Displaying 1 - 2 of 2
-
Carota, F., Nili, H., Kriegeskorte, N., & Pulvermüller, F. (2024). Experientially-grounded and distributional semantic vectors uncover dissociable representations of semantic categories. Language, Cognition and Neuroscience, 39(8), 1020-1044. doi:10.1080/23273798.2023.2232481.
Abstract
Neuronal populations code similar concepts by similar activity patterns across the human brain's semantic networks. However, it is unclear to what extent such meaning-to-symbol mapping reflects distributional statistics, or experiential information grounded in sensorimotor and emotional knowledge. We asked whether integrating distributional and experiential data better distinguished conceptual categories than each method taken separately. We examined the similarity structure of fMRI patterns elicited by visually presented action- and object-related words using representational similarity analysis (RSA). We found that the distributional and experiential/integrative models respectively mapped the high-dimensional semantic space in left inferior frontal, anterior temporal, and in left precentral, posterior inferior/middle temporal cortex. Furthermore, results from model comparisons uncovered category-specific similarity patterns, as both distributional and experiential models matched the similarity patterns for action concepts in left fronto-temporal cortex, whilst the experiential/integrative (but not distributional) models matched the similarity patterns for object concepts in left fusiform and angular gyrus. -
Takashima, A., Carota, F., Schoots, V., Redmann, A., Jehee, J., & Indefrey, P. (2024). Tomatoes are red: The perception of achromatic objects elicits retrieval of associated color knowledge. Journal of Cognitive Neuroscience, 36(1), 24-45. doi:10.1162/jocn_a_02068.
Abstract
When preparing to name an object, semantic knowledge about the object and its attributes is activated, including perceptual properties. It is unclear, however, whether semantic attribute activation contributes to lexical access or is a consequence of activating a concept irrespective of whether that concept is to be named or not. In this study, we measured neural responses using fMRI while participants named objects that are typically green or red, presented in black line drawings. Furthermore, participants underwent two other tasks with the same objects, color naming and semantic judgment, to see if the activation pattern we observe during picture naming is (a) similar to that of a task that requires accessing the color attribute and (b) distinct from that of a task that requires accessing the concept but not its name or color. We used representational similarity analysis to detect brain areas that show similar patterns within the same color category, but show different patterns across the two color categories. In all three tasks, activation in the bilateral fusiform gyri (“Human V4”) correlated with a representational model encoding the red–green distinction weighted by the importance of color feature for the different objects. This result suggests that when seeing objects whose color attribute is highly diagnostic, color knowledge about the objects is retrieved irrespective of whether the color or the object itself have to be named.
Share this page