, J., Quevedo, M., Estruch, S. B., Vino, A., Dekkers, D. H. W., Demmers, J. A. A., Poot, R., Derizioti, P., & Fisher, S. E. (2023). Characterization of the TBR1 interactome: Variants associated with neurodevelopmental disorders disrupt novel protein interactions. Human Molecular Genetics, 32(9): ddac311, pp. 1497-1510. doi:10.1093/hmg/ddac311.
Abstract
TBR1 is a neuron-specific transcription factor involved in brain development and implicated in a neurodevelopmental disorder (NDD) combining features of autism spectrum disorder (ASD), intellectual disability (ID) and speech delay. TBR1 has been previously shown to interact with a small number of transcription factors and co-factors also involved in NDDs (including CASK, FOXP1/2/4 and BCL11A), suggesting that the wider TBR1 interactome may have a significant bearing on normal and abnormal brain development. Here we have identified approximately 250 putative TBR1-interaction partners by affinity purification coupled to mass spectrometry. As well as known TBR1-interactors such as CASK, the identified partners include transcription factors and chromatin modifiers, along with ASD- and ID-related proteins. Five interaction candidates were independently validated using bioluminescence resonance energy transfer assays. We went on to test the interaction of these candidates with TBR1 protein variants implicated in cases of NDD. The assays uncovered disturbed interactions for NDD-associated variants and identified two distinct protein-binding domains of TBR1 that have essential roles in protein–protein interaction. -
Trupp, M. D., Bignardi, G., Specker, E., Vessel, E. A., & Pelowski, M. (2023). Who benefits from online art viewing, and how: The role of pleasure, meaningfulness, and trait aesthetic responsiveness in computer-based art interventions for well-being. Computers in Human Behavior, 145: 107764. doi:10.1016/j.chb.2023.107764.
Abstract
When experienced in-person, engagement with art has been associated with positive outcomes in well-being and mental health. However, especially in the last decade, art viewing, cultural engagement, and even ‘trips’ to museums have begun to take place online, via computers, smartphones, tablets, or in virtual reality. Similarly, to what has been reported for in-person visits, online art engagements—easily accessible from personal devices—have also been associated to well-being impacts. However, a broader understanding of for whom and how online-delivered art might have well-being impacts is still lacking. In the present study, we used a Monet interactive art exhibition from Google Arts and Culture to deepen our understanding of the role of pleasure, meaning, and individual differences in the responsiveness to art. Beyond replicating the previous group-level effects, we confirmed our pre-registered hypothesis that trait-level inter-individual differences in aesthetic responsiveness predict some of the benefits that online art viewing has on well-being and further that such inter-individual differences at the trait level were mediated by subjective experiences of pleasure and especially meaningfulness felt during the online-art intervention. The role that participants' experiences play as a possible mechanism during art interventions is discussed in light of recent theoretical models.Additional information
supplementary material -
Vessel, E. A., Pasqualette, L., Uran, C., Koldehoff, S., Bignardi, G., & Vinck, M. (2023). Self-relevance predicts the aesthetic appeal of real and synthetic artworks generated via neural style transfer. Psychological Science, 34(9), 1007-1023. doi:10.1177/09567976231188107.
Abstract
What determines the aesthetic appeal of artworks? Recent work suggests that aesthetic appeal can, to some extent, be predicted from a visual artwork’s image features. Yet a large fraction of variance in aesthetic ratings remains unexplained and may relate to individual preferences. We hypothesized that an artwork’s aesthetic appeal depends strongly on self-relevance. In a first study (N = 33 adults, online replication N = 208), rated aesthetic appeal for real artworks was positively predicted by rated self-relevance. In a second experiment (N = 45 online), we created synthetic, self-relevant artworks using deep neural networks that transferred the style of existing artworks to photographs. Style transfer was applied to self-relevant photographs selected to reflect participant-specific attributes such as autobiographical memories. Self-relevant, synthetic artworks were rated as more aesthetically appealing than matched control images, at a level similar to human-made artworks. Thus, self-relevance is a key determinant of aesthetic appeal, independent of artistic skill and image features.Additional information
supplementary materials -
Vingerhoets, G., Verhelst, H., Gerrits, R., Badcock, N., Bishop, D. V. M., Carey, D., Flindall, J., Grimshaw, G., Harris, L. J., Hausmann, M., Hirnstein, M., Jäncke, L., Joliot, M., Specht, K., Westerhausen, R., & LICI consortium (2023). Laterality indices consensus initiative (LICI): A Delphi expert survey report on recommendations to record, assess, and report asymmetry in human behavioural and brain research. Laterality, 28(2-3), 122-191. doi:10.1080/1357650X.2023.2199963.
Abstract
Laterality indices (LIs) quantify the left-right asymmetry of brain and behavioural variables and provide a measure that is statistically convenient and seemingly easy to interpret. Substantial variability in how structural and functional asymmetries are recorded, calculated, and reported, however, suggest little agreement on the conditions required for its valid assessment. The present study aimed for consensus on general aspects in this context of laterality research, and more specifically within a particular method or technique (i.e., dichotic listening, visual half-field technique, performance asymmetries, preference bias reports, electrophysiological recording, functional MRI, structural MRI, and functional transcranial Doppler sonography). Experts in laterality research were invited to participate in an online Delphi survey to evaluate consensus and stimulate discussion. In Round 0, 106 experts generated 453 statements on what they considered good practice in their field of expertise. Statements were organised into a 295-statement survey that the experts then were asked, in Round 1, to independently assess for importance and support, which further reduced the survey to 241 statements that were presented again to the experts in Round 2. Based on the Round 2 input, we present a set of critically reviewed key recommendations to record, assess, and report laterality research for various methods.Additional information
data that support the findings of this study are openly available in OSFFiles private
Request files -
Whelan, L., Dockery, A., Stephenson, K. A. J., Zhu, J., Kopčić, E., Post, I. J. M., Khan, M., Corradi, Z., Wynne, N., O’ Byrne, J. J., Duignan, E., Silvestri, G., Roosing, S., Cremers, F. P. M., Keegan, D. J., Kenna, P. F., & Farrar, G. J. (2023). Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Scientific Reports, 13: 9380. doi:10.1038/s41598-023-35889-9.
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.Additional information
supplemental material -
Blasi, D. E., Moran, S., Moisik, S. R., Widmer, P., Dediu, D., & Bickel, B. (2019). Human sound systems are shaped by post-Neolithic changes in bite configuration. Science, 363(6432): eaav3218. doi:10.1126/science.aav3218.
Abstract
Linguistic diversity, now and in the past, is widely regarded to be independent of biological changes that took place after the emergence of Homo sapiens. We show converging evidence from paleoanthropology, speech biomechanics, ethnography, and historical linguistics that labiodental sounds (such as “f” and “v”) were innovated after the Neolithic. Changes in diet attributable to food-processing technologies modified the human bite from an edge-to-edge configuration to one that preserves adolescent overbite and overjet into adulthood. This change favored the emergence and maintenance of labiodentals. Our findings suggest that language is shaped not only by the contingencies of its history, but also by culturally induced changes in human biology.Files private
Request files -
Burenkova, O. V., & Fisher, S. E. (2019). Genetic insights into the neurobiology of speech and language. In E. Grigorenko, Y. Shtyrov, & P. McCardle (
Eds. ), All About Language: Science, Theory, and Practice. Baltimore, MD: Paul Brookes Publishing, Inc. -
Carrion Castillo, A., Van der Haegen, L., Tzourio-Mazoyer, N., Kavaklioglu, T., Badillo, S., Chavent, M., Saracco, J., Brysbaert, M., Fisher, S. E., Mazoyer, B., & Francks, C. (2019). Genome sequencing for rightward hemispheric language dominance. Genes, Brain and Behavior, 18(5): e12572. doi:10.1111/gbb.12572.
Abstract
Most people have left‐hemisphere dominance for various aspects of language processing, but only roughly 1% of the adult population has atypically reversed, rightward hemispheric language dominance (RHLD). The genetic‐developmental program that underlies leftward language laterality is unknown, as are the causes of atypical variation. We performed an exploratory whole‐genome‐sequencing study, with the hypothesis that strongly penetrant, rare genetic mutations might sometimes be involved in RHLD. This was by analogy with situs inversus of the visceral organs (left‐right mirror reversal of the heart, lungs and so on), which is sometimes due to monogenic mutations. The genomes of 33 subjects with RHLD were sequenced and analyzed with reference to large population‐genetic data sets, as well as 34 subjects (14 left‐handed) with typical language laterality. The sample was powered to detect rare, highly penetrant, monogenic effects if they would be present in at least 10 of the 33 RHLD cases and no controls, but no individual genes had mutations in more than five RHLD cases while being un‐mutated in controls. A hypothesis derived from invertebrate mechanisms of left‐right axis formation led to the detection of an increased mutation load, in RHLD subjects, within genes involved with the actin cytoskeleton. The latter finding offers a first, tentative insight into molecular genetic influences on hemispheric language dominance.Additional information
gbb12572-sup-0001-AppendixS1.docx -
Castells-Nobau, A., Eidhof, I., Fenckova, M., Brenman-Suttner, D. B., Scheffer-de Gooyert, J. M., Christine, S., Schellevis, R. L., Van der Laan, K., Quentin, C., Van Ninhuijs, L., Hofmann, F., Ejsmont, R., Fisher, S. E., Kramer, J. M., Sigrist, S. J., Simon, A. F., & Schenck, A. (2019). Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS One, 14(2): e211652. doi:10.1371/journal.pone.0211652.
Abstract
FOXP proteins form a subfamily of evolutionarily conserved transcription factors involved in the development and functioning of several tissues, including the central nervous system. In humans, mutations in FOXP1 and FOXP2 have been implicated in cognitive deficits including intellectual disability and speech disorders. Drosophila exhibits a single ortholog, called FoxP, but due to a lack of characterized mutants, our understanding of the gene remains poor. Here we show that the dimerization property required for mammalian FOXP function is conserved in Drosophila. In flies, FoxP is enriched in the adult brain, showing strong expression in ~1000 neurons of cholinergic, glutamatergic and GABAergic nature. We generate Drosophila loss-of-function mutants and UAS-FoxP transgenic lines for ectopic expression, and use them to characterize FoxP function in the nervous system. At the cellular level, we demonstrate that Drosophila FoxP is required in larvae for synaptic morphogenesis at axonal terminals of the neuromuscular junction and for dendrite development of dorsal multidendritic sensory neurons. In the developing brain, we find that FoxP plays important roles in α-lobe mushroom body formation. Finally, at a behavioral level, we show that Drosophila FoxP is important for locomotion, habituation learning and social space behavior of adult flies. Our work shows that Drosophila FoxP is important for regulating several neurodevelopmental processes and behaviors that are related to human disease or vertebrate disease model phenotypes. This suggests a high degree of functional conservation with vertebrate FOXP orthologues and established flies as a model system for understanding FOXP related pathologies. -
Dediu, D., & Moisik, S. R. (2019). Pushes and pulls from below: Anatomical variation, articulation and sound change. Glossa: A Journal of General Linguistics, 4(1): 7. doi:10.5334/gjgl.646.
Abstract
This paper argues that inter-individual and inter-group variation in language acquisition, perception, processing and production, rooted in our biology, may play a largely neglected role in sound change. We begin by discussing the patterning of these differences, highlighting those related to vocal tract anatomy with a foundation in genetics and development. We use our ArtiVarK database, a large multi-ethnic sample comprising 3D intraoral optical scans, as well as structural, static and real-time MRI scans of vocal tract anatomy and speech articulation, to quantify the articulatory strategies used to produce the North American English /r/ and to statistically show that anatomical factors seem to influence these articulatory strategies. Building on work showing that these alternative articulatory strategies may have indirect coarticulatory effects, we propose two models for how biases due to variation in vocal tract anatomy may affect sound change. The first involves direct overt acoustic effects of such biases that are then reinterpreted by the hearers, while the second is based on indirect coarticulatory phenomena generated by acoustically covert biases that produce overt “at-a-distance” acoustic effects. This view implies that speaker communities might be “poised” for change because they always contain pools of “standing variation” of such biased speakers, and when factors such as the frequency of the biased speakers in the community, their positions in the communicative network or the topology of the network itself change, sound change may rapidly follow as a self-reinforcing network-level phenomenon, akin to a phase transition. Thus, inter-speaker variation in structured and dynamic communicative networks may couple the initiation and actuation of sound change. -
Dediu, D., Janssen, R., & Moisik, S. R. (2019). Weak biases emerging from vocal tract anatomy shape the repeated transmission of vowels. Nature Human Behaviour, 3, 1107-1115. doi:10.1038/s41562-019-0663-x.
Abstract
Linguistic diversity is affected by multiple factors, but it is usually assumed that variation in the anatomy of our speech organs
plays no explanatory role. Here we use realistic computer models of the human speech organs to test whether inter-individual
and inter-group variation in the shape of the hard palate (the bony roof of the mouth) affects acoustics of speech sounds. Based
on 107 midsagittal MRI scans of the hard palate of human participants, we modelled with high accuracy the articulation of a set
of five cross-linguistically representative vowels by agents learning to produce speech sounds. We found that different hard
palate shapes result in subtle differences in the acoustics and articulatory strategies of the produced vowels, and that these
individual-level speech idiosyncrasies are amplified by the repeated transmission of language across generations. Therefore,
we suggest that, besides culture and environment, quantitative biological variation can be amplified, also influencing language.Additional information
https://github.com/ddediu/hard-palate-vowels -
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O. and 61 moreDemontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Howrigan, D. P., Huang, H., Maller, J. B., Martin, A. R., Martin, N. G., Moran, J., Pallesen, J., Palmer, D. S., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., Ripke, S., Robinson, E. B., Satterstrom, F. K., Stefansson, H., Stevens, C., Turley, P., Walters, G. B., Won, H., Wright, M. J., ADHD Working Group of the Psychiatric Genomics Consortium (PGC), EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, 23andme Research Team, Andreassen, O. A., Asherson, P., Burton, C. L., Boomsma, D. I., Cormand, B., Dalsgaard, S., Franke, B., Gelernter, J., Geschwind, D., Hakonarson, H., Haavik, J., Kranzler, H. R., Kuntsi, J., Langley, K., Lesch, K.-P., Middeldorp, C., Reif, A., Rohde, L. A., Roussos, P., Schachar, R., Sklar, P., Sonuga-Barke, E. J. S., Sullivan, P. F., Thapar, A., Tung, J. Y., Waldman, I. D., Medland, S. E., Stefansson, K., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Daly, M. J., Faraone, S. V., Børglum, A. D., & Neale, B. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51, 63-75. doi:10.1038/s41588-018-0269-7.
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits. -
Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (
Eds. ), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.Abstract
This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language. -
Eising, E., Carrion Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., Hildebrand, M. S., Webster, R., Ma, A., Mazoyer, B., Francks, C., Bahlo, M., Scheffer, I. E., Morgan, A. T., Shriberg, L. D., & Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24, 1065-1078. doi:10.1038/s41380-018-0020-x.
Abstract
Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.Additional information
Eising_etal_2018sup.pdf -
Fisher, S. E., & Tilot, A. K. (2019). Bridging senses: Novel insights from synaesthesia. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190022. doi:10.1098/rstb.2019.0022.
Files private
Request files -
Fisher, S. E., & Tilot, A. K. (
Eds. ). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374. -
Fisher, S. E. (2019). Human genetics: The evolving story of FOXP2. Current Biology, 29(2), R65-R67. doi:10.1016/j.cub.2018.11.047.
Abstract
FOXP2 mutations cause a speech and language disorder, raising interest in potential roles of this gene in human evolution. A new study re-evaluates genomic variation at the human FOXP2 locus but finds no evidence of recent adaptive evolution. -
Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (
Ed. ), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press. -
Francks, C. (2019). In search of the biological roots of typical and atypical human brain asymmetry. Physics of Life Reviews, 30, 22-24. doi:10.1016/j.plrev.2019.07.004.
-
Francks, C. (2019). Peer Review Report For: Negligible heritability of language laterality assessed by functional transcranial Doppler ultrasound: a twin study [version 1; peer review: 1 approved with reservations]. Wellcome Open Research 2019, 4:161. doi:10.21956/wellcomeopenres.16993.r36877.
Additional information
Link to version 2 -
Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (
Ed. ), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press. -
French, C. A., Vinueza Veloz, M. F., Zhou, K., Peter, S., Fisher, S. E., Costa, R. M., & De Zeeuw, C. I. (2019). Differential effects of Foxp2 disruption in distinct motor circuits. Molecular Psychiatry, 24, 447-462. doi:10.1038/s41380-018-0199-x.
Abstract
Disruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cell activity that severely impacts skilled movements.Additional information
https://www.nature.com/articles/s41380-018-0199-x#Sec18 -
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.Additional information
https://www.nature.com/articles/s41398-019-0402-0#Sec17 -
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K. and 55 moreGrove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K., Demontis, D., De Rubeis, S., Devlin, B., Djurovic, S., Dumont, A., Goldstein, J., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Hope, S., Howrigan, D. P., Huang, H., Hultman, C., Klei, L., Maller, J., Martin, J., Martin, A. R., Moran, J., Nyegaard, M., Nærland, T., Palmer, D. S., Palotie, A., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., St Pourcain, B., Qvist, P., Rehnström, K., Reichenberg, A., Reichert, J., Robinson, E. B., Roeder, K., Roussos, P., Saemundsen, E., Sandin, S., Satterstrom, F. K., Smith, G. D., Stefansson, H., Stefansson, K., Steinberg, S., Stevens, C., Sullivan, P. F., Turley, P., Walters, G. B., Xu, X., Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, BUPGEN, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Me Research Team, Geschwind, D., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Neale, B. M., Daly, M. J., & Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51, 431-444. doi:10.1038/s41588-019-0344-8.
Abstract
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Additional information
Supplementary Text and Figures -
Gunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J. and 7 moreGunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J., St Pourcain, B., Hublin, J.-J., Franke, B., Pääbo, S., Macciardi, F., Grabe, H. J., & Fisher, S. E. (2019). Neandertal introgression sheds light on modern human endocranial globularity. Current Biology, 29(1), 120-127. doi:10.1016/j.cub.2018.10.065.
Abstract
One of the features that distinguishes modern humans from our extinct relatives
and ancestors is a globular shape of the braincase [1-4]. As the endocranium
closely mirrors the outer shape of the brain, these differences might reflect
altered neural architecture [4,5]. However, in the absence of fossil brain tissue the
underlying neuroanatomical changes as well as their genetic bases remain
elusive. To better understand the biological foundations of modern human
endocranial shape, we turn to our closest extinct relatives, the Neandertals.
Interbreeding between modern humans and Neandertals has resulted in
introgressed fragments of Neandertal DNA in the genomes of present-day non-
Africans [6,7]. Based on shape analyses of fossil skull endocasts, we derive a
measure of endocranial globularity from structural magnetic resonance imaging
(MRI) scans of thousands of modern humans, and study the effects of
introgressed fragments of Neandertal DNA on this phenotype. We find that
Neandertal alleles on chromosomes 1 and 18 are associated with reduced
endocranial globularity. These alleles influence expression of two nearby genes,
UBR4 and PHLPP1, which are involved in neurogenesis and myelination,
respectively. Our findings show how integration of fossil skull data with archaic
genomics and neuroimaging can suggest developmental mechanisms that may
contribute to the unique modern human endocranial shape. -
Harneit, A., Braun, U., Geiger, L. S., Zang, Z., Hakobjan, M., Van Donkelaar, M. M. J., Schweiger, J. I., Schwarz, K., Gan, G., Erk, S., Heinz, A., Romanczuk‐Seiferth, N., Witt, S., Rietschel, M., Walter, H., Franke, B., Meyer‐Lindenberg, A., & Tost, H. (2019). MAOA-VNTR genotype affects structural and functional connectivity in distributed brain networks. Human Brain Mapping, 40(18), 5202-5212. doi:10.1002/hbm.24766.
Abstract
Previous studies have linked the low expression variant of a variable number of tandem repeat polymorphism in the monoamine oxidase A gene (MAOA‐L) to the risk for impulsivity and aggression, brain developmental abnormalities, altered cortico‐limbic circuit function, and an exaggerated neural serotonergic tone. However, the neurobiological effects of this variant on human brain network architecture are incompletely understood. We studied healthy individuals and used multimodal neuroimaging (sample size range: 219–284 across modalities) and network‐based statistics (NBS) to probe the specificity of MAOA‐L‐related connectomic alterations to cortical‐limbic circuits and the emotion processing domain. We assessed the spatial distribution of affected links across several neuroimaging tasks and data modalities to identify potential alterations in network architecture. Our results revealed a distributed network of node links with a significantly increased connectivity in MAOA‐L carriers compared to the carriers of the high expression (H) variant. The hyperconnectivity phenotype primarily consisted of between‐lobe (“anisocoupled”) network links and showed a pronounced involvement of frontal‐temporal connections. Hyperconnectivity was observed across functional magnetic resonance imaging (fMRI) of implicit emotion processing (pFWE = .037), resting‐state fMRI (pFWE = .022), and diffusion tensor imaging (pFWE = .044) data, while no effects were seen in fMRI data of another cognitive domain, that is, spatial working memory (pFWE = .540). These observations are in line with prior research on the MAOA‐L variant and complement these existing data by novel insights into the specificity and spatial distribution of the neurogenetic effects. Our work highlights the value of multimodal network connectomic approaches for imaging genetics. -
Haworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L. and 15 moreHaworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L., Timmers, P. R. H. J., UK10K consortium, Davey Smith, G., Fisher, S. E., Wilson, J. F., Cole, T. J., Fernandez-Orth, D., Bønnelykke, K., Bisgaard, H., Pennell, C. E., Jaddoe, V. W. V., Dedoussis, G., Timpson, N. J., Zeggini, E., Vitart, V., & St Pourcain, B. (2019). Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nature Communications, 10: 357. doi:10.1038/s41467-018-07863-x.
Abstract
Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences affecting these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic influences and low-frequency genetic variation. To understand these influences, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV+HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development.Additional information
Supplementary Information -
Howe, L., Lawson, D. J., Davies, N. M., St Pourcain, B., Lewis, S. J., Smith, G. D., & Hemani, G. (2019). Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nature Communications, 10: 5039. doi:10.1038/s41467-019-12424-x.
Abstract
Alcohol use is correlated within spouse-pairs, but it is difficult to disentangle effects of alcohol consumption on mate-selection from social factors or the shared spousal environment. We hypothesised that genetic variants related to alcohol consumption may, via their effect on alcohol behaviour, influence mate selection. Here, we find strong evidence that an individual’s self-reported alcohol consumption and their genotype at rs1229984, a missense variant in ADH1B, are associated with their partner’s self-reported alcohol use. Applying Mendelian randomization, we estimate that a unit increase in an individual’s weekly alcohol consumption increases partner’s alcohol consumption by 0.26 units (95% C.I. 0.15, 0.38; P = 8.20 × 10−6). Furthermore, we find evidence of spousal genotypic concordance for rs1229984, suggesting that spousal concordance for alcohol consumption existed prior to cohabitation. Although the SNP is strongly associated with ancestry, our results suggest some concordance independent of population stratification. Our findings suggest that alcohol behaviour directly influences mate selection. -
Howe, L. J., Richardson, T. G., Arathimos, R., Alvizi, L., Passos-Bueno, M. R., Stanier, P., Nohr, E., Ludwig, K. U., Mangold, E., Knapp, M., Stergiakouli, E., St Pourcain, B., Smith, G. D., Sandy, J., Relton, C. L., Lewis, S. J., Hemani, G., & Sharp, G. C. (2019). Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate. Epigenomics, 11(2), 133-145. doi:10.2217/epi-2018-0091.
Abstract
Aim: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. Materials & methods: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. Results & conclusion: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms.Additional information
Supplementary material -
Ioumpa, K., Graham, S. A., Clausner, T., Fisher, S. E., Van Lier, R., & Van Leeuwen, T. M. (2019). Enhanced self-reported affect and prosocial behaviour without differential physiological responses in mirror-sensory synaesthesia. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190395. doi:10.1098/rstb.2019.0395.
Abstract
Mirror-sensory synaesthetes mirror the pain or touch that they observe in other people on their own bodies. This type of synaesthesia has been associated with enhanced empathy. We investigated whether the enhanced empathy of people with mirror-sensory synesthesia influences the experience of situations involving touch or pain and whether it affects their prosocial decision making. Mirror-sensory synaesthetes (N = 18, all female), verified with a touch-interference paradigm, were compared with a similar number of age-matched control individuals (all female). Participants viewed arousing images depicting pain or touch; we recorded subjective valence and arousal ratings, and physiological responses, hypothesizing more extreme reactions in synaesthetes. The subjective impact of positive and negative images was stronger in synaesthetes than in control participants; the stronger the reported synaesthesia, the more extreme the picture ratings. However, there was no evidence for differential physiological or hormonal responses to arousing pictures. Prosocial decision making was assessed with an economic game assessing altruism, in which participants had to divide money between themselves and a second player. Mirror-sensory synaesthetes donated more money than non-synaesthetes, showing enhanced prosocial behaviour, and also scored higher on the Interpersonal Reactivity Index as a measure of empathy. Our study demonstrates the subjective impact of mirror-sensory synaesthesia and its stimulating influence on prosocial behaviour.Files private
Request files -
Janssen, R., Moisik, S. R., & Dediu, D. (2019). The effects of larynx height on vowel production are mitigated by the active control of articulators. Journal of Phonetics, 74, 1-17. doi:10.1016/j.wocn.2019.02.002.
Abstract
The influence of larynx position on vowel articulation is an important topic in understanding speech production, the present-day distribution of linguistic diversity and the evolution of speech and language in our lineage. We introduce here a realistic computer model of the vocal tract, constructed from actual human MRI data, which can learn, using machine learning techniques, to control the articulators in such a way as to produce speech sounds matching as closely as possible to a given set of target vowels. We systematically control the vertical position of the larynx and we quantify the differences between the target and produced vowels for each such position across multiple replications. We report that, indeed, larynx height does affect the accuracy of reproducing the target vowels and the distinctness of the produced vowel system, that there is a “sweet spot” of larynx positions that are optimal for vowel production, but that nevertheless, even extreme larynx positions do not result in a collapsed or heavily distorted vowel space that would make speech unintelligible. Together with other lines of evidence, our results support the view that the vowel space of human languages is influenced by our larynx position, but that other positions of the larynx may also be fully compatible with speech.Additional information
Research Data via Github -
Klingler, E., De la Rossa, A., Fièvre, S., Devaraju, K., Abe, P., & Jabaudon, D. (2019). A translaminar genetic logic for the circuit identity of intracortically projecting neurons. Current Biology, 29(2), 332-339. doi:10.1016/j.cub.2018.11.071.
Abstract
Neurons of the neocortex are organized into six radial layers, which have appeared at different times during evolution, with the superficial layers representing a more recent acquisition. Input to the neocortex predominantly reaches superficial layers (SL, i.e., layers (L) 2-4), while output is generated in deep layers (DL, i.e., L5-6) [1]. Intracortical connections, which bridge input and output pathways, are key components of cortical circuits because they allow the propagation and processing of information within the neocortex. Two main types of intracortically projecting neurons (ICPN) can be distinguished by their axonal features: L4 spiny stellate neurons (SSN) with short axons projecting locally within cortical columns [2, 3, 4, 5], and SL and DL long-range projection neurons, including callosally projecting neurons (CPNSL and CPNDL) [5, 6]. Here, we investigate the molecular hallmarks that distinguish SSN, CPNSL, and CPNDL and relate their transcriptional signatures with their output connectivity. Specifically, taking advantage of the presence of CPN in both SL and DL, we identify lamina-independent genetic hallmarks of a constant projection motif (i.e., interhemispheric projection). By performing unbiased transcriptomic comparisons between CPNSL, CPNDL and SSN, we provide specific molecular profiles for each of these populations and show that target identity supersedes laminar position in defining ICPN transcriptional diversity. Together, these findings reveal a projection-based organization of transcriptional programs across cortical layers, which we propose reflects conserved strategy to protect canonical circuit structure (and hence function) across a diverse range of neuroanatomies.Files private
Request files -
De Kovel, C. G. F., Carrion Castillo, A., & Francks, C. (2019). A large-scale population study of early life factors influencing left-handedness. Scientific Reports, 9: 584. doi:10.1038/s41598-018-37423-8.
Abstract
Hand preference is a conspicuous variation in human behaviour, with a worldwide proportion of around 90% of people preferring to use the right hand for many tasks, and 10% the left hand. We used the large cohort of the UK biobank (~500,000 participants) to study possible relations between early life factors and adult hand preference. The probability of being left-handed was affected by the year and location of birth, likely due to cultural effects. In addition, hand preference was affected by birthweight, being part of a multiple birth, season of birth, breastfeeding, and sex, with each effect remaining significant after accounting for all others. Analysis of genome-wide genotype data showed that left-handedness was very weakly heritable, but shared no genetic basis with birthweight. Although on average left-handers and right-handers differed for a number of early life factors, all together these factors had only a minimal predictive value for individual hand preference.Additional information
Supplementary information -
De Kovel, C. G. F., Aftanas, L., Aleman, A., Alexander-Bloch, A. F., Baune, B. T., Brack, I., Bülow, R., Filho, G. B., Carballedo, A., Connolly, C. G., Cullen, K. R., Dannlowski, U., Davey, C. G., Dima, D., Dohm, K., Erwin-Grabner, T., Frodl, T., Fu, C. H., Hall, G. B., Glahn, D. C. and 58 moreDe Kovel, C. G. F., Aftanas, L., Aleman, A., Alexander-Bloch, A. F., Baune, B. T., Brack, I., Bülow, R., Filho, G. B., Carballedo, A., Connolly, C. G., Cullen, K. R., Dannlowski, U., Davey, C. G., Dima, D., Dohm, K., Erwin-Grabner, T., Frodl, T., Fu, C. H., Hall, G. B., Glahn, D. C., Godlewska, B., Gotlib, I. H., Goya-Maldonado, R., Grabe, H. J., Groenewold, N. A., Grotegerd, D., Gruber, O., Harris, M. A., Harrison, B. J., Hatton, S. N., Hickie, I. B., Ho, T. C., Jahanshad, N., Kircher, T., Krämer, B., Krug, A., Lagopoulos, J., Leehr, E. J., Li, M., MacMaster, F. P., MacQueen, G., McIntosh, A. M., McLellan, Q., Medland, S. E., Mueller, B. A., Nenadic, I., Osipov, E., Papmeyer, M., Portella, M. J., Reneman, L., Rosa, P. G., Sacchet, M. D., Schnell, K., Schrantee, A., Sim, K., Simulionyte, E., Sindermann, L., Singh, A., Stein, D. J., Ubani, B. N., der Wee, N. J. V., der Werff, S. J. V., Veer, I. M., Vives-Gilabert, Y., Völzke, H., Walter, H., Walter, M., Schreiner, M. W., Whalley, H., Winter, N., Wittfeld, K., Yang, T. T., Yüksel, D., Zaremba, D., Thompson, P. M., Veltman, D. J., Schmaal, L., & Francks, C. (2019). No alterations of brain structural asymmetry in major depressive disorder: An ENIGMA consortium analysis. American Journal of Psychiatry, 176(12), 1039-1049. doi:10.1176/appi.ajp.2019.18101144.
Abstract
Objective:
Asymmetry is a subtle but pervasive aspect of the human brain, and it may be altered in several psychiatric conditions. MRI studies have shown subtle differences of brain anatomy between people with major depressive disorder and healthy control subjects, but few studies have specifically examined brain anatomical asymmetry in relation to this disorder, and results from those studies have remained inconclusive. At the functional level, some electroencephalography studies have indicated left fronto-cortical hypoactivity and right parietal hypoactivity in depressive disorders, so aspects of lateralized anatomy may also be affected. The authors used pooled individual-level data from data sets collected around the world to investigate differences in laterality in measures of cortical thickness, cortical surface area, and subcortical volume between individuals with major depression and healthy control subjects.
Methods:
The authors investigated differences in the laterality of thickness and surface area measures of 34 cerebral cortical regions in 2,256 individuals with major depression and 3,504 control subjects from 31 separate data sets, and they investigated volume asymmetries of eight subcortical structures in 2,540 individuals with major depression and 4,230 control subjects from 32 data sets. T1-weighted MRI data were processed with a single protocol using FreeSurfer and the Desikan-Killiany atlas. The large sample size provided 80% power to detect effects of the order of Cohen’s d=0.1.
Results:
The largest effect size (Cohen’s d) of major depression diagnosis was 0.085 for the thickness asymmetry of the superior temporal cortex, which was not significant after adjustment for multiple testing. Asymmetry measures were not significantly associated with medication use, acute compared with remitted status, first episode compared with recurrent status, or age at onset.
Conclusions:
Altered brain macro-anatomical asymmetry may be of little relevance to major depression etiology in most cases. -
De Kovel, C. G. F., & Francks, C. (2019). The molecular genetics of hand preference revisited. Scientific Reports, 9: 5986. doi:10.1038/s41598-019-42515-0.
Abstract
Hand preference is a prominent behavioural trait linked to human brain asymmetry. A handful of genetic variants have been reported to associate with hand preference or quantitative measures related to it. Most of these reports were on the basis of limited sample sizes, by current standards for genetic analysis of complex traits. Here we performed a genome-wide association analysis of hand preference in the large, population-based UK Biobank cohort (N = 331,037). We used gene-set enrichment analysis to investigate whether genes involved in visceral asymmetry are particularly relevant to hand preference, following one previous report. We found no evidence supporting any of the previously suggested variants or genes, nor that genes involved in visceral laterality have a role in hand preference. It remains possible that some of the previously reported genes or pathways are relevant to hand preference as assessed in other ways, or else are relevant within specific disorder populations. However, some or all of the earlier findings are likely to be false positives, and none of them appear relevant to hand preference as defined categorically in the general population. Our analysis did produce a small number of novel, significant associations, including one implicating the microtubule-associated gene MAP2 in handedness. -
Liang, S., Li, Y., Zhang, Z., Kong, X., Wang, Q., Deng, W., Li, X., Zhao, L., Li, M., Meng, Y., Huang, F., Ma, X., Li, X.-m., Greenshaw, A. J., Shao, J., & Li, T. (2019). Classification of first-episode schizophrenia using multimodal brain features: A combined structural and diffusion imaging study. Schizophrenia Bulletin, 45(3), 591-599. doi:10.1093/schbul/sby091.
Abstract
Schizophrenia is a common and complex mental disorder with neuroimaging alterations. Recent neuroanatomical pattern recognition studies attempted to distinguish individuals with schizophrenia by structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI). 1, 2 Applications of cutting-edge machine learning approaches in structural neuroimaging studies have revealed potential pathways to classification of schizophrenia based on regional gray matter volume (GMV) or density or cortical thickness. 3–5 Additionally, cortical folding may have high discriminatory value in correctly identifying symptom severity in schizophrenia. 6 Regional GMV and cortical thickness have also been combined in attempts to differentiate individuals with schizophrenia from healthy controls (HCs). 7 Applications of machine learning algorithms to diffusion imaging data analysis to predict individuals with first-episode schizophrenia (FES) have achieved encouraging accuracy. 8–10 White matter (WM) abnormalities in schizophrenia as estimated by DTI appear to be present in the early stage of the disorder, most likely reflecting the developmental stage of the sample of interest.Additional information
Supplementary data -
Liang, S., Wang, Q., Kong, X., Deng, W., Yang, X., Li, X., Zhang, Z., Zhang, J., Zhang, C., Li, X.-m., Ma, X., Shao, J., Greenshaw, A. J., & Li, T. (2019). White matter abnormalities in major depression bibotypes identified by Diffusion Tensor Imaging. Neuroscience Bulletin, 35(5), 867-876. doi:10.1007/s12264-019-00381-w.
Abstract
Identifying data-driven biotypes of major depressive disorder (MDD) has promise for the clarification of diagnostic heterogeneity. However, few studies have focused on white-matter abnormalities for MDD subtyping. This study included 116 patients with MDD and 118 demographically-matched healthy controls assessed by diffusion tensor imaging and neurocognitive evaluation. Hierarchical clustering was applied to the major fiber tracts, in conjunction with tract-based spatial statistics, to reveal white-matter alterations associated with MDD. Clinical and neurocognitive differences were compared between identified subgroups and healthy controls. With fractional anisotropy extracted from 20 fiber tracts, cluster analysis revealed 3 subgroups based on the patterns of abnormalities. Patients in each subgroup versus healthy controls showed a stepwise pattern of white-matter alterations as follows: subgroup 1 (25.9% of patient sample), widespread white-matter disruption; subgroup 2 (43.1% of patient sample), intermediate and more localized abnormalities in aspects of the corpus callosum and left cingulate; and subgroup 3 (31.0% of patient sample), possible mild alterations, but no statistically significant tract disruption after controlling for family-wise error. The neurocognitive impairment in each subgroup accompanied the white-matter alterations: subgroup 1, deficits in sustained attention and delayed memory; subgroup 2, dysfunction in delayed memory; and subgroup 3, no significant deficits. Three subtypes of white-matter abnormality exist in individuals with major depression, those having widespread abnormalities suffering more neurocognitive impairments, which may provide evidence for parsing the heterogeneity of the disorder and help optimize type-specific treatment approaches.Additional information
12264_2019_381_MOESM1_ESM.pdf -
Middeldorp, C. M., Felix, J. F., Mahajan, A., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Early Growth Genetics (EGG) consortium, & McCarthy, M. I. (2019). The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: Design, results and future prospects. European Journal of Epidemiology, 34(3), 279-300. doi:10.1007/s10654-019-00502-9.
Abstract
The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites. -
Moisik, S. R., Zhi Yun, D. P., & Dediu, D. (2019). Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (
Eds. ), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 864-868). Canberra, Australia: Australasian Speech Science and Technology Association Inc.Abstract
The anterior lordosis of the cervical spine is thought
to contribute to pitch (fo) production by influencing
cricoid rotation as a function of larynx height. This
study examines the matter of inter-individual
variation in cervical spine shape and whether this has
an influence on how fo is produced along increasing
or decreasing scales, using the ArtiVarK dataset,
which contains real-time MRI pitch production data.
We find that the cervical spine actively participates in
fo production, but the amount of displacement
depends on individual shape. In general, anterior
spine motion (tending toward cervical lordosis)
occurs for low fo, while posterior movement (tending
towards cervical kyphosis) occurs for high fo. -
Postema, M., De Marco, M., Colato, E., & Venneri, A. (2019). A study of within-subject reliability of the brain’s default-mode network. Magnetic Resonance Materials in Physics, Biology and Medicine, 32(3), 391-405. doi:10.1007/s10334-018-00732-0.
Abstract
Objective
Resting-state functional magnetic resonance imaging (fMRI) is promising for Alzheimer’s disease (AD). This study aimed to examine short-term reliability of the default-mode network (DMN), one of the main haemodynamic patterns of the brain.
Materials and methods
Using a 1.5 T Philips Achieva scanner, two consecutive resting-state fMRI runs were acquired on 69 healthy adults, 62 patients with mild cognitive impairment (MCI) due to AD, and 28 patients with AD dementia. The anterior and posterior DMN and, as control, the visual-processing network (VPN) were computed using two different methodologies: connectivity of predetermined seeds (theory-driven) and dual regression (data-driven). Divergence and convergence in network strength and topography were calculated with paired t tests, global correlation coefficients, voxel-based correlation maps, and indices of reliability.
Results
No topographical differences were found in any of the networks. High correlations and reliability were found in the posterior DMN of healthy adults and MCI patients. Lower reliability was found in the anterior DMN and in the VPN, and in the posterior DMN of dementia patients.
Discussion
Strength and topography of the posterior DMN appear relatively stable and reliable over a short-term period of acquisition but with some degree of variability across clinical samples. -
Postema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X. and 38 morePostema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X., Fitzgerald, J., Floris, D. L., Freitag, C. M., Gallagher, L., Glahn, D. C., Gori, I., Haar, S., Hoekstra, L., Jahanshad, N., Jalbrzikowski, M., Janssen, J., King, J. A., Kong, X., Lazaro, L., Lerch, J. P., Luna, B., Martinho, M. M., McGrath, J., Medland, S. E., Muratori, F., Murphy, C. M., Murphy, D. G. M., O'Hearn, K., Oranje, B., Parellada, M., Puig, O., Retico, A., Rosa, P., Rubia, K., Shook, D., Taylor, M., Tosetti, M., Wallace, G. L., Zhou, F., Thompson, P., Fisher, S. E., Buitelaar, J. K., & Francks, C. (2019). Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 10: 4958. doi:10.1038/s41467-019-13005-8.
Additional information
Supplementary Information -
Satizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., Van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V. and 271 moreSatizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., Van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V., Li, S., Hu, Y., Koh, J. Y., Eicher, J. D., Desrivières, S., Arias-Vasquez, A., Chauhan, G., Athanasiu, L., Renteria, M. E., Kim, S., Höhn, D., Armstrong, N. J., Chen, Q., Holmes, A. J., Den Braber, A., Kloszewska, I., Andersson, M., Espeseth, T., Grimm, O., Abramovic, L., Alhusaini, S., Milaneschi, Y., Papmeyer, M., Axelsson, T., Ehrlich, S., Roiz-Santiañez, R., Kraemer, B., Håberg, A. K., Jones, H. J., Pike, G. B., Stein, D. J., Stevens, A., Bralten, J., Vernooij, M. W., Harris, T. B., Filippi, I., Witte, A. V., Guadalupe, T., Wittfeld, K., Mosley, T. H., Becker, J. T., Doan, N. T., Hagenaars, S. P., Saba, Y., Cuellar-Partida, G., Amin, N., Hilal, S., Nho, K., Karbalai, N., Arfanakis, K., Becker, D. M., Ames, D., Goldman, A. L., Lee, P. H., Boomsma, D. I., Lovestone, S., Giddaluru, S., Le Hellard, S., Mattheisen, M., Bohlken, M. M., Kasperaviciute, D., Schmaal, L., Lawrie, S. M., Agartz, I., Walton, E., Tordesillas-Gutierrez, D., Davies, G. E., Shin, J., Ipser, J. C., Vinke, L. N., Hoogman, M., Jia, T., Burkhardt, R., Klein, M., Crivello, F., Janowitz, D., Carmichael, O., Haukvik, U. K., Aribisala, B. S., Schmidt, H., Strike, L. T., Cheng, C.-Y., Risacher, S. L., Pütz, B., Fleischman, D. A., Assareh, A. A., Mattay, V. S., Buckner, R. L., Mecocci, P., Dale, A. M., Cichon, S., Boks, M. P., Matarin, M., Penninx, B. W. J. H., Calhoun, V. D., Chakravarty, M. M., Marquand, A., Macare, C., Masouleh, S. K., Oosterlaan, J., Amouyel, P., Hegenscheid, K., Rotter, J. I., Schork, A. J., Liewald, D. C. M., De Zubicaray, G. I., Wong, T. Y., Shen, L., Sämann, P. G., Brodaty, H., Roffman, J. L., De Geus, E. J. C., Tsolaki, M., Erk, S., Van Eijk, K. R., Cavalleri, G. L., Van der Wee, N. J. A., McIntosh, A. M., Gollub, R. L., Bulayeva, K. B., Bernard, M., Richards, J. S., Himali, J. J., Loeffler, M., Rommelse, N., Hoffmann, W., Westlye, L. T., Valdés Hernández, M. C., Hansell, N. K., Van Erp, T. G. M., Wolf, C., Kwok, J. B. J., Vellas, B., Heinz, A., Olde Loohuis, L. M., Delanty, N., Ho, B.-C., Ching, C. R. K., Shumskaya, E., Singh, B., Hofman, A., Van der Meer, D., Homuth, G., Psaty, B. M., Bastin, M., Montgomery, G. W., Foroud, T. M., Reppermund, S., Hottenga, J.-J., Simmons, A., Meyer-Lindenberg, A., Cahn, W., Whelan, C. D., Van Donkelaar, M. M. J., Yang, Q., Hosten, N., Green, R. C., Thalamuthu, A., Mohnke, S., Hulshoff Pol, H. E., Lin, H., Jack Jr., C. R., Schofield, P. R., Mühleisen, T. W., Maillard, P., Potkin, S. G., Wen, W., Fletcher, E., Toga, A. W., Gruber, O., Huentelman, M., Smith, G. D., Launer, L. J., Nyberg, L., Jönsson, E. G., Crespo-Facorro, B., Koen, N., Greve, D., Uitterlinden, A. G., Weinberger, D. R., Steen, V. M., Fedko, I. O., Groenewold, N. A., Niessen, W. J., Toro, R., Tzourio, C., Longstreth Jr., W. T., Ikram, M. K., Smoller, J. W., Van Tol, M.-J., Sussmann, J. E., Paus, T., Lemaître, H., Schroeter, M. L., Mazoyer, B., Andreassen, O. A., Holsboer, F., Depondt, C., Veltman, D. J., Turner, J. A., Pausova, Z., Schumann, G., Van Rooij, D., Djurovic, S., Deary, I. J., McMahon, K. L., Müller-Myhsok, B., Brouwer, R. M., Soininen, H., Pandolfo, M., Wassink, T. H., Cheung, J. W., Wolfers, T., Martinot, J.-L., Zwiers, M. P., Nauck, M., Melle, I., Martin, N. G., Kanai, R., Westman, E., Kahn, R. S., Sisodiya, S. M., White, T., Saremi, A., Van Bokhoven, H., Brunner, H. G., Völzke, H., Wright, M. J., Van 't Ent, D., Nöthen, M. M., Ophoff, R. A., Buitelaar, J. K., Fernández, G., Sachdev, P. S., Rietschel, M., Van Haren, N. E. M., Fisher, S. E., Beiser, A. S., Francks, C., Saykin, A. J., Mather, K. A., Romanczuk-Seiferth, N., Hartman, C. A., DeStefano, A. L., Heslenfeld, D. J., Weiner, M. W., Walter, H., Hoekstra, P. J., Nyquist, P. A., Franke, B., Bennett, D. A., Grabe, H. J., Johnson, A. D., Chen, C., Van Duijn, C. M., Lopez, O. L., Fornage, M., Wardlaw, J. A., Schmidt, R., DeCarli, C., De Jager, P. L., Villringer, A., Debette, S., Gudnason, V., Medland, S. E., Shulman, J. M., Thompson, P. M., Seshadri, S., & Ikram, M. A. (2019). Genetic architecture of subcortical brain structures in 38,854 individuals worldwide. Nature Genetics, 51, 1624-1636. doi:10.1038/s41588-019-0511-y.
Abstract
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease. -
Snijders Blok, L., Kleefstra, T., Venselaar, H., Maas, S., Kroes, H. Y., Lachmeijer, A. M. A., Van Gassen, K. L. I., Firth, H. V., Tomkins, S., Bodek, S., The DDD Study, Õunap, K., Wojcik, M. H., Cunniff, C., Bergstrom, K., Powis, Z., Tang, S., Shinde, D. N., Au, C., Iglesias, A. D., Izumi, K. and 18 moreSnijders Blok, L., Kleefstra, T., Venselaar, H., Maas, S., Kroes, H. Y., Lachmeijer, A. M. A., Van Gassen, K. L. I., Firth, H. V., Tomkins, S., Bodek, S., The DDD Study, Õunap, K., Wojcik, M. H., Cunniff, C., Bergstrom, K., Powis, Z., Tang, S., Shinde, D. N., Au, C., Iglesias, A. D., Izumi, K., Leonard, J., Tayoun, A. A., Baker, S. W., Tartaglia, M., Niceta, M., Dentici, M. L., Okamoto, N., Miyake, N., Matsumoto, N., Vitobello, A., Faivre, L., Philippe, C., Gilissen, C., Wiel, L., Pfundt, R., Derizioti, P., Brunner, H. G., & Fisher, S. E. (2019). De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder. The American Journal of Human Genetics, 105(2), 403-412. doi:10.1016/j.ajhg.2019.06.007.
Abstract
POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder. -
Sollis, E. (2019). A network of interacting proteins disrupted in language-related disorders. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Tilot, A. K., Vino, A., Kucera, K. S., Carmichael, D. A., Van den Heuvel, L., Den Hoed, J., Sidoroff-Dorso, A. V., Campbell, A., Porteous, D. J., St Pourcain, B., Van Leeuwen, T. M., Ward, J., Rouw, R., Simner, J., & Fisher, S. E. (2019). Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190026. doi:10.1098/rstb.2019.0026.
Abstract
Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme–colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging.Files private
Request files -
Truong, D. T., Adams, A. K., Paniagua, S., Frijters, J. C., Boada, R., Hill, D. E., Lovett, M. W., Mahone, E. M., Willcutt, E. G., Wolf, M., Defries, J. C., Gialluisi, A., Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., Bosson-Heenan, J., & Gruen, J. R. (2019). Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African–American youth. Journal of Medical Genetics, 56(8), 557-566. doi:10.1136/jmedgenet-2018-105874.
Abstract
Background Rapid automatised naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of reading disability. The underlying biology of reading disability is poorly understood. However, the high correlation among RAN, RAS and reading could be attributable to shared genetic factors that contribute to common biological mechanisms.
Objective To identify shared genetic factors that contribute to RAN and RAS performance using a multivariate approach.
Methods We conducted a multivariate genome-wide association analysis of RAN Objects, RAN Letters and RAS Letters/Numbers in a sample of 1331 Hispanic American and African–American youth. Follow-up neuroimaging genetic analysis of cortical regions associated with reading ability in an independent sample and epigenetic examination of extant data predicting tissue-specific functionality in the brain were also conducted.
Results Genome-wide significant effects were observed at rs1555839 (p=4.03×10−8) and replicated in an independent sample of 318 children of European ancestry. Epigenetic analysis and chromatin state models of the implicated 70 kb region of 10q23.31 support active transcription of the gene RNLS in the brain, which encodes a catecholamine metabolising protein. Chromatin contact maps of adult hippocampal tissue indicate a potential enhancer–promoter interaction regulating RNLS expression. Neuroimaging genetic analysis in an independent, multiethnic sample (n=690) showed that rs1555839 is associated with structural variation in the right inferior parietal lobule.
Conclusion This study provides support for a novel trait locus at chromosome 10q23.31 and proposes a potential gene–brain–behaviour relationship for targeted future functional analysis to understand underlying biological mechanisms for reading disability.Additional information
Supplementary data -
Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787. doi:10.1523/JNEUROSCI.0888-19.2019.
Abstract
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.
SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.Additional information
The Perils of Neuroimaging Genetics for Cognitive Traits (feature commentary) -
Van Rhijn, J. R. (2019). The role of FoxP2 in striatal circuitry. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud repository -
Verhoef, E., Demontis, D., Burgess, S., Shapland, C. Y., Dale, P. S., Okbay, A., Neale, B. M., Faraone, S. V., iPSYCH-Broad-PGC ADHD Consortium, Stergiakouli, E., Davey Smith, G., Fisher, S. E., Borglum, A., & St Pourcain, B. (2019). Disentangling polygenic associations between Attention-Deficit/Hyperactivity Disorder, educational attainment, literacy and language. Translational Psychiatry, 9: 35. doi:10.1038/s41398-018-0324-2.
Abstract
Interpreting polygenic overlap between ADHD and both literacy-related and language-related impairments is challenging as genetic associations might be influenced by indirectly shared genetic factors. Here, we investigate genetic overlap between polygenic ADHD risk and multiple literacy-related and/or language-related abilities (LRAs), as assessed in UK children (N ≤ 5919), accounting for genetically predictable educational attainment (EA). Genome-wide summary statistics on clinical ADHD and years of schooling were obtained from large consortia (N ≤ 326,041). Our findings show that ADHD-polygenic scores (ADHD-PGS) were inversely associated with LRAs in ALSPAC, most consistently with reading-related abilities, and explained ≤1.6% phenotypic variation. These polygenic links were then dissected into both ADHD effects shared with and independent of EA, using multivariable regressions (MVR). Conditional on EA, polygenic ADHD risk remained associated with multiple reading and/or spelling abilities, phonemic awareness and verbal intelligence, but not listening comprehension and non-word repetition. Using conservative ADHD-instruments (P-threshold < 5 × 10−8), this corresponded, for example, to a 0.35 SD decrease in pooled reading performance per log-odds in ADHD-liability (P = 9.2 × 10−5). Using subthreshold ADHD-instruments (P-threshold < 0.0015), these effects became smaller, with a 0.03 SD decrease per log-odds in ADHD risk (P = 1.4 × 10−6), although the predictive accuracy increased. However, polygenic ADHD-effects shared with EA were of equal strength and at least equal magnitude compared to those independent of EA, for all LRAs studied, and detectable using subthreshold instruments. Thus, ADHD-related polygenic links with LRAs are to a large extent due to shared genetic effects with EA, although there is evidence for an ADHD-specific association profile, independent of EA, that primarily involves literacy-related impairments.Additional information
41398_2018_324_MOESM1_ESM.docx
Share this page