Displaying 1 - 42 of 42
-
Eichert, N., Peeters, D., & Hagoort, P. (2018). Language-driven anticipatory eye movements in virtual reality. Behavior Research Methods, 50(3), 1102-1115. doi:10.3758/s13428-017-0929-z.
Abstract
Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. The use of this variant of the visual world paradigm has shown that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional (2D) stimuli that are mere abstractions of real world objects. Here we present a visual world paradigm study in a three-dimensional (3D) immersive virtual reality environment. Despite significant changes in the stimulus material and the different mode of stimulus presentation, language-mediated anticipatory eye movements were observed. These findings thus indicate prediction of upcoming words in language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eye-tracking in rich and multimodal 3D virtual environments.Additional information
13428_2017_929_MOESM1_ESM.docx -
Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25(4), 1458-1467. doi:10.3758/s13423-018-1494-x.
Abstract
When talking, speakers continuously monitor and use the auditory feedback of their own voice to control and inform speech production processes. When speakers are provided with auditory feedback that is perturbed in real time, most of them compensate for this by opposing the feedback perturbation. But some speakers follow the perturbation. In the current study, we investigated whether the state of the speech production system at perturbation onset may determine what type of response (opposing or following) is given. The results suggest that whether a perturbation-related response is opposing or following depends on ongoing fluctuations of the production system: It initially responds by doing the opposite of what it was doing. This effect and the non-trivial proportion of following responses suggest that current production models are inadequate: They need to account for why responses to unexpected sensory feedback depend on the production-system’s state at the time of perturbation.Additional information
https://link.springer.com/article/10.3758%2Fs13423-018-1494-x#SupplementaryMate… -
Franken, M. K., Eisner, F., Acheson, D. J., McQueen, J. M., Hagoort, P., & Schoffelen, J.-M. (2018). Self-monitoring in the cerebral cortex: Neural responses to pitch-perturbed auditory feedback during speech production. NeuroImage, 179, 326-336. doi:10.1016/j.neuroimage.2018.06.061.
Abstract
Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing. -
De Groot, A. M. B., & Hagoort, P. (
Eds. ). (2018). Research methods in psycholinguistics and the neurobiology of language: A practical guide. Oxford: Wiley. -
Hagoort, P. (2018). Prerequisites for an evolutionary stance on the neurobiology of language. Current Opinion in Behavioral Sciences, 21, 191-194. doi:10.1016/j.cobeha.2018.05.012.
-
Heyselaar, E., Mazaheri, A., Hagoort, P., & Segaert, K. (2018). Changes in alpha activity reveal that social opinion modulates attention allocation during face processing. NeuroImage, 174, 432-440. doi:10.1016/j.neuroimage.2018.03.034.
Abstract
Participants’ performance differs when conducting a task in the presence of a secondary individual, moreover the opinion the participant has of this individual also plays a role. Using EEG, we investigated how previous interactions with, and evaluations of, an avatar in virtual reality subsequently influenced attentional allocation to the face of that avatar. We focused on changes in the alpha activity as an index of attentional allocation. We found that the onset of an avatar’s face whom the participant had developed a rapport with induced greater alpha suppression. This suggests greater attentional resources are allocated to the interacted-with avatars. The evaluative ratings of the avatar induced a U-shaped change in alpha suppression, such that participants paid most attention when the avatar was rated as average. These results suggest that attentional allocation is an important element of how behaviour is altered in the presence of a secondary individual and is modulated by our opinion of that individual.Additional information
mmc1.docx -
Kösem, A., Bosker, H. R., Takashima, A., Meyer, A. S., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28, 2867-2875. doi:10.1016/j.cub.2018.07.023.
Abstract
Low-frequency neural entrainment to rhythmic input
has been hypothesized as a canonical mechanism
that shapes sensory perception in time. Neural
entrainment is deemed particularly relevant for
speech analysis, as it would contribute to the extraction
of discrete linguistic elements from continuous
acoustic signals. However, its causal influence in
speech perception has been difficult to establish.
Here, we provide evidence that oscillations build temporal
predictions about the duration of speech tokens
that affect perception. Using magnetoencephalography
(MEG), we studied neural dynamics during
listening to sentences that changed in speech rate.
Weobserved neural entrainment to preceding speech
rhythms persisting for several cycles after the change
in rate. The sustained entrainment was associated
with changes in the perceived duration of the last
word’s vowel, resulting in the perception of words
with different meanings. These findings support oscillatory
models of speech processing, suggesting that
neural oscillations actively shape speech perception. -
Lam, N. H. L., Hulten, A., Hagoort, P., & Schoffelen, J.-M. (2018). Robust neuronal oscillatory entrainment to speech displays individual variation in lateralisation. Language, Cognition and Neuroscience, 33(8), 943-954. doi:10.1080/23273798.2018.1437456.
Abstract
Neural oscillations may be instrumental for the tracking and segmentation of continuous speech. Earlier work has suggested that delta, theta and gamma oscillations entrain to the speech rhythm. We used magnetoencephalography and a large sample of 102 participants to investigate oscillatory entrainment to speech, and observed robust entrainment of delta and theta activity, and weak group-level gamma entrainment. We show that the peak frequency and the hemispheric lateralisation of the entrainment are subject to considerable individual variability. The first finding may support the involvement of intrinsic oscillations in entrainment, and the second finding suggests that there is no systematic default right-hemispheric bias for processing acoustic signals on a slow time scale. Although low frequency entrainment to speech is a robust phenomenon, the characteristics of entrainment vary across individuals, and this variation is important for understanding the underlying neural mechanisms of entrainment, as well as its functional significance. -
Segaert, K., Mazaheri, A., & Hagoort, P. (2018). Binding language: Structuring sentences through precisely timed oscillatory mechanisms. European Journal of Neuroscience, 48(7), 2651-2662. doi:10.1111/ejn.13816.
Abstract
Syntactic binding refers to combining words into larger structures. Using EEG, we investigated the neural processes involved in syntactic binding. Participants were auditorily presented two-word sentences (i.e. pronoun and pseudoverb such as ‘I grush’, ‘she grushes’, for which syntactic binding can take place) and wordlists (i.e. two pseudoverbs such as ‘pob grush’, ‘pob grushes’, for which no binding occurs). Comparing these two conditions, we targeted syntactic binding while minimizing contributions of semantic binding and of other cognitive processes such as working memory. We found a converging pattern of results using two distinct analysis approaches: one approach using frequency bands as defined in previous literature, and one data-driven approach in which we looked at the entire range of frequencies between 3-30 Hz without the constraints of pre-defined frequency bands. In the syntactic binding (relative to the wordlist) condition, a power increase was observed in the alpha and beta frequency range shortly preceding the presentation of the target word that requires binding, which was maximal over frontal-central electrodes. Our interpretation is that these signatures reflect that language comprehenders expect the need for binding to occur. Following the presentation of the target word in a syntactic binding context (relative to the wordlist condition), an increase in alpha power maximal over a left lateralized cluster of frontal-temporal electrodes was observed. We suggest that this alpha increase relates to syntactic binding taking place. Taken together, our findings suggest that increases in alpha and beta power are reflections of distinct the neural processes underlying syntactic binding.Additional information
ejn13816-sup-0001-reviewercomments.pdf -
Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of Virtual Reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869. doi:10.3758/s13428-017-0911-9.
Abstract
When we comprehend language, we often do this in rich settings in which we can use many cues to understand what someone is saying. However, it has traditionally been difficult to design experiments with rich three-dimensional contexts that resemble our everyday environments, while maintaining control over the linguistic and non-linguistic information that is available. Here we test the validity of combining electroencephalography (EEG) and Virtual Reality (VR) to overcome this problem. We recorded electrophysiological brain activity during language processing in a well-controlled three-dimensional virtual audiovisual environment. Participants were immersed in a virtual restaurant, while wearing EEG equipment. In the restaurant participants encountered virtual restaurant guests. Each guest was seated at a separate table with an object on it (e.g. a plate with salmon). The restaurant guest would then produce a sentence (e.g. “I just ordered this salmon.”). The noun in the spoken sentence could either match (“salmon”) or mismatch (“pasta”) with the object on the table, creating a situation in which the auditory information was either appropriate or inappropriate in the visual context. We observed a reliable N400 effect as a consequence of the mismatch. This finding validates the combined use of VR and EEG as a tool to study the neurophysiological mechanisms of everyday language comprehension in rich, ecologically valid settings. -
Vanlangendonck, F., Takashima, A., Willems, R. M., & Hagoort, P. (2018). Distinguishable memory retrieval networks for collaboratively and non-collaboratively learned information. Neuropsychologia, 111, 123-132. doi:10.1016/j.neuropsychologia.2017.12.008.
Abstract
Learning often occurs in communicative and collaborative settings, yet almost all research into the neural basis of memory relies on participants encoding and retrieving information on their own. We investigated whether learning linguistic labels in a collaborative context at least partly relies on cognitively and neurally distinct representations, as compared to learning in an individual context. Healthy human participants learned labels for sets of abstract shapes in three different tasks. They came up with labels with another person in a collaborative communication task (collaborative condition), by themselves (individual condition), or were given pre-determined unrelated labels to learn by themselves (arbitrary condition). Immediately after learning, participants retrieved and produced the labels aloud during a communicative task in the MRI scanner. The fMRI results show that the retrieval of collaboratively generated labels as compared to individually learned labels engages brain regions involved in understanding others (mentalizing or theory of mind) and autobiographical memory, including the medial prefrontal cortex, the right temporoparietal junction and the precuneus. This study is the first to show that collaboration during encoding affects the neural networks involved in retrieval. -
Vanlangendonck, F., Willems, R. M., & Hagoort, P. (2018). Taking common ground into account: Specifying the role of the mentalizing network in communicative language production. PLoS One, 13(10): e0202943. doi:10.1371/journal.pone.0202943.
Additional information
Data availability via Donders Repository -
Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.
Abstract
Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network. -
Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.
Abstract
Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency. -
Baggio, G., & Hagoort, P. (2011). The balance between memory and unification in semantics: A dynamic account of the N400. Language and Cognitive Processes, 26, 1338-1367. doi:10.1080/01690965.2010.542671.
Abstract
At least three cognitive brain components are necessary in order for us to be able to produce and comprehend language: a Memory repository for the lexicon, a Unification buffer where lexical information is combined into novel structures, and a Control apparatus presiding over executive function in language. Here we describe the brain networks that support Memory and Unification in semantics. A dynamic account of their interactions is presented, in which a balance between the two components is sought at each word-processing step. We use the theory to provide an explanation of the N400 effect. -
Davids, N., Segers, E., Van den Brink, D., Mitterer, H., van Balkom, H., Hagoort, P., & Verhoeven, L. (2011). The nature of auditory discrimination problems in children with specific language impairment: An MMN study. Neuropsychologia, 49, 19-28. doi:10.1016/j.neuropsychologia.2010.11.001.
Abstract
Many children with Specific Language Impairment (SLI) show impairments in discriminating auditorily presented stimuli. The present study investigates whether these discrimination problems are speech specific or of a general auditory nature. This was studied by using a linguistic and nonlinguistic contrast that were matched for acoustic complexity in an active behavioral task and a passive ERP paradigm, known to elicit the mismatch negativity (MMN). In addition, attention skills and a variety of language skills were measured. Participants were 25 five-year-old Dutch children with SLI having receptive as well as productive language problems and 25 control children with typical speechand language development. At the behavioral level, the SLI group was impaired in discriminating the linguistic contrast as compared to the control group, while both groups were unable to distinguish the non-linguistic contrast. Moreover, the SLI group tended to have impaired attention skills which correlated with performance on most of the language tests. At the neural level, the SLI group, in contrast to the control group, did not show an MMN in response to either the linguistic or nonlinguistic contrast. The MMN data are consistent with an account that relates the symptoms in children with SLI to non-speech processing difficulties. -
Folia, V., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2011). Implicit artificial syntax processing: Genes, preference, and bounded recursion. Biolinguistics, 5(1/2), 105-132.
Abstract
The first objective of this study was to compare the brain network engaged by preference classification and the standard grammaticality classification after implicit artificial syntax acquisition by re-analyzing previously reported event-related fMRI data. The results show that preference and grammaticality classification engage virtually identical brain networks, including Broca’s region, consistent with previous behavioral findings. Moreover, the results showed that the effects related to artificial syntax in Broca’s region were essentially the same when masked with variability related to natural syntax processing in the same participants. The second objective was to explore CNTNAP2-related effects in implicit artificial syntax learning by analyzing behavioral and event-related fMRI data from a subsample. The CNTNAP2 gene has been linked to specific language impairment and is controlled by the FOXP2 transcription factor. CNTNAP2 is expressed in language related brain networks in the developing human brain and the FOXP2–CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language. Finally, we discuss the implication of taking natural language to be a neurobiological system in terms of bounded recursion and suggest that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner. -
Habets, B., Kita, S., Shao, Z., Ozyurek, A., & Hagoort, P. (2011). The role of synchrony and ambiguity in speech–gesture integration during comprehension. Journal of Cognitive Neuroscience, 23, 1845-1854. doi:10.1162/jocn.2010.21462.
Abstract
During face-to-face communication, one does not only hear speech but also see a speaker's communicative hand movements. It has been shown that such hand gestures play an important role in communication where the two modalities influence each other's interpretation. A gesture typically temporally overlaps with coexpressive speech, but the gesture is often initiated before (but not after) the coexpressive speech. The present ERP study investigated what degree of asynchrony in the speech and gesture onsets are optimal for semantic integration of the concurrent gesture and speech. Videos of a person gesturing were combined with speech segments that were either semantically congruent or incongruent with the gesture. Although gesture and speech always overlapped in time, gesture and speech were presented with three different degrees of asynchrony. In the SOA 0 condition, the gesture onset and the speech onset were simultaneous. In the SOA 160 and 360 conditions, speech was delayed by 160 and 360 msec, respectively. ERPs time locked to speech onset showed a significant difference between semantically congruent versus incongruent gesture–speech combinations on the N400 for the SOA 0 and 160 conditions. No significant difference was found for the SOA 360 condition. These results imply that speech and gesture are integrated most efficiently when the differences in onsets do not exceed a certain time span because of the fact that iconic gestures need speech to be disambiguated in a way relevant to the speech context. -
Hagoort, P. (2011). The binding problem for language, and its consequences for the neurocognition of comprehension. In E. A. Gibson, & N. J. Pearlmutter (
Eds. ), The processing and acquisition of reference (pp. 403-436). Cambridge, MA: MIT Press. -
Hagoort, P. (2011). The neuronal infrastructure for unification at multiple levels. In G. Gaskell, & P. Zwitserlood (
Eds. ), Lexical representation: A multidisciplinary approach (pp. 231-242). Berlin: De Gruyter Mouton. -
Lai, V. T., Hagoort, P., & Casasanto, D. (2011). Affective and non-affective meaning in words and pictures. In L. Carlson, C. Holscher, & T. Shipley (
Eds. ), Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 390-395). Austin, TX: Cognitive Science Society. -
Menenti, L., Gierhan, S., Segaert, K., & Hagoort, P. (2011). Shared language: Overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychological Science, 22, 1173-1182. doi:10.1177/0956797611418347.
Abstract
Whether the brain’s speech-production system is also involved in speech comprehension is a topic of much debate. Research has focused on whether motor areas are involved in listening, but overlap between speaking and listening might occur not only at primary sensory and motor levels, but also at linguistic levels (where semantic, lexical, and syntactic processes occur). Using functional MRI adaptation during speech comprehension and production, we found that the brain areas involved in semantic, lexical, and syntactic processing are mostly the same for speaking and for listening. Effects of primary processing load (indicative of sensory and motor processes) overlapped in auditory cortex and left inferior frontal cortex, but not in motor cortex, where processing load affected activity only in speaking. These results indicate that the linguistic parts of the language system are used for both speaking and listening, but that the motor system does not seem to provide a crucial contribution to listening.Additional information
Menenti_Suppl_Info_DS_10.1177_0956797611418347.zip -
Pijnacker, J., Geurts, B., Van Lambalgen, M., Buitelaar, J., & Hagoort, P. (2011). Reasoning with exceptions: An event-related brain potentials study. Journal of Cognitive Neuroscience, 23, 471-480. doi:10.1162/jocn.2009.21360.
Abstract
Defeasible inferences are inferences that can be revised in the light of new information. Although defeasible inferences are pervasive in everyday communication, little is known about how and when they are processed by the brain. This study examined the electrophysiological signature of defeasible reasoning using a modified version of the suppression task. Participants were presented with conditional inferences (of the type “if p, then q; p, therefore q”) that were preceded by a congruent or a disabling context. The disabling context contained a possible exception or precondition that prevented people from drawing the conclusion. Acceptability of the conclusion was indeed lower in the disabling condition compared to the congruent condition. Further, we found a large sustained negativity at the conclusion of the disabling condition relative to the congruent condition, which started around 250 msec and was persistent throughout the entire epoch. Possible accounts for the observed effect are discussed. -
Scheeringa, R., Fries, P., Petersson, K. M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2011). Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron, 69, 572-583. doi:10.1016/j.neuron.2010.11.044.
Abstract
Work on animals indicates that BOLD is preferentially sensitive to local field potentials, and that it correlates most strongly with gamma band neuronal synchronization. Here we investigate how the BOLD signal in humans performing a cognitive task is related to neuronal synchronization across different frequency bands. We simultaneously recorded EEG and BOLD while subjects engaged in a visual attention task known to induce sustained changes in neuronal synchronization across a wide range of frequencies. Trial-by-trial BOLD luctuations correlated positively with trial-by-trial fluctuations in high-EEG gamma power (60–80 Hz) and negatively with alpha and beta power. Gamma power on the one hand, and alpha and beta power on the other hand, independently contributed to explaining BOLD variance. These results indicate that the BOLD-gamma coupling observed in animals can be extrapolated to humans performing a task and that neuronal dynamics underlying high- and low-frequency synchronization contribute independently to the BOLD signal.Additional information
mmc1.pdf -
Segaert, K., Menenti, L., Weber, K., & Hagoort, P. (2011). A paradox of syntactic priming: Why response tendencies show priming for passives, and response latencies show priming for actives. PLoS One, 6(10), e24209. doi:10.1371/journal.pone.0024209.
Abstract
Speakers tend to repeat syntactic structures across sentences, a phenomenon called syntactic priming. Although it has been suggested that repeating syntactic structures should result in speeded responses, previous research has focused on effects in response tendencies. We investigated syntactic priming effects simultaneously in response tendencies and response latencies for active and passive transitive sentences in a picture description task. In Experiment 1, there were priming effects in response tendencies for passives and in response latencies for actives. However, when participants' pre-existing preference for actives was altered in Experiment 2, syntactic priming occurred for both actives and passives in response tendencies as well as in response latencies. This is the first investigation of the effects of structure frequency on both response tendencies and latencies in syntactic priming. We discuss the implications of these data for current theories of syntactic processing.Additional information
Segaert_2011_Supporting_Info.doc -
Small, S. L., Hickok, G., Nusbaum, H. C., Blumstein, S., Coslett, H. B., Dell, G., Hagoort, P., Kutas, M., Marantz, A., Pylkkanen, L., Thompson-Schill, S., Watkins, K., & Wise, R. J. (2011). The neurobiology of language: Two years later [Editorial]. Brain and Language, 116(3), 103-104. doi:10.1016/j.bandl.2011.02.004.
-
Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Teunisse, J.-P., & Hagoort, P. (2011). Neural correlates of language comprehension in autism spectrum disorders: When language conflicts with world knowledge. Neuropsychologia, 49, 1095-1104. doi:10.1016/j.neuropsychologia.2011.01.018.
Abstract
In individuals with ASD, difficulties with language comprehension are most evident when higher-level semantic-pragmatic language processing is required, for instance when context has to be used to interpret the meaning of an utterance. Until now, it is unclear at what level of processing and for what type of context these difficulties in language comprehension occur. Therefore, in the current fMRI study, we investigated the neural correlates of the integration of contextual information during auditory language comprehension in 24 adults with ASD and 24 matched control participants. Different levels of context processing were manipulated by using spoken sentences that were correct or contained either a semantic or world knowledge anomaly. Our findings demonstrated significant differences between the groups in inferior frontal cortex that were only present for sentences with a world knowledge anomaly. Relative to the ASD group, the control group showed significantly increased activation in left inferior frontal gyrus (LIFG) for sentences with a world knowledge anomaly compared to correct sentences. This effect possibly indicates reduced integrative capacities of the ASD group. Furthermore, world knowledge anomalies elicited significantly stronger activation in right inferior frontal gyrus (RIFG) in the control group compared to the ASD group. This additional RIFG activation probably reflects revision of the situation model after new, conflicting information. The lack of recruitment of RIFG is possibly related to difficulties with exception handling in the ASD group.Files private
Request files -
Van Leeuwen, T. M., Den Ouden, H. E. M., & Hagoort, P. (2011). Effective connectivity determines the nature of subjective experience in grapheme-color synesthesia. Journal of Neuroscience, 31, 9879-9884. doi:10.1523/JNEUROSCI.0569-11.2011.
Abstract
Synesthesia provides an elegant model to investigate neural mechanisms underlying individual differences in subjective experience in humans. In grapheme–color synesthesia, written letters induce color sensations, accompanied by activation of color area V4. Competing hypotheses suggest that enhanced V4 activity during synesthesia is either induced by direct bottom-up cross-activation from grapheme processing areas within the fusiform gyrus, or indirectly via higher-order parietal areas. Synesthetes differ in the way synesthetic color is perceived: “projector” synesthetes experience color externally colocalized with a presented grapheme, whereas “associators” report an internally evoked association. Using dynamic causal modeling for fMRI, we show that V4 cross-activation during synesthesia was induced via a bottom-up pathway (within fusiform gyrus) in projector synesthetes, but via a top-down pathway (via parietal lobe) in associators. These findings show how altered coupling within the same network of active regions leads to differences in subjective experience. Our findings reconcile the two most influential cross-activation accounts of synesthesia. -
Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49, 813-820. doi:10.1016/j.neuropsychologia.2010.12.035.
Abstract
To highlight relevant information in dialogues, both wh-question context and pitch accent in answers can be used, such that focused information gains more attention and is processed more elaborately. To evaluate the relative influence of context and pitch accent on the depth of semantic processing, we measured Event-Related Potentials (ERPs) to auditorily presented wh-question-answer pairs. A semantically incongruent word in the answer occurred either in focus or non-focus position as determined by the context, and this word was either accented or unaccented. Semantic incongruency elicited different N400 effects in different conditions. The largest N400 effect was found when the question-marked focus was accented, while the other three conditions elicited smaller N400 effects. The results suggest that context and accentuation interact. Thus accented focused words were processed more deeply compared to conditions where focus and accentuation mismatched, or when the new information had no marking. In addition, there seems to be sex differences in the depth of semantic processing. For males, a significant N400 effect was observed only when the question-marked focus was accented, reduced N400 effects were found in the other dialogues. In contrast, females produced similar N400 effects in all the conditions. These results suggest that regardless of external cues, females tend to engage in more elaborate semantic processing compared to males. -
Willems, R. M., Clevis, K., & Hagoort, P. (2011). Add a picture for suspense: Neural correlates of the interaction between language and visual information in the perception of fear. Social, Cognitive and Affective Neuroscience, 6, 404-416. doi:10.1093/scan/nsq050.
Abstract
We investigated how visual and linguistic information interact in the perception of emotion. We borrowed a phenomenon from film theory which states that presentation of an as such neutral visual scene intensifies the percept of fear or suspense induced by a different channel of information, such as language. Our main aim was to investigate how neutral visual scenes can enhance responses to fearful language content in parts of the brain involved in the perception of emotion. Healthy participants’ brain activity was measured (using functional magnetic resonance imaging) while they read fearful and less fearful sentences presented with or without a neutral visual scene. The main idea is that the visual scenes intensify the fearful content of the language by subtly implying and concretizing what is described in the sentence. Activation levels in the right anterior temporal pole were selectively increased when a neutral visual scene was paired with a fearful sentence, compared to reading the sentence alone, as well as to reading of non-fearful sentences presented with the same neutral scene. We conclude that the right anterior temporal pole serves a binding function of emotional information across domains such as visual and linguistic information. -
Willems, R. M., Benn, Y., Hagoort, P., Tonia, I., & Varley, R. (2011). Communicating without a functioning language system: Implications for the role of language in mentalizing. Neuropsychologia, 49, 3130-3135. doi:10.1016/j.neuropsychologia.2011.07.023.
Abstract
A debated issue in the relationship between language and thought is how our linguistic abilities are involved in understanding the intentions of others (‘mentalizing’). The results of both theoretical and empirical work have been used to argue that linguistic, and more specifically, grammatical, abilities are crucial in representing the mental states of others. Here we contribute to this debate by investigating how damage to the language system influences the generation and understanding of intentional communicative behaviors. Four patients with pervasive language difficulties (severe global or agrammatic aphasia) engaged in an experimentally controlled non-verbal communication paradigm, which required signaling and understanding a communicative message. Despite their profound language problems they were able to engage in recipient design as well as intention recognition, showing similar indicators of mentalizing as have been observed in the neurologically healthy population. Our results show that aspects of the ability to communicate remain present even when core capacities of the language system are dysfunctionalAdditional information
Willems_2011_Neuropsychologia_suppl_material.doc -
Aleman, A., Formisano, E., Koppenhagen, H., Hagoort, P., De Haan, E. H. F., & Kahn, R. S. (2005). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words. Cerebral Cortex, 15(2), 221-228. doi:10.1093/cercor/bhh124.
Abstract
We hypothesized that areas in the temporal lobe that have been implicated in the phonological processing of spoken words would also be activated during the generation and phonological processing of imagined speech. We tested this hypothesis using functional magnetic resonance imaging during a behaviorally controlled task of metrical stress evaluation. Subjects were presented with bisyllabic words and had to determine the alternation of strong and weak syllables. Thus, they were required to discriminate between weak-initial words and strong-initial words. In one condition, the stimuli were presented auditorily to the subjects (by headphones). In the other condition the stimuli were presented visually on a screen and subjects were asked to imagine hearing the word. Results showed activation of the supplementary motor area, inferior frontal gyrus (Broca's area) and insula in both conditions. In the superior temporal gyrus (STG) and in the superior temporal sulcus (STS) strong activation was observed during the auditory (perceptual) condition. However, a region located in the posterior part of the STS/STG also responded during the imagery condition. No activation of this same region of the STS was observed during a control condition which also involved processing of visually presented words, but which required a semantic decision from the subject. We suggest that processing of metrical stress, with or without auditory input, relies in part on cortical interface systems located in the posterior part of STS/STG. These results corroborate behavioral evidence regarding phonological loop involvement in auditory–verbal imagery. -
Bastiaansen, M. C. M., Van der Linden, M., Ter Keurs, M., Dijkstra, T., & Hagoort, P. (2005). Theta responses are involved in lexico-semantic retrieval during language processing. Journal of Cognitive Neuroscience, 17, 530-541. doi:10.1162/0898929053279469.
Abstract
Oscillatory neuronal dynamics, observed in the human electroencephalogram (EEG) during language processing, have been related to the dynamic formation of functionally coherent networks that serve the role of integrating the different sources of information needed for understanding the linguistic input. To further explore the functional role of oscillatory synchrony during language processing, we quantified event-related EEG power changes induced by the presentation of open-class (OC) words and closed-class (CC) words in a wide range of frequencies (from 1 to 30 Hz), while subjects read a short story. Word presentation induced three oscillatory components: a theta power increase (4–7 Hz), an alpha power decrease (10–12 Hz), and a beta power decrease (16–21 Hz). Whereas the alpha and beta responses showed mainly quantitative differences between the two word classes, the theta responses showed qualitative differences between OC words and CC words: A theta power increase was found over left temporal areas for OC words, but not for CC words. The left temporal theta increase may index the activation of a network involved in retrieving the lexical–semantic properties of the OC items. -
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416-423. doi:10.1016/j.tics.2005.07.004.
Abstract
In speaking and comprehending language, word information is retrieved from memory and combined into larger units (unification). Unification operations take place in parallel at the semantic, syntactic and phonological levels of processing. This article proposes a new framework that connects psycholinguistic models to a neurobiological account of language. According to this proposal the left inferior frontal gyrus (LIFG) plays an important role in unification. Research in other domains of cognition indicates that left prefrontal cortex has the necessary neurobiological characteristics for its involvement in the unification for language. I offer here a psycholinguistic perspective on the nature of language unification and the role of LIFG. -
-
Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (
Eds. ), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO. -
Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (
Ed. ), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum. -
Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants' word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116. doi:10.1016/j.cogbrainres.2004.12.009.
Abstract
Children begin to talk at about age one. The vocabulary they need to do so must be built on perceptual evidence and, indeed, infants begin to recognize spoken words long before they talk. Most of the utterances infants hear, however, are continuous, without pauses between words, so constructing a vocabulary requires them to decompose continuous speech in order to extract the individual words. Here, we present electrophysiological evidence that 10-month-old infants recognize two-syllable words they have previously heard only in isolation when these words are presented anew in continuous speech. Moreover, they only need roughly the first syllable of the word to begin doing this. Thus, prelinguistic infants command a highly efficient procedure for segmentation and recognition of spoken words in the absence of an existing vocabulary, allowing them to tackle effectively the problem of bootstrapping a lexicon out of the highly variable, continuous speech signals in their environment. -
De Lange, F. P., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Meer, J. W. M., & Toni, I. (2005). Gray matter volume reduction in the chronic fatigue syndrome. NeuroImage, 26, 777-781. doi:10.1016/j.neuroimage.2005.02.037.
Abstract
The chronic fatigue syndrome (CFS) is a disabling disorder of unknown etiology. The symptomatology of CFS (central fatigue, impaired concentration, attention and memory) suggests that this disorder could be related to alterations at the level of the central nervous system. In this study, we have used an automated and unbiased morphometric technique to test whether CFS patients display structural cerebral abnormalities. We mapped structural cerebral morphology and volume in two cohorts of CFS patients (in total 28 patients) and healthy controls (in total 28 controls) from high-resolution structural magnetic resonance images, using voxel-based morphometry. Additionally, we recorded physical activity levels to explore the relation between severity of CFS symptoms and cerebral abnormalities. We observed significant reductions in global gray matter volume in both cohorts of CFS patients, as compared to matched control participants. Moreover, the decline in gray matter volume was linked to the reduction in physical activity, a core aspect of CFS. These findings suggest that the central nervous system plays a key role in the pathophysiology of CFS and point to a new objective and quantitative tool for clinical diagnosis of this disabling disorder. -
De Lange, F. P., Hagoort, P., & Toni, I. (2005). Neural topography and content of movement representations. Journal of Cognitive Neuroscience, 17(1), 97-112. doi:10.1162/0898929052880039.
Abstract
We have used implicit motor imagery to investigate the neural correlates of motor planning independently from actual movements. Subjects were presented with drawings of left or right hands and asked to judge the hand laterality, regardless of the stimulus rotation from its upright orientation. We paired this task with a visual imagery control task, in which subjects were presented with typographical characters and asked to report whether they saw a canonical letter or its mirror image, regardless of its rotation. We measured neurovascular activity with fast event-related fMRI, distinguishing responses parametrically related to motor imagery from responses evoked by visual imagery and other task-related phenomena. By quantifying behavioral and neurovascular correlates of imagery on a trial-by-trial basis, we could discriminate between stimulusrelated, mental rotation-related, and response-related neural activity. We found that specific portions of the posterior parietal and precentral cortex increased their activity as a function of mental rotation only during the motor imagery task. Within these regions, the parietal cortex was visually responsive, whereas the dorsal precentral cortex was not. Response- but not rotation-related activity was found around the left central sulcus (putative primary motor cortex) during both imagery tasks. Our study provides novel evidence on the topography and content of movement representations in the human brain. During intended action, the posterior parietal cortex combines somatosensory and visuomotor information, whereas the dorsal premotor cortex generates the actual motor plan, and the primary motor cortex deals with movement execution. We discuss the relevance of these results in the context of current models of action planning. -
Van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467. doi:10.1037/0278-7393.31.3.443.
Abstract
The authors examined whether people can use their knowledge of the wider discourse rapidly enough to anticipate specific upcoming words as a sentence is unfolding. In an event-related brain potential (ERP) experiment, subjects heard Dutch stories that supported the prediction of a specific noun. To probe whether this noun was anticipated at a preceding indefinite article, stories were continued with a gender-marked adjective whose suffix mismatched the upcoming noun's syntactic gender. Prediction-inconsistent adjectives elicited a differential ERP effect, which disappeared in a no-discourse control experiment. Furthermore, in self-paced reading, prediction-inconsistent adjectives slowed readers down before the noun. These findings suggest that people can indeed predict upcoming words in fluent discourse and, moreover, that these predicted words can immediately begin to participate in incremental parsing operations. -
Wassenaar, M., & Hagoort, P. (2005). Word-category violations in patients with Broca's aphasia: An ERP study. Brain and Language, 92, 117-137. doi:10.1016/j.bandl.2004.05.011.
Abstract
An event-related brain potential experiment was carried out to investigate on-line syntactic processing in patients with Broca’s aphasia. Subjects were visually presented with sentences that were either syntactically correct or contained violations of word-category. Three groups of subjects were tested: Broca patients (N=11), non-aphasic patients with a right hemisphere (RH) lesion (N=9), and healthy aged-matched controls (N=15). Both control groups appeared sensitive to the violations of word-category as shown by clear P600/SPS effects. The Broca patients displayed only a very reduced and delayed P600/SPS effect. The results are discussed in the context of a lexicalist parsing model. It is concluded that Broca patients are hindered to detect on-line violations of word-category, if word class information is incomplete or delayed available.
Share this page