Displaying 1 - 3 of 3
  • Carota, F., Schoffelen, J.-M., Oostenveld, R., & Indefrey, P. (2022). The time course of language production as revealed by pattern classification of MEG sensor data. The Journal of Neuroscience, 42(29), 5745-5754. doi:10.1523/JNEUROSCI.1923-21.2022.

    Abstract

    Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production
  • Shebani, Z., Carota, F., Hauk, O., Rowe, J. B., Barsalou, L. W., Tomasello, R., & Pulvermüller, F. (2022). Brain correlates of action word memory revealed by fMRI. Scientific Reports, 12: 16053. doi:10.1038/s41598-022-19416-w.

    Abstract

    Understanding language semantically related to actions activates the motor cortex. This activation is sensitive to semantic information such as the body part used to perform the action (e.g. arm-/leg-related action words). Additionally, motor movements of the hands/feet can have a causal effect on memory maintenance of action words, suggesting that the involvement of motor systems extends to working memory. This study examined brain correlates of verbal memory load for action-related words using event-related fMRI. Seventeen participants saw either four identical or four different words from the same category (arm-/leg-related action words) then performed a nonmatching-to-sample task. Results show that verbal memory maintenance in the high-load condition produced greater activation in left premotor and supplementary motor cortex, along with posterior-parietal areas, indicating that verbal memory circuits for action-related words include the cortical action system. Somatotopic memory load effects of arm- and leg-related words were observed, but only at more anterior cortical regions than was found in earlier studies employing passive reading tasks. These findings support a neurocomputational model of distributed action-perception circuits (APCs), according to which language understanding is manifest as full ignition of APCs, whereas working memory is realized as reverberant activity receding to multimodal prefrontal and lateral temporal areas.

    Additional information

    supplementary figure S1 caption
  • Niccolai, V., Klepp, A., Indefrey, P., Schnitzler, A., & Biermann-Ruben, K. (2017). Semantic discrimination impacts tDCS modulation of verb processing. Scientific Reports, 7: 17162. doi:10.1038/s41598-017-17326-w.

    Abstract

    Motor cortex activation observed during body-related verb processing hints at simulation accompanying linguistic understanding. By exploiting the up- and down-regulation that anodal and cathodal transcranial direct current stimulation (tDCS) exert on motor cortical excitability, we aimed at further characterizing the functional contribution of the motor system to linguistic processing. In a double-blind sham-controlled within-subjects design, online stimulation was applied to the left hemispheric hand-related motor cortex of 20 healthy subjects. A dual, double-dissociation task required participants to semantically discriminate concrete (hand/foot) from abstract verb primes as well as to respond with the hand or with the foot to verb-unrelated geometric targets. Analyses were conducted with linear mixed models. Semantic priming was confirmed by faster and more accurate reactions when the response effector was congruent with the verb’s body part. Cathodal stimulation induced faster responses for hand verb primes thus indicating a somatotopical distribution of cortical activation as induced by body-related verbs. Importantly, this effect depended on performance in semantic discrimination. The current results point to verb processing being selectively modifiable by neuromodulation and at the same time to a dependence of tDCS effects on enhanced simulation. We discuss putative mechanisms operating in this reciprocal dependence of neuromodulation and motor resonance.

    Additional information

    41598_2017_17326_MOESM1_ESM.pdf

Share this page