These are the publications of the Neurogenetics of Vocal Communication Group
Displaying 1 - 11 of 11
-
Anijs, M., Devanna, P., & Vernes, S. C. (2022). ARHGEF39, a gene implicated in developmental language disorder, activates RHOA and is involved in cell de-adhesion and neural progenitor cell proliferation. Frontiers in Molecular Neuroscience, 15: 941494. doi:10.3389/fnmol.2022.941494.
Abstract
ARHGEF39 was previously implicated in developmental language disorder (DLD) via a functional polymorphism that can disrupt post-transcriptional regulation by microRNAs. ARHGEF39 is part of the family of Rho guanine nucleotide exchange factors (RhoGEFs) that activate small Rho GTPases to regulate a wide variety of cellular processes. However, little is known about the function of ARHGEF39, or how its function might contribute to neurodevelopment or related disorders. Here, we explore the molecular function of ARHGEF39 and show that it activates the Rho GTPase RHOA and that high ARHGEF39 expression in cell cultures leads to an increase of detached cells. To explore its role in neurodevelopment, we analyse published single cell RNA-sequencing data and demonstrate that ARHGEF39 is a marker gene for proliferating neural progenitor cells and that it is co-expressed with genes involved in cell division. This suggests a role for ARHGEF39 in neurogenesis in the developing brain. The co-expression of ARHGEF39 with other RHOA-regulating genes supports RHOA as substrate of ARHGEF39 in neural cells, and the involvement of RHOA in neuropsychiatric disorders highlights a potential link between ARHGEF39 and neurodevelopment and disorder. Understanding the GTPase substrate, co-expression network, and processes downstream of ARHGEF39 provide new avenues for exploring the mechanisms by which altered expression levels of ARHGEF39 may contribute to neurodevelopment and associated disorders. -
Doronina, L., Hughes, G. M., Moreno-Santillan, D., Lawless, C., Lonergan, T., Ryan, L., Jebb, D., Kirilenko, B. M., Korstian, J. M., Dávalos, L. M., Vernes, S. C., Myers, E. W., Teeling, E. C., Hiller, M., Jermiin, L. S., Schmitz, J., Springer, M. S., & Ray, D. A. (2022). Contradictory phylogenetic signals in the laurasiatheria anomaly zone. Genes, 13(5): 766. doi:10.3390/genes13050766.
Abstract
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade. -
Formenti, G., Theissinger, K., Fernandes, C., Bista, I., Bombarely, A., Bleidorn, C., Ciofi, C., Crottini, A., Godoy, J. A., Höglund, J., Malukiewicz, J., Mouton, A., Oomen, R. A., Sadye, P., Palsbøll, P. J., Pampoulie, C., Ruiz-López, M. J., Svardal, H., Theofanopoulou, C., De Vries, J. and 6 moreFormenti, G., Theissinger, K., Fernandes, C., Bista, I., Bombarely, A., Bleidorn, C., Ciofi, C., Crottini, A., Godoy, J. A., Höglund, J., Malukiewicz, J., Mouton, A., Oomen, R. A., Sadye, P., Palsbøll, P. J., Pampoulie, C., Ruiz-López, M. J., Svardal, H., Theofanopoulou, C., De Vries, J., Waldvogel, A.-M., Zhang, G., Mazzoni, C. J., Jarvis, E. D., Bálint, M., & European Reference Genome Atlas (ERGA) Consortium (2022). The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 37(3), 197-202. doi:10.1016/j.tree.2021.11.008.
Abstract
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics. -
Hoeksema, N., Hagoort, P., & Vernes, S. C. (2022). Piecing together the building blocks of the vocal learning bat brain. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 294-296). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Vernes, S. C., Devanna, P., Hörpel, S. G., Alvarez van Tussenbroek, I., Firzlaff, U., Hagoort, P., Hiller, M., Hoeksema, N., Hughes, G. M., Lavrichenko, K., Mengede, J., Morales, A. E., & Wiesmann, M. (2022). The pale spear‐nosed bat: A neuromolecular and transgenic model for vocal learning. Annals of the New York Academy of Sciences, 1517, 125-142. doi:10.1111/nyas.14884.
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.Additional information
supplementary materials -
Devanna, P., Dediu, D., & Vernes, S. C. (2019). The Genetics of Language: From complex genes to complex communication. In S.-A. Rueschemeyer, & M. G. Gaskell (
Eds. ), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 865-898). Oxford: Oxford University Press.Abstract
This chapter discusses the genetic foundations of the human capacity for language. It reviews the molecular structure of the genome and the complex molecular mechanisms that allow genetic information to influence multiple levels of biology. It goes on to describe the active regulation of genes and their formation of complex genetic pathways that in turn control the cellular environment and function. At each of these levels, examples of genes and genetic variants that may influence the human capacity for language are given. Finally, it discusses the value of using animal models to understand the genetic underpinnings of speech and language. From this chapter will emerge the complexity of the genome in action and the multidisciplinary efforts that are currently made to bridge the gap between genetics and language. -
Lattenkamp, E. Z., Shields, S. M., Schutte, M., Richter, J., Linnenschmidt, M., Vernes, S. C., & Wiegrebe, L. (2019). The vocal repertoire of pale spear-nosed bats in a social roosting context. Frontiers in Ecology and Evolution, 7: 116. doi:10.3389/fevo.2019.00116.
Abstract
Commonly known for their ability to echolocate, bats also use a wide variety of social vocalizations to communicate with one another. However, the full vocal repertoires of relatively few bat species have been studied thus far. The present study examined the vocal repertoire of the pale spear-nosed bat, Phyllostomus discolor, in a social roosting context. Based on visual examination of spectrograms and subsequent quantitative analysis of syllables, eight distinct syllable classes were defined, and their prevalence in different behavioral contexts was examined. Four more syllable classes were observed in low numbers and are described here as well. These results show that P. discolor possesses a rich vocal repertoire, which includes vocalizations comparable to previously reported repertoires of other bat species as well as vocalizations previously undescribed. Our data provide detailed information about the temporal and spectral characteristics of syllables emitted by P. discolor, allowing for a better understanding of the communicative system and related behaviors of this species. Furthermore, this vocal repertoire will serve as a basis for future research using P. discolor as a model organism for vocal communication and vocal learning and it will allow for comparative studies between bat species.Additional information
Supplementary material -
Savoia, M., Cencioni, C., Mori, M., Atlante, S., Zaccagnini, G., Devanna, P., Di Marcotullio, L., Botta, B., Martelli, F., Zeiher, A. M., Pontecorvi, A., Farsetti, A., Spallotta, F., & Gaetano, C. (2019). P300/CBP-associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation. The FASEB Journal, 33(3), 4107-4123. doi:10.1096/fj.201800788R.
Abstract
The epigenetic enzyme p300/CBP-associated factor (PCAF) belongs to the GCN5-related N-acetyltransferase (GNAT) family together with GCN5. Although its transcriptional and post-translational function is well characterized, little is known about its properties as regulator of cell metabolism. Here, we report the mitochondrial localization of PCAF conferred by an 85 aa mitochondrial targeting sequence (MTS) at the N-terminal region of the protein. In mitochondria, one of the PCAF targets is the isocitrate dehydrogenase 2 (IDH2) acetylated at lysine 180. This PCAF-regulated post-translational modification might reduce IDH2 affinity for isocitrate as a result of a conformational shift involving predictively the tyrosine at position 179. Site-directed mutagenesis and functional studies indicate that PCAF regulates IDH2, acting at dual level during myoblast differentiation: at a transcriptional level together with MyoD, and at a post-translational level by direct modification of lysine acetylation in mitochondria. The latter event determines a decrease in IDH2 function with negative consequences on muscle fiber formation in C2C12 cells. Indeed, a MTS-deprived PCAF does not localize into mitochondria, remains enriched into the nucleus, and contributes to a significant increase of muscle-specific gene expression enhancing muscle differentiation. The role of PCAF in mitochondria is a novel finding shedding light on metabolic processes relevant to early muscle precursor differentiation.—Savoia, M., Cencioni, C., Mori, M., Atlante, S., Zaccagnini, G., Devanna, P., Di Marcotullio, L., Botta, B., Martelli, F., Zeiher, A. M., Pontecorvi, A., Farsetti, A., Spallotta, F., Gaetano, C. P300/CBP-associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation.Files private
Request files -
Van Rhijn, J. R. (2019). The role of FoxP2 in striatal circuitry. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud repository -
Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (
Ed. ), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press. -
Wirthlin, M., Chang, E. F., Knörnschild, M., Krubitzer, L. A., Mello, C. V., Miller, C. T., Pfenning, A. R., Vernes, S. C., Tchernichovski, O., & Yartsev, M. M. (2019). A modular approach to vocal learning: Disentangling the diversity of a complex behavioral trait. Neuron, 104(1), 87-99. doi:10.1016/j.neuron.2019.09.036.
Abstract
Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.Files private
Request files
Share this page