Displaying 1 - 26 of 26
-
Baggio, G., & Hagoort, P. (2011). The balance between memory and unification in semantics: A dynamic account of the N400. Language and Cognitive Processes, 26, 1338-1367. doi:10.1080/01690965.2010.542671.
Abstract
At least three cognitive brain components are necessary in order for us to be able to produce and comprehend language: a Memory repository for the lexicon, a Unification buffer where lexical information is combined into novel structures, and a Control apparatus presiding over executive function in language. Here we describe the brain networks that support Memory and Unification in semantics. A dynamic account of their interactions is presented, in which a balance between the two components is sought at each word-processing step. We use the theory to provide an explanation of the N400 effect. -
Davids, N., Segers, E., Van den Brink, D., Mitterer, H., van Balkom, H., Hagoort, P., & Verhoeven, L. (2011). The nature of auditory discrimination problems in children with specific language impairment: An MMN study. Neuropsychologia, 49, 19-28. doi:10.1016/j.neuropsychologia.2010.11.001.
Abstract
Many children with Specific Language Impairment (SLI) show impairments in discriminating auditorily presented stimuli. The present study investigates whether these discrimination problems are speech specific or of a general auditory nature. This was studied by using a linguistic and nonlinguistic contrast that were matched for acoustic complexity in an active behavioral task and a passive ERP paradigm, known to elicit the mismatch negativity (MMN). In addition, attention skills and a variety of language skills were measured. Participants were 25 five-year-old Dutch children with SLI having receptive as well as productive language problems and 25 control children with typical speechand language development. At the behavioral level, the SLI group was impaired in discriminating the linguistic contrast as compared to the control group, while both groups were unable to distinguish the non-linguistic contrast. Moreover, the SLI group tended to have impaired attention skills which correlated with performance on most of the language tests. At the neural level, the SLI group, in contrast to the control group, did not show an MMN in response to either the linguistic or nonlinguistic contrast. The MMN data are consistent with an account that relates the symptoms in children with SLI to non-speech processing difficulties. -
Folia, V., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2011). Implicit artificial syntax processing: Genes, preference, and bounded recursion. Biolinguistics, 5(1/2), 105-132.
Abstract
The first objective of this study was to compare the brain network engaged by preference classification and the standard grammaticality classification after implicit artificial syntax acquisition by re-analyzing previously reported event-related fMRI data. The results show that preference and grammaticality classification engage virtually identical brain networks, including Broca’s region, consistent with previous behavioral findings. Moreover, the results showed that the effects related to artificial syntax in Broca’s region were essentially the same when masked with variability related to natural syntax processing in the same participants. The second objective was to explore CNTNAP2-related effects in implicit artificial syntax learning by analyzing behavioral and event-related fMRI data from a subsample. The CNTNAP2 gene has been linked to specific language impairment and is controlled by the FOXP2 transcription factor. CNTNAP2 is expressed in language related brain networks in the developing human brain and the FOXP2–CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language. Finally, we discuss the implication of taking natural language to be a neurobiological system in terms of bounded recursion and suggest that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner. -
Habets, B., Kita, S., Shao, Z., Ozyurek, A., & Hagoort, P. (2011). The role of synchrony and ambiguity in speech–gesture integration during comprehension. Journal of Cognitive Neuroscience, 23, 1845-1854. doi:10.1162/jocn.2010.21462.
Abstract
During face-to-face communication, one does not only hear speech but also see a speaker's communicative hand movements. It has been shown that such hand gestures play an important role in communication where the two modalities influence each other's interpretation. A gesture typically temporally overlaps with coexpressive speech, but the gesture is often initiated before (but not after) the coexpressive speech. The present ERP study investigated what degree of asynchrony in the speech and gesture onsets are optimal for semantic integration of the concurrent gesture and speech. Videos of a person gesturing were combined with speech segments that were either semantically congruent or incongruent with the gesture. Although gesture and speech always overlapped in time, gesture and speech were presented with three different degrees of asynchrony. In the SOA 0 condition, the gesture onset and the speech onset were simultaneous. In the SOA 160 and 360 conditions, speech was delayed by 160 and 360 msec, respectively. ERPs time locked to speech onset showed a significant difference between semantically congruent versus incongruent gesture–speech combinations on the N400 for the SOA 0 and 160 conditions. No significant difference was found for the SOA 360 condition. These results imply that speech and gesture are integrated most efficiently when the differences in onsets do not exceed a certain time span because of the fact that iconic gestures need speech to be disambiguated in a way relevant to the speech context. -
Hagoort, P. (2011). The binding problem for language, and its consequences for the neurocognition of comprehension. In E. A. Gibson, & N. J. Pearlmutter (
Eds. ), The processing and acquisition of reference (pp. 403-436). Cambridge, MA: MIT Press. -
Hagoort, P. (2011). The neuronal infrastructure for unification at multiple levels. In G. Gaskell, & P. Zwitserlood (
Eds. ), Lexical representation: A multidisciplinary approach (pp. 231-242). Berlin: De Gruyter Mouton. -
Lai, V. T., Hagoort, P., & Casasanto, D. (2011). Affective and non-affective meaning in words and pictures. In L. Carlson, C. Holscher, & T. Shipley (
Eds. ), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 390-395). Austin, TX: Cognitive Science Society. -
Menenti, L., Gierhan, S., Segaert, K., & Hagoort, P. (2011). Shared language: Overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychological Science, 22, 1173-1182. doi:10.1177/0956797611418347.
Abstract
Whether the brain’s speech-production system is also involved in speech comprehension is a topic of much debate. Research has focused on whether motor areas are involved in listening, but overlap between speaking and listening might occur not only at primary sensory and motor levels, but also at linguistic levels (where semantic, lexical, and syntactic processes occur). Using functional MRI adaptation during speech comprehension and production, we found that the brain areas involved in semantic, lexical, and syntactic processing are mostly the same for speaking and for listening. Effects of primary processing load (indicative of sensory and motor processes) overlapped in auditory cortex and left inferior frontal cortex, but not in motor cortex, where processing load affected activity only in speaking. These results indicate that the linguistic parts of the language system are used for both speaking and listening, but that the motor system does not seem to provide a crucial contribution to listening.Additional information
Menenti_Suppl_Info_DS_10.1177_0956797611418347.zip -
Pijnacker, J., Geurts, B., Van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2011). Reasoning with exceptions: An event-related brain potentials study. Journal of Cognitive Neuroscience, 23, 471-480. doi:10.1162/jocn.2009.21360.
Abstract
Defeasible inferences are inferences that can be revised in the light of new information. Although defeasible inferences are pervasive in everyday communication, little is known about how and when they are processed by the brain. This study examined the electrophysiological signature of defeasible reasoning using a modified version of the suppression task. Participants were presented with conditional inferences (of the type “if p, then q; p, therefore q”) that were preceded by a congruent or a disabling context. The disabling context contained a possible exception or precondition that prevented people from drawing the conclusion. Acceptability of the conclusion was indeed lower in the disabling condition compared to the congruent condition. Further, we found a large sustained negativity at the conclusion of the disabling condition relative to the congruent condition, which started around 250 msec and was persistent throughout the entire epoch. Possible accounts for the observed effect are discussed. -
Scheeringa, R., Fries, P., Petersson, K. M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2011). Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron, 69, 572-583. doi:10.1016/j.neuron.2010.11.044.
Abstract
Work on animals indicates that BOLD is preferentially sensitive to local field potentials, and that it correlates most strongly with gamma band neuronal synchronization. Here we investigate how the BOLD signal in humans performing a cognitive task is related to neuronal synchronization across different frequency bands. We simultaneously recorded EEG and BOLD while subjects engaged in a visual attention task known to induce sustained changes in neuronal synchronization across a wide range of frequencies. Trial-by-trial BOLD luctuations correlated positively with trial-by-trial fluctuations in high-EEG gamma power (60–80 Hz) and negatively with alpha and beta power. Gamma power on the one hand, and alpha and beta power on the other hand, independently contributed to explaining BOLD variance. These results indicate that the BOLD-gamma coupling observed in animals can be extrapolated to humans performing a task and that neuronal dynamics underlying high- and low-frequency synchronization contribute independently to the BOLD signal.Additional information
mmc1.pdf -
Segaert, K., Menenti, L., Weber, K., & Hagoort, P. (2011). A paradox of syntactic priming: Why response tendencies show priming for passives, and response latencies show priming for actives. PLoS One, 6(10), e24209. doi:10.1371/journal.pone.0024209.
Abstract
Speakers tend to repeat syntactic structures across sentences, a phenomenon called syntactic priming. Although it has been suggested that repeating syntactic structures should result in speeded responses, previous research has focused on effects in response tendencies. We investigated syntactic priming effects simultaneously in response tendencies and response latencies for active and passive transitive sentences in a picture description task. In Experiment 1, there were priming effects in response tendencies for passives and in response latencies for actives. However, when participants' pre-existing preference for actives was altered in Experiment 2, syntactic priming occurred for both actives and passives in response tendencies as well as in response latencies. This is the first investigation of the effects of structure frequency on both response tendencies and latencies in syntactic priming. We discuss the implications of these data for current theories of syntactic processing.Additional information
Segaert_2011_Supporting_Info.doc -
Small, S. L., Hickok, G., Nusbaum, H. C., Blumstein, S., Coslett, H. B., Dell, G., Hagoort, P., Kutas, M., Marantz, A., Pylkkanen, L., Thompson-Schill, S., Watkins, K., & Wise, R. J. (2011). The neurobiology of language: Two years later [Editorial]. Brain and Language, 116(3), 103-104. doi:10.1016/j.bandl.2011.02.004.
-
Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Teunisse, J.-P., & Hagoort, P. (2011). Neural correlates of language comprehension in autism spectrum disorders: When language conflicts with world knowledge. Neuropsychologia, 49, 1095-1104. doi:10.1016/j.neuropsychologia.2011.01.018.
Abstract
In individuals with ASD, difficulties with language comprehension are most evident when higher-level semantic-pragmatic language processing is required, for instance when context has to be used to interpret the meaning of an utterance. Until now, it is unclear at what level of processing and for what type of context these difficulties in language comprehension occur. Therefore, in the current fMRI study, we investigated the neural correlates of the integration of contextual information during auditory language comprehension in 24 adults with ASD and 24 matched control participants. Different levels of context processing were manipulated by using spoken sentences that were correct or contained either a semantic or world knowledge anomaly. Our findings demonstrated significant differences between the groups in inferior frontal cortex that were only present for sentences with a world knowledge anomaly. Relative to the ASD group, the control group showed significantly increased activation in left inferior frontal gyrus (LIFG) for sentences with a world knowledge anomaly compared to correct sentences. This effect possibly indicates reduced integrative capacities of the ASD group. Furthermore, world knowledge anomalies elicited significantly stronger activation in right inferior frontal gyrus (RIFG) in the control group compared to the ASD group. This additional RIFG activation probably reflects revision of the situation model after new, conflicting information. The lack of recruitment of RIFG is possibly related to difficulties with exception handling in the ASD group.Files private
Request files -
Van Leeuwen, T. M., Den Ouden, H. E. M., & Hagoort, P. (2011). Effective connectivity determines the nature of subjective experience in grapheme-color synesthesia. Journal of Neuroscience, 31, 9879-9884. doi:10.1523/JNEUROSCI.0569-11.2011.
Abstract
Synesthesia provides an elegant model to investigate neural mechanisms underlying individual differences in subjective experience in humans. In grapheme–color synesthesia, written letters induce color sensations, accompanied by activation of color area V4. Competing hypotheses suggest that enhanced V4 activity during synesthesia is either induced by direct bottom-up cross-activation from grapheme processing areas within the fusiform gyrus, or indirectly via higher-order parietal areas. Synesthetes differ in the way synesthetic color is perceived: “projector” synesthetes experience color externally colocalized with a presented grapheme, whereas “associators” report an internally evoked association. Using dynamic causal modeling for fMRI, we show that V4 cross-activation during synesthesia was induced via a bottom-up pathway (within fusiform gyrus) in projector synesthetes, but via a top-down pathway (via parietal lobe) in associators. These findings show how altered coupling within the same network of active regions leads to differences in subjective experience. Our findings reconcile the two most influential cross-activation accounts of synesthesia. -
Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49, 813-820. doi:10.1016/j.neuropsychologia.2010.12.035.
Abstract
To highlight relevant information in dialogues, both wh-question context and pitch accent in answers can be used, such that focused information gains more attention and is processed more elaborately. To evaluate the relative influence of context and pitch accent on the depth of semantic processing, we measured Event-Related Potentials (ERPs) to auditorily presented wh-question-answer pairs. A semantically incongruent word in the answer occurred either in focus or non-focus position as determined by the context, and this word was either accented or unaccented. Semantic incongruency elicited different N400 effects in different conditions. The largest N400 effect was found when the question-marked focus was accented, while the other three conditions elicited smaller N400 effects. The results suggest that context and accentuation interact. Thus accented focused words were processed more deeply compared to conditions where focus and accentuation mismatched, or when the new information had no marking. In addition, there seems to be sex differences in the depth of semantic processing. For males, a significant N400 effect was observed only when the question-marked focus was accented, reduced N400 effects were found in the other dialogues. In contrast, females produced similar N400 effects in all the conditions. These results suggest that regardless of external cues, females tend to engage in more elaborate semantic processing compared to males. -
Willems, R. M., Clevis, K., & Hagoort, P. (2011). Add a picture for suspense: Neural correlates of the interaction between language and visual information in the perception of fear. Social, Cognitive and Affective Neuroscience, 6, 404-416. doi:10.1093/scan/nsq050.
Abstract
We investigated how visual and linguistic information interact in the perception of emotion. We borrowed a phenomenon from film theory which states that presentation of an as such neutral visual scene intensifies the percept of fear or suspense induced by a different channel of information, such as language. Our main aim was to investigate how neutral visual scenes can enhance responses to fearful language content in parts of the brain involved in the perception of emotion. Healthy participants’ brain activity was measured (using functional magnetic resonance imaging) while they read fearful and less fearful sentences presented with or without a neutral visual scene. The main idea is that the visual scenes intensify the fearful content of the language by subtly implying and concretizing what is described in the sentence. Activation levels in the right anterior temporal pole were selectively increased when a neutral visual scene was paired with a fearful sentence, compared to reading the sentence alone, as well as to reading of non-fearful sentences presented with the same neutral scene. We conclude that the right anterior temporal pole serves a binding function of emotional information across domains such as visual and linguistic information. -
Willems, R. M., Benn, Y., Hagoort, P., Tonia, I., & Varley, R. (2011). Communicating without a functioning language system: Implications for the role of language in mentalizing. Neuropsychologia, 49, 3130-3135. doi:10.1016/j.neuropsychologia.2011.07.023.
Abstract
A debated issue in the relationship between language and thought is how our linguistic abilities are involved in understanding the intentions of others (‘mentalizing’). The results of both theoretical and empirical work have been used to argue that linguistic, and more specifically, grammatical, abilities are crucial in representing the mental states of others. Here we contribute to this debate by investigating how damage to the language system influences the generation and understanding of intentional communicative behaviors. Four patients with pervasive language difficulties (severe global or agrammatic aphasia) engaged in an experimentally controlled non-verbal communication paradigm, which required signaling and understanding a communicative message. Despite their profound language problems they were able to engage in recipient design as well as intention recognition, showing similar indicators of mentalizing as have been observed in the neurologically healthy population. Our results show that aspects of the ability to communicate remain present even when core capacities of the language system are dysfunctionalAdditional information
Willems_2011_Neuropsychologia_suppl_material.doc -
Brown, C. M., Van Berkum, J. J. A., & Hagoort, P. (2000). Discourse before gender: An event-related brain potential study on the interplay of semantic and syntactic information during spoken language understanding. Journal of Psycholinguistic Research, 29(1), 53-68. doi:10.1023/A:1005172406969.
Abstract
A study is presented on the effects of discourse–semantic and lexical–syntactic information during spoken sentence processing. Event-related brain potentials (ERPs) were registered while subjects listened to discourses that ended in a sentence with a temporary syntactic ambiguity. The prior discourse–semantic information biased toward one analysis of the temporary ambiguity, whereas the lexical-syntactic information allowed only for the alternative analysis. The ERP results show that discourse–semantic information can momentarily take precedence over syntactic information, even if this violates grammatical gender agreement rules. -
Brown, C. M., Hagoort, P., & Chwilla, D. J. (2000). An event-related brain potential analysis of visual word priming effects. Brain and Language, 72, 158-190. doi:10.1006/brln.1999.2284.
Abstract
Two experiments are reported that provide evidence on task-induced effects during
visual lexical processing in a primetarget semantic priming paradigm. The research focuses on target expectancy effects by manipulating the proportion of semantically related and unrelated word pairs. In Experiment 1, a lexical decision task was used and reaction times (RTs) and event-related brain potentials (ERPs) were obtained. In Experiment 2, subjects silently read the stimuli, without any additional task demands, and ERPs were recorded. The RT and ERP results of Experiment 1 demonstrate that an expectancy mechanism contributed to the priming effect when a high proportion of related word pairs was presented. The ERP results of Experiment 2 show that in the absence of extraneous task requirements, an expectancy mechanism is not active. However, a standard ERP semantic priming effect was obtained in Experiment 2. The combined results show that priming effects due to relatedness proportion are induced by task demands and are not a standard aspect of online lexical processing. -
Brown, C. M., & Hagoort, P. (2000). On the electrophysiology of language comprehension: Implications for the human language system. In M. W. Crocker, M. Pickering, & C. Clifton jr. (
Eds. ), Architectures and mechanisms for language processing (pp. 213-237). Cambridge University Press. -
Brown, C. M., Hagoort, P., & Kutas, M. (2000). Postlexical integration processes during language comprehension: Evidence from brain-imaging research. In M. S. Gazzaniga (
Ed. ), The new cognitive neurosciences (2nd., pp. 881-895). Cambridge, MA: MIT Press. -
Hagoort, P. (2000). De toekomstige eeuw der cognitieve neurowetenschap [inaugural lecture]. Katholieke Universiteit Nijmegen.
Abstract
Rede uitgesproken op 12 mei 2000 bij de aanvaarding van het ambt van hoogleraar in de neuropsychologie aan de Faculteit Sociale Wetenschappen KUN. -
Hagoort, P., & Brown, C. M. (2000). ERP effects of listening to speech compared to reading: the P600/SPS to syntactic violations in spoken sentences and rapid serial visual presentation. Neuropsychologia, 38, 1531-1549.
Abstract
In this study, event-related brain potential ffects of speech processing are obtained and compared to similar effects in sentence reading. In two experiments sentences were presented that contained three different types of grammatical violations. In one experiment sentences were presented word by word at a rate of four words per second. The grammatical violations elicited a Syntactic Positive Shift (P600/SPS), 500 ms after the onset of the word that rendered the sentence ungrammatical. The P600/SPS consisted of two phases, an early phase with a relatively equal anterior-posterior distribution and a later phase with a strong posterior distribution. We interpret the first phase as an indication of structural integration complexity, and the second phase as an indication of failing parsing operations and/or an attempt at reanalysis. In the second experiment the same syntactic violations were presented in sentences spoken at a normal rate and with normal intonation. These violations elicited a P600/SPS with the same onset as was observed for the reading of these sentences. In addition two of the three violations showed a preceding frontal negativity, most clearly over the left hemisphere.
-
Hagoort, P., & Brown, C. M. (2000). ERP effects of listening to speech: semantic ERP effects. Neuropsychologia, 38, 1518-1530.
Abstract
In this study, event-related brain potential effects of speech processing are obtained and compared to similar effects insentence reading. In two experiments spoken sentences were presented with semantic violations in sentence-signal or mid-sentence positions. For these violations N400 effects were obtained that were very similar to N400 effects obtained in reading. However, the N400 effects in speech were preceded by an earlier negativity (N250). This negativity is not commonly observed with written input. The early effect is explained as a manifestation of a mismatch between the word forms expected on the basis of the context, and the actual cohort of activated word candidates that is generated on the basis of the speech signal. -
Hagoort, P. (2000). What we shall know only tomorrow. Brain and Language, 71, 89-92. doi:10.1006/brln.1999.2221.
-
Van Berkum, J. J. A., Hagoort, P., & Brown, C. M. (2000). The use of referential context and grammatical gender in parsing: A reply to Brysbaert and Mitchell. Journal of Psycholinguistic Research, 29(5), 467-481. doi:10.1023/A:1005168025226.
Abstract
Based on the results of an event-related brain potentials (ERP) experiment (van Berkum, Brown, & Hagoort. 1999a, b), we have recently argued that discourse-level referential context can be taken into account extremely rapidly by the parser. Moreover, our ERP results indicated that local grammatical gender information, although available within a few hundred milliseconds from word onset, is not always used quickly enough to prevent the parser from considering a discourse-supported, but agreement-violating, syntactic analysis. In a comment on our work, Brysbaert and Mitchell (2000) have raised concerns about the methodology of our ERP experiment and have challenged our interpretation of the results. In this reply, we argue that these concerns are unwarranted and, that, in contrast to our own interpretation, the alternative explanations provided by Brysbaert and Mitchell do not account for the full pattern of ERP results.
Share this page