Peter Hagoort

Publications

Displaying 1 - 21 of 21
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In T. Sakamoto (Ed.), Communicating skills of intention (pp. 259-291). Tokyo: Hituzi Syobo.
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In A. S. Meyer, L. Wheeldon, & A. Krott (Eds.), Automaticity and control in language processing (pp. 243-270). Hove: Psychology Press.
  • Hagoort, P., & Van Berkum, J. J. A. (2007). Beyond the sentence given. Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 362, 801-811.

    Abstract

    A central and influential idea among researchers of language is that our language faculty is organized according to Fregean compositionality, which states that the meaning of an utterance is a function of the meaning of its parts and of the syntactic rules by which these parts are combined. Since the domain of syntactic rules is the sentence, the implication of this idea is that language interpretation takes place in a two-step fashion. First, the meaning of a sentence is computed. In a second step, the sentence meaning is integrated with information from prior discourse, world knowledge, information about the speaker and semantic information from extra-linguistic domains such as co-speech gestures or the visual world. Here, we present results from recordings of event-related brain potentials that are inconsistent with this classical two-step model of language interpretation. Our data support a one-step model in which knowledge about the context and the world, concomitant information from other modalities, and the speaker are brought to bear immediately, by the same fast-acting brain system that combines the meanings of individual words into a message-level representation. Underlying the one-step model is the immediacy assumption, according to which all available information will immediately be used to co-determine the interpretation of the speaker's message. Functional magnetic resonance imaging data that we collected indicate that Broca's area plays an important role in semantic unification. Language comprehension involves the rapid incorporation of information in a 'single unification space', coming from a broader range of cognitive domains than presupposed in the standard two-step model of interpretation.
  • Hald, L. A., Steenbeek-Planting, E. G., & Hagoort, P. (2007). The interaction of discourse context and world knowledge in online sentence comprehension: Evidence from the N400. Brain Research, 1146, 210-218. doi:10.1016/j.brainres.2007.02.054.

    Abstract

    In an ERP experiment we investigated how the recruitment and integration of world knowledge information relate to the integration of information within a current discourse context. Participants were presented with short discourse contexts which were followed by a sentence that contained a critical word that was correct or incorrect based on general world knowledge and the supporting discourse context, or was more or less acceptable based on the combination of general world knowledge and the specific local discourse context. Relative to the critical word in the correct world knowledge sentences following a neutral discourse, all other critical words elicited an N400 effect that began at about 300 ms after word onset. However, the magnitude of the N400 effect varied in a way that suggests an interaction between world knowledge and discourse context. The results indicate that both world knowledge and discourse context have an effect on sentence interpretation, but neither overrides the other.
  • Ozyurek, A., Willems, R. M., Kita, S., & Hagoort, P. (2007). On-line integration of semantic information from speech and gesture: Insights from event-related brain potentials. Journal of Cognitive Neuroscience, 19(4), 605-616. doi:10.1162/jocn.2007.19.4.605.

    Abstract

    During language comprehension, listeners use the global semantic representation from previous sentence or discourse context to immediately integrate the meaning of each upcoming word into the unfolding message-level representation. Here we investigate whether communicative gestures that often spontaneously co-occur with speech are processed in a similar fashion and integrated to previous sentence context in the same way as lexical meaning. Event-related potentials were measured while subjects listened to spoken sentences with a critical verb (e.g., knock), which was accompanied by an iconic co-speech gesture (i.e., KNOCK). Verbal and/or gestural semantic content matched or mismatched the content of the preceding part of the sentence. Despite the difference in the modality and in the specificity of meaning conveyed by spoken words and gestures, the latency, amplitude, and topographical distribution of both word and gesture mismatches are found to be similar, indicating that the brain integrates both types of information simultaneously. This provides evidence for the claim that neural processing in language comprehension involves the simultaneous incorporation of information coming from a broader domain of cognition than only verbal semantics. The neural evidence for similar integration of information from speech and gesture emphasizes the tight interconnection between speech and co-speech gestures.
  • De Ruiter, J. P., Noordzij, M. L., Newman-Norlund, S., Hagoort, P., & Toni, I. (2007). On the origins of intentions. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition (pp. 593-610). Oxford: Oxford University Press.
  • Snijders, T. M., Kooijman, V., Cutler, A., & Hagoort, P. (2007). Neurophysiological evidence of delayed segmentation in a foreign language. Brain Research, 1178, 106-113. doi:10.1016/j.brainres.2007.07.080.

    Abstract

    Previous studies have shown that segmentation skills are language-specific, making it difficult to segment continuous speech in an unfamiliar language into its component words. Here we present the first study capturing the delay in segmentation and recognition in the foreign listener using ERPs. We compared the ability of Dutch adults and of English adults without knowledge of Dutch (‘foreign listeners’) to segment familiarized words from continuous Dutch speech. We used the known effect of repetition on the event-related potential (ERP) as an index of recognition of words in continuous speech. Our results show that word repetitions in isolation are recognized with equivalent facility by native and foreign listeners, but word repetitions in continuous speech are not. First, words familiarized in isolation are recognized faster by native than by foreign listeners when they are repeated in continuous speech. Second, when words that have previously been heard only in a continuous-speech context re-occur in continuous speech, the repetition is detected by native listeners, but is not detected by foreign listeners. A preceding speech context facilitates word recognition for native listeners, but delays or even inhibits word recognition for foreign listeners. We propose that the apparent difference in segmentation rate between native and foreign listeners is grounded in the difference in language-specific skills available to the listeners.
  • Wassenaar, M., & Hagoort, P. (2007). Thematic role assignment in patients with Broca's aphasia: Sentence-picture matching electrified. Neuropsychologia, 45(4), 716-740. doi:10.1016/j.neuropsychologia.2006.08.016.

    Abstract

    An event-related brain potential experiment was carried out to investigate on-line thematic role assignment during sentence–picture matching in patients with Broca's aphasia. Subjects were presented with a picture that was followed by an auditory sentence. The sentence either matched the picture or mismatched the visual information depicted. Sentences differed in complexity, and ranged from simple active semantically irreversible sentences to passive semantically reversible sentences. ERPs were recorded while subjects were engaged in sentence–picture matching. In addition, reaction time and accuracy were measured. Three groups of subjects were tested: Broca patients (N = 10), non-aphasic patients with a right hemisphere (RH) lesion (N = 8), and healthy aged-matched controls (N = 15). The results of this study showed that, in neurologically unimpaired individuals, thematic role assignment in the context of visual information was an immediate process. This in contrast to patients with Broca's aphasia who demonstrated no signs of on-line sensitivity to the picture–sentence mismatches. The syntactic contribution to the thematic role assignment process seemed to be diminished given the reduction and even absence of P600 effects. Nevertheless, Broca patients showed some off-line behavioral sensitivity to the sentence–picture mismatches. The long response latencies of Broca's aphasics make it likely that off-line response strategies were used.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322-2333. doi:10.1093/cercor/bhl141.

    Abstract

    Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system.
  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.

    Abstract

    Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (1997). De rappe prater als gewoontedier [Review of the book Smooth talkers: The linguistic performance of auctioneers and sportscasters, by Koenraad Kuiper]. Psychologie, 16, 22-23.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P. (1997). Semantic priming in Broca's aphasics at a short SOA: No support for an automatic access deficit. Brain and Language, 56, 287-300. doi:10.1006/brln.1997.1849.

    Abstract

    This study tests the recent claim that Broca’s aphasics are impaired in automatic lexical access, including the retrieval of word meaning. Subjects are required to perform a lexical decision on visually presented prime target pairs. Half of the word targets are preceded by a related word, half by an unrelated word. Primes and targets are presented with a long stimulus-onset-asynchrony (SOA) of 1400 msec and with a short SOA of 300 msec. Normal priming effects are observed in Broca’s aphasics for both SOAs. This result is discussed in the context of the claim that Broca’s aphasics suffer from an impairment in the automatic access of lexical–semantic information. It is argued that none of the current priming studies provides evidence supporting this claim, since with short SOAs priming effects have been reliably obtained in Broca’s aphasics. The results are more compatible with the claim that in many Broca’s aphasics the functional locus of their comprehension deficit is at the level of postlexical integration processes.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hagoort, P. (1997). Valt er nog te lachen zonder de rechter hersenhelft? Psychologie, 16, 52-55.
  • Indefrey, P., Kleinschmidt, A., Merboldt, K.-D., Krüger, G., Brown, C. M., Hagoort, P., & Frahm, J. (1997). Equivalent responses to lexical and nonlexical visual stimuli in occipital cortex: a functional magnetic resonance imaging study. Neuroimage, 5, 78-81. doi:10.1006/nimg.1996.0232.

    Abstract

    Stimulus-related changes in cerebral blood oxygenation were measured using high-resolution functional magnetic resonance imaging sequentially covering visual occipital areas in contiguous sections. During dynamic imaging, healthy subjects silently viewed pseudowords, single false fonts, or length-matched strings of the same false fonts. The paradigm consisted of a sixfold alternation of an activation and a control task. With pseudowords as activation vs single false fonts as control, responses were seen mainly in medial occipital cortex. These responses disappeared when pseudowords were alternated with false font strings as the control and reappeared when false font strings instead of pseudowords served as activation and were alternated with single false fonts. The string-length contrast alone, therefore, is sufficient to account for the activation pattern observed in medial visual cortex when word-like stimuli are contrasted with single characters.
  • Swaab, T. Y., Brown, C. M., & Hagoort, P. (1997). Spoken sentence comprehension in aphasia: Event-related potential evidence for a lexical integration deficit. Journal of Cognitive Neuroscience, 9(1), 39-66.

    Abstract

    In this study the N400 component of the event-related potential was used to investigate spoken sentence understanding in Broca's and Wernicke's aphasics. The aim of the study was to determine whether spoken sentence comprehension problems in these patients might result from a deficit in the on-line integration of lexical information. Subjects listened to sentences spoken at a normal rate. In half of these sentences, the meaning of the final word of the sentence matched the semantic specifications of the preceding sentence context. In the other half of the sentences, the sentence-final word was anomalous with respect to the preceding sentence context. The N400 was measured to the sentence-final words in both conditions. The results for the aphasic patients (n = 14) were analyzed according to the severity of their comprehension deficit and compared to a group of 12 neurologically unimpaired age-matched controls, as well as a group of 6 nonaphasic patients with a lesion in the right hemisphere. The nonaphasic brain damaged patients and the aphasic patients with a light comprehension deficit (high comprehenders, n = 7) showed an N400 effect that was comparable to that of the neurologically unimpaired subjects. In the aphasic patients with a moderate to severe comprehension deficit (low comprehenders, n = 7), a reduction and delay of the N400 effect was obtained. In addition, the P300 component was measured in a classical oddball paradigm, in which subjects were asked to count infrequent low tones in a random series of high and low tones. No correlation was found between the occurrence of N400 and P300 effects, indicating that changes in the N400 results were related to the patients' language deficit. Overall, the pattern of results was compatible with the idea that aphasic patients with moderate to severe comprehension problems are impaired in the integration of lexical information into a higher order representation of the preceding sentence context.
  • Van Turennout, M., Hagoort, P., & Brown, C. M. (1997). Electrophysiological evidence on the time course of semantic and phonological processes in speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(4), 787-806.

    Abstract

    The temporal properties of semantic and phonological processes in speech production were investigated in a new experimental paradigm using movement-related brain potentials. The main experimental task was picture naming. In addition, a 2-choice reaction go/no-go procedure was included, involving a semantic and a phonological categorization of the picture name. Lateralized readiness potentials (LRPs) were derived to test whether semantic and phonological information activated motor processes at separate moments in time. An LRP was only observed on no-go trials when the semantic (not the phonological) decision determined the response hand. Varying the position of the critical phoneme in the picture name did not affect the onset of the LRP but rather influenced when the LRP began to differ on go and no-go trials and allowed the duration of phonological encoding of a word to be estimated. These results provide electrophysiological evidence for early semantic activation and later phonological encoding.
  • Wassenaar, M., Hagoort, P., & Brown, C. M. (1997). Syntactic ERP effects in Broca's aphasics with agrammatic comprehension. Brain and Language, 60, 61-64. doi:10.1006/brln.1997.1911.

Share this page