Publications
Displaying 101 - 122 of 122
-
Rommers, J., Dickson, D. S., Norton, J. J. S., Wlotko, E. W., & Federmeier, K. D. (2017). Alpha and theta band dynamics related to sentential constraint and word expectancy. Language, Cognition and Neuroscience, 32(5), 576-589. doi:10.1080/23273798.2016.1183799.
Abstract
Despite strong evidence for prediction during language comprehension, the underlying
mechanisms, and the extent to which they are specific to language, remain unclear. Re-analysing
an event-related potentials study, we examined responses in the time-frequency domain to
expected and unexpected (but plausible) words in strongly and weakly constraining sentences,
and found results similar to those reported in nonverbal domains. Relative to expected words,
unexpected words elicited an increase in the theta band (4–7 Hz) in strongly constraining
contexts, suggesting the involvement of control processes to deal with the consequences of
having a prediction disconfirmed. Prior to critical word onset, strongly constraining sentences
exhibited a decrease in the alpha band (8–12 Hz) relative to weakly constraining sentences,
suggesting that comprehenders can take advantage of predictive sentence contexts to prepare
for the input. The results suggest that the brain recruits domain-general preparation and control
mechanisms when making and assessing predictions during sentence comprehension -
Rommers, J., Meyer, A. S., & Praamstra, P. (2017). Lateralized electrical brain activity reveals covert attention allocation during speaking. Neuropsychologia, 95, 101-110. doi:10.1016/j.neuropsychologia.2016.12.013.
Abstract
Speakers usually begin to speak while only part of the utterance has been planned. Earlier work has shown that speech planning processes are reflected in speakers’ eye movements as they describe visually presented objects. However, to-be-named objects can be processed to some extent before they have been fixated upon, presumably because attention can be allocated to objects covertly, without moving the eyes. The present study investigated whether EEG could track speakers’ covert attention allocation as they produced short utterances to describe pairs of objects (e.g., “dog and chair”). The processing difficulty of each object was varied by presenting it in upright orientation (easy) or in upside down orientation (difficult). Background squares flickered at different frequencies in order to elicit steady-state visual evoked potentials (SSVEPs). The N2pc component, associated with the focusing of attention on an item, was detectable not only prior to speech onset, but also during speaking. The time course of the N2pc showed that attention shifted to each object in the order of mention prior to speech onset. Furthermore, greater processing difficulty increased the time speakers spent attending to each object. This demonstrates that the N2pc can track covert attention allocation in a naming task. In addition, an effect of processing difficulty at around 200–350 ms after stimulus onset revealed early attention allocation to the second to-be-named object. The flickering backgrounds elicited SSVEPs, but SSVEP amplitude was not influenced by processing difficulty. These results help complete the picture of the coordination of visual information uptake and motor output during speaking. -
Schoffelen, J.-M., Hulten, A., Lam, N. H. L., Marquand, A. F., Udden, J., & Hagoort, P. (2017). Frequency-specific directed interactions in the human brain network for language. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 8083-8088. doi:10.1073/pnas.1703155114.
Abstract
The brain’s remarkable capacity for language requires bidirectional interactions between functionally specialized brain regions. We used magnetoencephalography to investigate interregional interactions in the brain network for language while 102 participants were reading sentences. Using Granger causality analysis, we identified inferior frontal cortex and anterior temporal regions to receive widespread input and middle temporal regions to send widespread output. This fits well with the notion that these regions play a central role in language processing. Characterization of the functional topology of this network, using data-driven matrix factorization, which allowed for partitioning into a set of subnetworks, revealed directed connections at distinct frequencies of interaction. Connections originating from temporal regions peaked at alpha frequency, whereas connections originating from frontal and parietal regions peaked at beta frequency. These findings indicate that the information flow between language-relevant brain areas, which is required for linguistic processing, may depend on the contributions of distinct brain rhythmsAdditional information
pnas.201703155SI.pdf -
Schoot, L. (2017). Language processing in a conversation context. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.
Abstract
Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture-word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an EEG study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type. -
Shitova, N., Roelofs, A., Schriefers, H., Bastiaansen, M. C. M., & Schoffelen, J.-M. (2017). Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 92, 289-303. doi:10.1016/j.cortex.2017.04.017.
Abstract
Accumulating evidence suggests that spoken word production requires different amounts of top-down control depending on the prevailing circumstances. For example, during Stroop-like tasks, the interference in response time (RT) is typically larger following congruent trials than following incongruent trials. This effect is called the Gratton effect, and has been taken to reflect top-down control adjustments based on the previous trial type. Such control adjustments have been studied extensively in Stroop and Eriksen flanker tasks (mostly using manual responses), but not in the picture–word interference (PWI) task, which is a workhorse of language production research. In one of the few studies of the Gratton effect in PWI, Van Maanen and Van Rijn (2010) examined the effect in picture naming RTs during dual-task performance. Based on PWI effect differences between dual-task conditions, they argued that the functional locus of the PWI effect differs between post-congruent trials (i.e., locus in perceptual and conceptual encoding) and post-incongruent trials (i.e., locus in word planning). However, the dual-task procedure may have contaminated the results. We therefore performed an electroencephalography (EEG) study on the Gratton effect in a regular PWI task. We observed a PWI effect in the RTs, in the N400 component of the event-related brain potentials, and in the midfrontal theta power, regardless of the previous trial type. Moreover, the RTs, N400, and theta power reflected the Gratton effect. These results provide evidence that the PWI effect arises at the word planning stage following both congruent and incongruent trials, while the amount of top-down control changes depending on the previous trial type. -
Silva, S., Inácio, F., Folia, V., & Petersson, K. M. (2017). Eye movements in implicit artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(9), 1387-1402. doi:10.1037/xlm0000350.
Abstract
Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests -
Silva, S., Petersson, K. M., & Castro, S. L. (2017). The effects of ordinal load on incidental temporal learning. Quarterly Journal of Experimental Psychology, 70(4), 664-674. doi:10.1080/17470218.2016.1146909.
Abstract
How can we grasp the temporal structure of events? A few studies have indicated that representations of temporal structure are acquired when there is an intention to learn, but not when learning is incidental. Response-to-stimulus intervals, uncorrelated temporal structures, unpredictable ordinal information, and lack of metrical organization have been pointed out as key obstacles to incidental temporal learning, but the literature includes piecemeal demonstrations of learning under all these circumstances. We suggest that the unacknowledged effects of ordinal load may help reconcile these conflicting findings, ordinal load referring to the cost of identifying the sequence of events (e.g., tones, locations) where a temporal pattern is embedded. In a first experiment, we manipulated ordinal load into simple and complex levels. Participants learned ordinal-simple sequences, despite their uncorrelated temporal structure and lack of metrical organization. They did not learn ordinal-complex sequences, even though there were no response-to-stimulus intervals nor unpredictable ordinal information. In a second experiment, we probed learning of ordinal-complex sequences with strong metrical organization, and again there was no learning. We conclude that ordinal load is a key obstacle to incidental temporal learning. Further analyses showed that the effect of ordinal load is to mask the expression of temporal knowledge, rather than to prevent learning. -
Silva, S., Folia, V., Hagoort, P., & Petersson, K. M. (2017). The P600 in Implicit Artificial Grammar Learning. Cognitive Science, 41(1), 137-157. doi:10.1111/cogs.12343.
Abstract
The suitability of the Artificial Grammar Learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and
after (preference and grammaticality classification) exposure to a grammar. A typical, centroparietal P600 effect was elicited by grammatical violations after exposure, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere
exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test. -
Simon, E., & Sjerps, M. J. (2017). Phonological category quality in the mental lexicon of child and adult learners. International Journal of Bilingualism, 21(4), 474-499. doi:10.1177/1367006915626589.
Abstract
Aims and objectives: The aim was to identify which criteria children use to decide on the category membership of native and non-native vowels, and to get insight into the organization of phonological representations in the bilingual mind. Methodology: The study consisted of two cross-language mispronunciation detection tasks in which L2 vowels were inserted into L1 words and vice versa. In Experiment 1, 10- to 12-year-old Dutch-speaking children were presented with Dutch words which were either pronounced with the target Dutch vowel or with an English vowel inserted in the Dutch consonantal frame. Experiment 2 was a mirror of the first, with English words which were pronounced “correctly” or which were “mispronounced” with a Dutch vowel. Data and analysis: Analyses focused on extent to which child and adult listeners accepted substitutions of Dutch vowels by English ones, and vice versa. Findings: The results of Experiment 1 revealed that between the age of ten and twelve children have well-established phonological vowel categories in their native language. However, Experiment 2 showed that in their non-native language, children tended to accept mispronounced items which involve sounds from their native language. At the same time, though, they did not fully rely on their native phonemic inventory because the children accepted most of the correctly pronounced English items. Originality: While many studies have examined native and non-native perception by infants and adults, studies on first and second language perception of school-age children are rare. This study adds to the body of literature aimed at expanding our knowledge in this area. Implications: The study has implications for models of the organization of the bilingual mind: while proficient adult non-native listeners generally have clearly separated sets of phonological representations for their two languages, for non-proficient child learners the L1 phonology still exerts a strong influence on the L2 phonology. -
Soutschek, A., Burke, C. J., Beharelle, A. R., Schreiber, R., Weber, S. C., Karipidis, I. I., Ten Velden, J., Weber, B., Haker, H., Kalenscher, T., & Tobler, P. N. (2017). The dopaminergic reward system underpins gender differences in social preferences. Nature Human Behaviour, 1, 819-827. doi:10.1038/s41562-017-0226-y.
Abstract
Women are known to have stronger prosocial preferences than men, but it remains an open question as to how these behavioural differences arise from differences in brain functioning. Here, we provide a neurobiological account for the hypothesized gender difference. In a pharmacological study and an independent neuroimaging study, we tested the hypothesis that the neural reward system encodes the value of sharing money with others more strongly in women than in men. In the pharmacological study, we reduced receptor type-specific actions of dopamine, a neurotransmitter related to reward processing, which resulted in more selfish decisions in women and more prosocial decisions in men. Converging findings from an independent neuroimaging study revealed gender-related activity in neural reward circuits during prosocial decisions. Thus, the neural reward system appears to be more sensitive to prosocial rewards in women than in men, providing a neurobiological account for why women often behave more prosocially than men.
A large body of evidence suggests that women are often more prosocial (for example, generous, altruistic and inequality averse) than men, at least when other factors such as reputation and strategic considerations are excluded1,2,3. This dissociation could result from cultural expectations and gender stereotypes, because in Western societies women are more strongly expected to be prosocial4,5,6 and sensitive to variations in social context than men1. It remains an open question, however, whether and how on a neurobiological level the social preferences of women and men arise from differences in brain functioning. The assumption of gender differences in social preferences predicts that the neural reward system’s sensitivity to prosocial and selfish rewards should differ between women and men. Specifically, the hypothesis would be that the neural reward system is more sensitive to prosocial than selfish rewards in women and more sensitive to selfish than prosocial rewards in men. The goal of the current study was to test in two independent experiments for the hypothesized gender differences on both a pharmacological and a haemodynamic level. In particular, we examined the functions of the neurotransmitter dopamine using a dopamine receptor antagonist, and the role of the striatum (a brain region strongly innervated by dopamine neurons) during social decision-making in women and men using neuroimaging.
The neurotransmitter dopamine is thought to play a key role in neural reward processing7,8. Recent evidence suggests that dopaminergic activity is sensitive not only to rewards for oneself but to rewards for others as well9. The assumption that dopamine is sensitive to both self- and other-related outcomes is consistent with the finding that the striatum shows activation for both selfish and shared rewards10,11,12,13,14,15. The dopaminergic response may represent a net signal encoding the difference between the value of preferred and unpreferred rewards8. Regarding the hypothesized gender differences in social preferences, this account makes the following predictions. If women prefer shared (prosocial) outcomes2, women’s dopaminergic signals to shared rewards will be stronger than to non-shared (selfish) rewards, so reducing dopaminergic activity should bias women to make more selfish decisions. In line with this hypothesis, a functional imaging study reported enhanced striatal activation in female participants during charitable donations11. In contrast, if men prefer selfish over prosocial rewards, dopaminergic activity should be enhanced to selfish compared to prosocial rewards. In line with this view, upregulating dopaminergic activity in a sample of exclusively male participants increased selfish behaviour in a bargaining game16. Thus, contrary to the hypothesized effect in women, reducing dopaminergic neurotransmission should render men more prosocial. Taken together, the current study tested the following three predictions: we expected the dopaminergic reward system (1) to be more sensitive to prosocial than selfish rewards in women and (2) to be more sensitive to selfish than prosocial rewards in men. As a consequence of these two predictions, we also predicted (3) dopaminoceptive regions such as the striatum to show stronger activation to prosocial relative to selfish rewards in women than in men.
To test these predictions, we conducted a pharmacological study in which we reduced dopaminergic neurotransmission with amisulpride. Amisulpride is a dopamine antagonist that is highly specific for dopaminergic D2/D3 receptors17. After receiving amisulpride or placebo, participants performed an interpersonal decision task18,19,20, in which they made choices between a monetary reward only for themselves (selfish reward option) and sharing money with others (prosocial reward option). We expected that blocking dopaminergic neurotransmission with amisulpride, relative to placebo, would result in fewer prosocial choices in women and more prosocial choices in men. To investigate whether potential gender-related effects of dopamine are selective for social decision-making, we also tested the effects of amisulpride on time preferences in a non-social control task that was matched to the interpersonal decision task in terms of choice structure.
In addition, because dopaminergic neurotransmission plays a crucial role in brain regions involved in value processing, such as the striatum21, a gender-related role of dopaminergic activity for social decision-making should also be reflected by dissociable activity patterns in the striatum. Therefore, to further test our hypothesis, we investigated the neural correlates of social decision-making in a functional imaging study. In line with our predictions for the pharmacological study, we expected to find stronger striatum activity during prosocial relative to selfish decisions in women, whereas men should show enhanced activity in the striatum for selfish relative to prosocial choices.Additional information
Supplementary Information -
Ye, Z., Stolk, A., Toni, I., & Hagoort, P. (2017). Oxytocin modulates semantic integration in speech comprehension. Journal of Cognitive Neuroscience, 29, 267-276. doi:10.1162/jocn_a_01044.
Abstract
Listeners interpret utterances by integrating information from multiple sources including word level semantics and world knowledge. When the semantics of an expression is inconsistent with his or her knowledge about the world, the listener may have to search through the conceptual space for alternative possible world scenarios that can make the expression more acceptable. Such cognitive exploration requires considerable computational resources and might depend on motivational factors. This study explores whether and how oxytocin, a neuropeptide known to influence socialmotivation by reducing social anxiety and enhancing affiliative tendencies, can modulate the integration of world knowledge and sentence meanings. The study used a betweenparticipant double-blind randomized placebo-controlled design. Semantic integration, indexed with magnetoencephalography through the N400m marker, was quantified while 45 healthymale participants listened to sentences that were either congruent or incongruent with facts of the world, after receiving intranasally delivered oxytocin or placebo. Compared with congruent sentences, world knowledge incongruent sentences elicited a stronger N400m signal from the left inferior frontal and anterior temporal regions and medial pFC (the N400m effect) in the placebo group. Oxytocin administration significantly attenuated the N400meffect at both sensor and cortical source levels throughout the experiment, in a state-like manner. Additional electrophysiological markers suggest that the absence of the N400m effect in the oxytocin group is unlikely due to the lack of early sensory or semantic processing or a general downregulation of attention. These findings suggest that oxytocin drives listeners to resolve challenges of semantic integration, possibly by promoting the cognitive exploration of alternative possible world scenarios. -
Takashima, A., Bakker, I., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2017). Interaction between episodic and semantic memory networks in the acquisition and consolidation of novel spoken words. Brain and Language, 167, 44-60. doi:10.1016/j.bandl.2016.05.009.
Abstract
When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and again after a delay of one week. Words learned with meanings were remembered better than those learned without meanings. Both episodic (hippocampus-dependent) and semantic (dependent on distributed neocortical areas) memory systems were utilised during recognition of the novel words. The extent to which the two systems were involved changed as a function of time and the amount of associated information, with more involvement of both systems for the meaningful words than for the form-only words after the one-week delay. These results suggest that the reason the meaningful words were remembered better is that their retrieval can benefit more from these two complementary memory systems -
Tan, Y., Martin, R. C., & Van Dyke, J. A. (2017). Semantic and syntactic interference in sentence comprehension: A comparison of working memory models. Frontiers in Psychology, 8: 198. doi:10.3389/fpsyg.2017.00198.
Abstract
This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed. -
Tsuji, S., Fikkert, P., Minagawa, Y., Dupoux, E., Filippin, L., Versteegh, M., Hagoort, P., & Cristia, A. (2017). The more, the better? Behavioral and neural correlates of frequent and infrequent vowel exposure. Developmental Psychobiology, 59, 603-612. doi:10.1002/dev.21534.
Abstract
A central assumption in the perceptual attunement literature holds that exposure to a speech sound contrast leads to improvement in native speech sound processing. However, whether the amount of exposure matters for this process has not been put to a direct test. We elucidated indicators of frequency-dependent perceptual attunement by comparing 5–8-month-old Dutch infants’ discrimination of tokens containing a highly frequent [hɪt-he:t] and a highly infrequent [hʏt-hø:t] native vowel contrast as well as a non-native [hɛt-hæt] vowel contrast in a behavioral visual habituation paradigm (Experiment 1). Infants discriminated both native contrasts similarly well, but did not discriminate the non-native contrast. We sought further evidence for subtle differences in the processing of the two native contrasts using near-infrared spectroscopy and a within-participant design (Experiment 2). The neuroimaging data did not provide additional evidence that responses to native contrasts are modulated by frequency of exposure. These results suggest that even large differences in exposure to a native contrast may not directly translate to behavioral and neural indicators of perceptual attunement, raising the possibility that frequency of exposure does not influence improvements in discriminating native contrasts.Additional information
dev21534-sup-0001-SuppInfo-S1.docx -
Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2017). Broca’s region: A causal role in implicit processing of grammars with crossed non-adjacent dependencies. Cognition, 164, 188-198. doi:10.1016/j.cognition.2017.03.010.
Abstract
Non-adjacent dependencies are challenging for the language learning machinery and are acquired later than adjacent dependencies. In this transcranial magnetic stimulation (TMS) study, we show that participants successfully discriminated between grammatical and non-grammatical sequences after having implicitly acquired an artificial language with crossed non-adjacent dependencies. Subsequent to transcranial magnetic stimulation of Broca’s region, discrimination was impaired compared to when a language-irrelevant control region (vertex) was stimulated. These results support the view that Broca’s region is engaged in structured sequence processing and extend previous functional neuroimaging results on artificial grammar learning (AGL) in two directions: first, the results establish that Broca’s region is a causal component in the processing of non-adjacent dependencies, and second, they show that implicit processing of non-adjacent dependencies engages Broca’s region. Since patients with lesions in Broca’s region do not always show grammatical processing difficulties, the result that Broca’s region is causally linked to processing of non-adjacent dependencies is a step towards clarification of the exact nature of syntactic deficits caused by lesions or perturbation to Broca’s region. Our findings are consistent with previous results and support a role for Broca’s region in general structured sequence processing, rather than a specific role for the processing of hierarchically organized sentence structure. -
Udden, J., Snijders, T. M., Fisher, S. E., & Hagoort, P. (2017). A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. Brain and Language, 172, 16-21. doi:10.1016/j.bandl.2016.02.003.
Abstract
The CNTNAP2 gene encodes a cell-adhesion molecule that influences the properties of neural networks and the morphology and density of neurons and glial cells. Previous studies have shown association of CNTNAP2 variants with language-related phenotypes in health and disease. Here, we report associations of a common CNTNAP2 polymorphism (rs7794745) with variation in grey matter in a region in the dorsal visual stream. We tried to replicate an earlier study on 314 subjects by Tan and colleagues (2010), but now in a substantially larger group of more than 1700 subjects. Carriers of the T allele showed reduced grey matter volume in left superior occipital gyrus, while we did not replicate associations with grey matter volume in other regions identified by Tan et al (2010). Our work illustrates the importance of independent replication in neuroimaging genetic studies of language-related candidate genes. -
Van der Ven, F., Takashima, A., Segers, A., & Verhoeven, L. (2017). Semantic priming in Dutch children: Word meaning integration and study modality effects. Language Learning, 67(3), 546-568. doi:10.1111/lang.12235.
Files private
Request files -
Van Bergen, G., & Flecken, M. (2017). Putting things in new places: Linguistic experience modulates the predictive power of placement verb semantics. Journal of Memory and Language, 92, 26-42. doi:10.1016/j.jml.2016.05.003.
Abstract
A central question regarding predictive language processing concerns the extent to which linguistic experience modulates the process. We approached this question by investigating sentence processing in advanced second language (L2) users with different native language (L1) backgrounds. Using a visual world eye tracking paradigm, we investigated to what extent L1 and L2 participants showed anticipatory eye movements to objects while listening to Dutch placement event descriptions. L2 groups differed in the degree of similarity between Dutch and their L1 with respect to placement verb semantics: German, like Dutch, specifies object position in placement verbs (put.STAND vs. put.LIE), whereas English and French typically leave position underspecified (put). Results showed that German L2 listeners, like native Dutch listeners, anticipate objects that match the verbally encoded position immediately upon encountering the verb. French/English L2 participants, however, did not show any prediction effects, despite proper understanding of Dutch placement verbs. Our findings suggest that prior experience with a specific semantic contrast in one’s L1 facilitates prediction in L2, and hence adds to the evidence that linguistic experience modulates predictive sentence processing -
Van Ekert, J., Wegman, J., Jansen, C., Takashima, A., & Janzen, G. (2017). The dynamics of memory consolidation of landmarks. Hippocampus, 27(4), 303-404. doi:10.1002/hipo.22698.
Abstract
Navigating through space is fundamental to human nature and requires the ability to retrieve relevant information from the remote past. With the passage of time, some memories become generic, capturing only a sense of familiarity. Yet, others maintain precision, even when acquired decades ago. Understanding the dynamics of memory consolidation is a major challenge to neuroscientists. Using functional magnetic resonance imaging, we systematically examined the effects of time and spatial context on the neural representation of landmark recognition memory. An equal number of male and female subjects (males N = 10, total N = 20) watched a route through a large-scale virtual environment. Landmarks occurred at navigationally relevant and irrelevant locations along the route. Recognition memory for landmarks was tested directly following encoding, 24 h later and 30 days later. Surprisingly, changes over time in the neural representation of navigationally relevant landmarks differed between males and females. In males, relevant landmarks selectively engaged the parahippocampal gyrus (PHG) regardless of the age of the memory. In females, the response to relevant landmarks gradually diminished with time in the PHG but strengthened progressively in the inferior frontal gyrus (IFG). Based on what is known about the functioning of the PHG and IFG, the findings of this study suggest that males maintain access to the initially formed spatial representation of landmarks whereas females become strongly dependent on a verbal representation of landmarks with time. Our findings yield a clear objective for future studies -
Vanlangendonck, F. (2017). Finding common ground: On the neural mechanisms of communicative language production. PhD Thesis, Radboud University, Nijmegen.
Additional information
full text via Radboud Repository -
Varma, S., Takashima, A., Krewinkel, S., Van Kooten, M., Fu, L., Medendorp, W. P., Kessels, R. P. C., & Daselaar, S. M. (2017). Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans. Frontiers in Behavioral Neuroscience, 11: 54. doi:10.3389/fnbeh.2017.00054.
Abstract
So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories
Share this page