Peter Hagoort

Publications

Displaying 1 - 30 of 30
  • Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.

    Abstract

    Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed.
  • Dimitrova, D. V., Chu, M., Wang, L., Ozyurek, A., & Hagoort, P. (2016). Beat that word: How listeners integrate beat gesture and focus in multimodal speech discourse. Journal of Cognitive Neuroscience, 28(9), 1255-1269. doi:10.1162/jocn_a_00963.

    Abstract

    Communication is facilitated when listeners allocate their attention to important information (focus) in the message, a process called "information structure." Linguistic cues like the preceding context and pitch accent help listeners to identify focused information. In multimodal communication, relevant information can be emphasized by nonverbal cues like beat gestures, which represent rhythmic nonmeaningful hand movements. Recent studies have found that linguistic and nonverbal attention cues are integrated independently in single sentences. However, it is possible that these two cues interact when information is embedded in context, because context allows listeners to predict what information is important. In an ERP study, we tested this hypothesis and asked listeners to view videos capturing a dialogue. In the critical sentence, focused and nonfocused words were accompanied by beat gestures, grooming hand movements, or no gestures. ERP results showed that focused words are processed more attentively than nonfocused words as reflected in an N1 and P300 component. Hand movements also captured attention and elicited a P300 component. Importantly, beat gesture and focus interacted in a late time window of 600-900 msec relative to target word onset, giving rise to a late positivity when nonfocused words were accompanied by beat gestures. Our results show that listeners integrate beat gesture with the focus of the message and that integration costs arise when beat gesture falls on nonfocused information. This suggests that beat gestures fulfill a unique focusing function in multimodal discourse processing and that they have to be integrated with the information structure of the message.
  • Gijssels, T., Staum Casasanto, L., Jasmin, K., Hagoort, P., & Casasanto, D. (2016). Speech accommodation without priming: The case of pitch. Discourse Processes, 53(4), 233-251. doi:10.1080/0163853X.2015.1023965.

    Abstract

    People often accommodate to each other's speech by aligning their linguistic production with their partner's. According to an influential theory, the Interactive Alignment Model (Pickering & Garrod, 2004), alignment is the result of priming. When people perceive an utterance, the corresponding linguistic representations are primed, and become easier to produce. Here we tested this theory by investigating whether pitch (F0) alignment shows two characteristic signatures of priming: dose dependence and persistence. In a virtual reality experiment, we manipulated the pitch of a virtual interlocutor's speech to find out (a.) whether participants accommodated to the agent's F0, (b.) whether the amount of accommodation increased with increasing exposure to the agent's speech, and (c.) whether changes to participants' F0 persisted beyond the conversation. Participants accommodated to the virtual interlocutor, but accommodation did not increase in strength over the conversation, and it disappeared immediately after the conversation ended. Results argue against a priming-based account of F0 accommodation, and indicate that an alternative mechanism is needed to explain alignment along continuous dimensions of language such as speech rate and pitch.
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Hartung, F., Burke, M., Hagoort, P., & Willems, R. M. (2016). Taking perspective: Personal pronouns affect experiential aspects of literary reading. PLoS One, 11(5): e0154732. doi:10.1371/journal.pone.0154732.

    Abstract

    Personal pronouns have been shown to influence cognitive perspective taking during comprehension. Studies using single sentences found that 3rd person pronouns facilitate the construction of a mental model from an observer’s perspective, whereas 2nd person pronouns support an actor’s perspective. The direction of the effect for 1st person pronouns seems to depend on the situational context. In the present study, we investigated how personal pronouns influence discourse comprehension when people read fiction stories and if this has consequences for affective components like emotion during reading or appreciation of the story. We wanted to find out if personal pronouns affect immersion and arousal, as well as appreciation of fiction. In a natural reading paradigm, we measured electrodermal activity and story immersion, while participants read literary stories with 1st and 3rd person pronouns referring to the protagonist. In addition, participants rated and ranked the stories for appreciation. Our results show that stories with 1st person pronouns lead to higher immersion. Two factors—transportation into the story world and mental imagery during reading—in particular showed higher scores for 1st person as compared to 3rd person pronoun stories. In contrast, arousal as measured by electrodermal activity seemed tentatively higher for 3rd person pronoun stories. The two measures of appreciation were not affected by the pronoun manipulation. Our findings underscore the importance of perspective for language processing, and additionally show which aspects of the narrative experience are influenced by a change in perspective.
  • Kunert, R., Willems, R. M., & Hagoort, P. (2016). An independent psychometric evaluation of the PROMS measure of music perception skills. PLoS One, 11(7): e0159103. doi:10.1371/journal.pone.0159103.

    Abstract

    The Profile of Music Perception Skills (PROMS) is a recently developed measure of perceptual music skills which has been shown to have promising psychometric properties. In this paper we extend the evaluation of its brief version to three kinds of validity using an individual difference approach. The brief PROMS displays good discriminant validity with working memory, given that it does not correlate with backward digit span (r = .04). Moreover, it shows promising criterion validity (association with musical training (r = .45), musicianship status (r = .48), and self-rated musical talent (r = .51)). Finally, its convergent validity, i.e. relation to an unrelated measure of music perception skills, was assessed by correlating the brief PROMS to harmonic closure judgment accuracy. Two independent samples point to good convergent validity of the brief PROMS (r = .36; r = .40). The same association is still significant in one of the samples when including self-reported music skill in a partial correlation (rpartial = .30; rpartial = .17). Overall, the results show that the brief version of the PROMS displays a very good pattern of construct validity. Especially its tuning subtest stands out as a valuable part for music skill evaluations in Western samples. We conclude by briefly discussing the choice faced by music cognition researchers between different musical aptitude measures of which the brief PROMS is a well evaluated example.
  • Kunert, R., Willems, R. M., & Hagoort, P. (2016). Language influences music harmony perception: effects of shared syntactic integration resources beyond attention. Royal Society Open Science, 3(2): 150685. doi:10.1098/rsos.150685.

    Abstract

    Many studies have revealed shared music–language processing resources by finding an influence of music harmony manipulations on concurrent language processing. However, the nature of the shared resources has remained ambiguous. They have been argued to be syntax specific and thus due to shared syntactic integration resources. An alternative view regards them as related to general attention and, thus, not specific to syntax. The present experiments evaluated these accounts by investigating the influence of language on music. Participants were asked to provide closure judgements on harmonic sequences in order to assess the appropriateness of sequence endings. At the same time participants read syntactic garden-path sentences. Closure judgements revealed a change in harmonic processing as the result of reading a syntactically challenging word. We found no influence of an arithmetic control manipulation (experiment 1) or semantic garden-path sentences (experiment 2). Our results provide behavioural evidence for a specific influence of linguistic syntax processing on musical harmony judgements. A closer look reveals that the shared resources appear to be needed to hold a harmonic key online in some form of syntactic working memory or unification workspace related to the integration of chords and words. Overall, our results support the syntax specificity of shared music–language processing resources.
  • Lam, N. H. L., Schoffelen, J.-M., Udden, J., Hulten, A., & Hagoort, P. (2016). Neural activity during sentence processing as reflected in theta, alpha, beta and gamma oscillations. NeuroImage, 142(15), 43-54. doi:10.1016/j.neuroimage.2016.03.007.

    Abstract

    We used magnetoencephalography (MEG) to explore the spatio-temporal dynamics of neural oscillations associated with sentence processing, in 102 participants. We quantified changes in oscillatory power as the sentence unfolded, and in response to individual words in the sentence. For words early in a sentence compared to those late in the same sentence, we observed differences in left temporal and frontal areas, and bilateral frontal and right parietal regions for the theta, alpha, and beta frequency bands. The neural response to words in a sentence differed from the response to words in scrambled sentences in left-lateralized theta, alpha, beta, and gamma. The theta band effects suggest that a sentential context facilitates lexical retrieval, and that this facilitation is stronger for words late in the sentence. Effects in the alpha and beta band may reflect the unification of semantic and syntactic information, and are suggestive of easier unification late in a sentence. The gamma oscillations are indicative of predicting the upcoming word during sentence processing. In conclusion, changes in oscillatory neuronal activity capture aspects of sentence processing. Our results support earlier claims that language (sentence) processing recruits areas distributed across both hemispheres, and extends beyond the classical language regions
  • Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). How iconicity helps people learn new words: neural correlates and individual differences in sound-symbolic bootstrapping. Collabra, 2(1): 7. doi:10.1525/collabra.42.

    Abstract

    Sound symbolism is increasingly understood as involving iconicity, or perceptual analogies and cross-modal correspondences between form and meaning, but the search for its functional and neural correlates is ongoing. Here we study how people learn sound-symbolic words, using behavioural, electrophysiological and individual difference measures. Dutch participants learned Japanese ideophones —lexical sound-symbolic words— with a translation of either the real meaning (in which form and meaning show cross-modal correspondences) or the opposite meaning (in which form and meaning show cross-modal clashes). Participants were significantly better at identifying the words they learned in the real condition, correctly remembering the real word pairing 86.7% of the time, but the opposite word pairing only 71.3% of the time. Analysing event-related potentials (ERPs) during the test round showed that ideophones in the real condition elicited a greater P3 component and late positive complex than ideophones in the opposite condition. In a subsequent forced choice task, participants were asked to guess the real translation from two alternatives. They did this with 73.0% accuracy, well above chance level even for words they had encountered in the opposite condition, showing that people are generally sensitive to the sound-symbolic cues in ideophones. Individual difference measures showed that the ERP effect in the test round of the learning task was greater for participants who were more sensitive to sound symbolism in the forced choice task. The main driver of the difference was a lower amplitude of the P3 component in response to ideophones in the opposite condition, suggesting that people who are more sensitive to sound symbolism may have more difficulty to suppress conflicting cross-modal information. The findings provide new evidence that cross-modal correspondences between sound and meaning facilitate word learning, while cross-modal clashes make word learning harder, especially for people who are more sensitive to sound symbolism.

    Additional information

    https://osf.io/ema3t/
  • Lockwood, G., Dingemanse, M., & Hagoort, P. (2016). Sound-symbolism boosts novel word learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(8), 1274-1281. doi:10.1037/xlm0000235.

    Abstract

    The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally occurring sound-symbolic words that depict sensory information, to investigate how sensitive Dutch speakers are to sound-symbolism in Japanese in a learning task. Participants were taught 2 sets of Japanese ideophones; 1 set with the ideophones’ real meanings in Dutch, the other set with their opposite meanings. In Experiment 1, participants learned the ideophones and their real meanings much better than the ideophones with their opposite meanings. Moreover, despite the learning rounds, participants were still able to guess the real meanings of the ideophones in a 2-alternative forced-choice test after they were informed of the manipulation. This shows that natural language sound-symbolism is robust beyond 2-alternative forced-choice paradigms and affects broader language processes such as word learning. In Experiment 2, participants learned regular Japanese adjectives with the same manipulation, and there was no difference between real and opposite conditions. This shows that natural language sound-symbolism is especially strong in ideophones, and that people learn words better when form and meaning match. The highlights of this study are as follows: (a) Dutch speakers learn real meanings of Japanese ideophones better than opposite meanings, (b) Dutch speakers accurately guess meanings of Japanese ideophones, (c) this sensitivity happens despite learning some opposite pairings, (d) no such learning effect exists for regular Japanese adjectives, and (e) this shows the importance of sound-symbolism in scaffolding language learning
  • Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). Synthesized Size-Sound Sound Symbolism. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1823-1828). Austin, TX: Cognitive Science Society.

    Abstract

    Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from natural languages and has proposed a role for shared cross-modal correspondences in biasing form-to-meaning associations. An important open question is how the associations work, and particularly what the role is of sound-symbolic matches versus mismatches. We report on a learning task designed to distinguish between three existing theories by using a spectrum of sound-symbolically matching, mismatching, and neutral (neither matching nor mismatching) stimuli. Synthesized stimuli allow us to control for prosody, and the inclusion of a neutral condition allows a direct test of competing accounts. We find evidence for a sound-symbolic match boost, but not for a mismatch difficulty compared to the neutral condition.
  • Schoot, L., Heyselaar, E., Hagoort, P., & Segaert, K. (2016). Does syntactic alignment effectively influence how speakers are perceived by their conversation partner. PLoS One, 11(4): e015352. doi:10.1371/journal.pone.0153521.

    Abstract

    The way we talk can influence how we are perceived by others. Whereas previous studies have started to explore the influence of social goals on syntactic alignment, in the current study, we additionally investigated whether syntactic alignment effectively influences conversation partners’ perception of the speaker. To this end, we developed a novel paradigm in which we can measure the effect of social goals on the strength of syntactic alignment for one participant (primed participant), while simultaneously obtaining usable social opinions about them from their conversation partner (the evaluator). In Study 1, participants’ desire to be rated favorably by their partner was manipulated by assigning pairs to a Control (i.e., primed participants did not know they were being evaluated) or Evaluation context (i.e., primed participants knew they were being evaluated). Surprisingly, results showed no significant difference in the strength with which primed participants aligned their syntactic choices with their partners’ choices. In a follow-up study, we used a Directed Evaluation context (i.e., primed participants knew they were being evaluated and were explicitly instructed to make a positive impression). However, again, there was no evidence supporting the hypothesis that participants’ desire to impress their partner influences syntactic alignment. With respect to the influence of syntactic alignment on perceived likeability by the evaluator, a negative relationship was reported in Study 1: the more primed participants aligned their syntactic choices with their partner, the more that partner decreased their likeability rating after the experiment. However, this effect was not replicated in the Directed Evaluation context of Study 2. In other words, our results do not support the conclusion that speakers’ desire to be liked affects how much they align their syntactic choices with their partner, nor is there convincing evidence that there is a reliable relationship between syntactic alignment and perceived likeability.

    Additional information

    Data availability
  • Schoot, L., Hagoort, P., & Segaert, K. (2016). What can we learn from a two-brain approach to verbal interaction? Neuroscience and Biobehavioral Reviews, 68, 454-459. doi:10.1016/j.neubiorev.2016.06.009.

    Abstract

    Verbal interaction is one of the most frequent social interactions humans encounter on a daily basis. In the current paper, we zoom in on what the multi-brain approach has contributed, and can contribute in the future, to our understanding of the neural mechanisms supporting verbal interaction. Indeed, since verbal interaction can only exist between individuals, it seems intuitive to focus analyses on inter-individual neural markers, i.e. between-brain neural coupling. To date, however, there is a severe lack of theoretically-driven, testable hypotheses about what between-brain neural coupling actually reflects. In this paper, we develop a testable hypothesis in which between-pair variation in between-brain neural coupling is of key importance. Based on theoretical frameworks and empirical data, we argue that the level of between-brain neural coupling reflects speaker-listener alignment at different levels of linguistic and extra-linguistic representation. We discuss the possibility that between-brain neural coupling could inform us about the highest level of inter-speaker alignment: mutual understanding
  • Segaert, K., Wheeldon, L., & Hagoort, P. (2016). Unifying structural priming effects on syntactic choices and timing of sentence generation. Journal of Memory and Language, 91, 59-80. doi:10.1016/j.jml.2016.03.011.

    Abstract

    We investigated whether structural priming of production latencies is sensitive to the same factors known to influence persistence of structural choices: structure preference, cumulativity and verb repetition. In two experiments, we found structural persistence only for passives (inverse preference effect) while priming effects on latencies were stronger for the actives (positive preference effect). We found structural persistence for passives to be influenced by immediate primes and long lasting cumulativity (all preceding primes) (Experiment 1), and to be boosted by verb repetition (Experiment 2). In latencies we found effects for actives were sensitive to long lasting cumulativity (Experiment 1). In Experiment 2, in latencies we found priming for actives overall, while for passives the priming effects emerged as the cumulative exposure increased but only when also aided by verb repetition. These findings are consistent with the Two-stage Competition model, an integrated model of structural priming effects for sentence choice and latency
  • Tromp, J., Hagoort, P., & Meyer, A. S. (2016). Pupillometry reveals increased pupil size during indirect request comprehension. Quarterly Journal of Experimental Psychology, 69, 1093-1108. doi:10.1080/17470218.2015.1065282.

    Abstract

    Fluctuations in pupil size have been shown to reflect variations in processing demands during lexical and syntactic processing in language comprehension. An issue that has not received attention is whether pupil size also varies due to pragmatic manipulations. In two pupillometry experiments, we investigated whether pupil diameter was sensitive to increased processing demands as a result of comprehending an indirect request versus a direct statement. Adult participants were presented with 120 picture–sentence combinations that could be interpreted either as an indirect request (a picture of a window with the sentence “it's very hot here”) or as a statement (a picture of a window with the sentence “it's very nice here”). Based on the hypothesis that understanding indirect utterances requires additional inferences to be made on the part of the listener, we predicted a larger pupil diameter for indirect requests than statements. The results of both experiments are consistent with this expectation. We suggest that the increase in pupil size reflects additional processing demands for the comprehension of indirect requests as compared to statements. This research demonstrates the usefulness of pupillometry as a tool for experimental research in pragmatics
  • Vanlangendonck, F., Willems, R. M., Menenti, L., & Hagoort, P. (2016). An early influence of common ground during speech planning. Language, Cognition and Neuroscience, 31(6), 741-750. doi:10.1080/23273798.2016.1148747.

    Abstract

    In order to communicate successfully, speakers have to take into account which information they share with their addressee, i.e. common ground. In the current experiment we investigated how and when common ground affects speech planning by tracking speakers’ eye movements while they played a referential communication game. We found evidence that common ground exerts an early, but incomplete effect on speech planning. In addition, we did not find longer planning times when speakers had to take common ground into account, suggesting that taking common ground into account is not necessarily an effortful process. Common ground information thus appears to act as a partial constraint on language production that is integrated flexibly and efficiently in the speech planning process.
  • Weber, K., Christiansen, M., Petersson, K. M., Indefrey, P., & Hagoort, P. (2016). fMRI syntactic and lexical repetition effects reveal the initial stages of learning a new language. The Journal of Neuroscience, 36, 6872-6880. doi:10.1523/JNEUROSCI.3180-15.2016.

    Abstract

    When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared to the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning online using functional magnetic resonance imaging (fMRI). In left inferior frontal gyrus (LIFG) and posterior temporal cortex the repetition of novel syntactic structures led to repetition enhancement, while repetition of known structures resulted in repetition suppression. Additional verb repetition led to an
    increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities.
  • Weber, K., Luther, L., Indefrey, P., & Hagoort, P. (2016). Overlap and differences in brain networks underlying the processing of complex sentence structures in second language users compared to native speakers. Brain Connectivity, 6(4), 345-355. doi:10.1089/brain.2015.0383.

    Abstract

    When we learn a second language later in life do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study we investigated the underlying brain networks in native speakers compared to proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations as well as task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.
  • Willems, R. M., Frank, S. L., Nijhoff, A. D., Hagoort, P., & Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506-2516. doi:10.1093/cercor/bhv075.

    Abstract

    The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2 distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of entropy of next-word probability distributions as well as surprisal. A computational model determined entropy and surprisal for each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus (“visual word form area”), bilateral superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines the feasibility of studying continuous spoken language materials with fMRI.

    Additional information

    Supplementary Material
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In T. Sakamoto (Ed.), Communicating skills of intention (pp. 259-291). Tokyo: Hituzi Syobo.
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In A. S. Meyer, L. Wheeldon, & A. Krott (Eds.), Automaticity and control in language processing (pp. 243-270). Hove: Psychology Press.
  • Hagoort, P., & Van Berkum, J. J. A. (2007). Beyond the sentence given. Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 362, 801-811.

    Abstract

    A central and influential idea among researchers of language is that our language faculty is organized according to Fregean compositionality, which states that the meaning of an utterance is a function of the meaning of its parts and of the syntactic rules by which these parts are combined. Since the domain of syntactic rules is the sentence, the implication of this idea is that language interpretation takes place in a two-step fashion. First, the meaning of a sentence is computed. In a second step, the sentence meaning is integrated with information from prior discourse, world knowledge, information about the speaker and semantic information from extra-linguistic domains such as co-speech gestures or the visual world. Here, we present results from recordings of event-related brain potentials that are inconsistent with this classical two-step model of language interpretation. Our data support a one-step model in which knowledge about the context and the world, concomitant information from other modalities, and the speaker are brought to bear immediately, by the same fast-acting brain system that combines the meanings of individual words into a message-level representation. Underlying the one-step model is the immediacy assumption, according to which all available information will immediately be used to co-determine the interpretation of the speaker's message. Functional magnetic resonance imaging data that we collected indicate that Broca's area plays an important role in semantic unification. Language comprehension involves the rapid incorporation of information in a 'single unification space', coming from a broader range of cognitive domains than presupposed in the standard two-step model of interpretation.
  • Hald, L. A., Steenbeek-Planting, E. G., & Hagoort, P. (2007). The interaction of discourse context and world knowledge in online sentence comprehension: Evidence from the N400. Brain Research, 1146, 210-218. doi:10.1016/j.brainres.2007.02.054.

    Abstract

    In an ERP experiment we investigated how the recruitment and integration of world knowledge information relate to the integration of information within a current discourse context. Participants were presented with short discourse contexts which were followed by a sentence that contained a critical word that was correct or incorrect based on general world knowledge and the supporting discourse context, or was more or less acceptable based on the combination of general world knowledge and the specific local discourse context. Relative to the critical word in the correct world knowledge sentences following a neutral discourse, all other critical words elicited an N400 effect that began at about 300 ms after word onset. However, the magnitude of the N400 effect varied in a way that suggests an interaction between world knowledge and discourse context. The results indicate that both world knowledge and discourse context have an effect on sentence interpretation, but neither overrides the other.
  • Ozyurek, A., Willems, R. M., Kita, S., & Hagoort, P. (2007). On-line integration of semantic information from speech and gesture: Insights from event-related brain potentials. Journal of Cognitive Neuroscience, 19(4), 605-616. doi:10.1162/jocn.2007.19.4.605.

    Abstract

    During language comprehension, listeners use the global semantic representation from previous sentence or discourse context to immediately integrate the meaning of each upcoming word into the unfolding message-level representation. Here we investigate whether communicative gestures that often spontaneously co-occur with speech are processed in a similar fashion and integrated to previous sentence context in the same way as lexical meaning. Event-related potentials were measured while subjects listened to spoken sentences with a critical verb (e.g., knock), which was accompanied by an iconic co-speech gesture (i.e., KNOCK). Verbal and/or gestural semantic content matched or mismatched the content of the preceding part of the sentence. Despite the difference in the modality and in the specificity of meaning conveyed by spoken words and gestures, the latency, amplitude, and topographical distribution of both word and gesture mismatches are found to be similar, indicating that the brain integrates both types of information simultaneously. This provides evidence for the claim that neural processing in language comprehension involves the simultaneous incorporation of information coming from a broader domain of cognition than only verbal semantics. The neural evidence for similar integration of information from speech and gesture emphasizes the tight interconnection between speech and co-speech gestures.
  • De Ruiter, J. P., Noordzij, M. L., Newman-Norlund, S., Hagoort, P., & Toni, I. (2007). On the origins of intentions. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition (pp. 593-610). Oxford: Oxford University Press.
  • Snijders, T. M., Kooijman, V., Cutler, A., & Hagoort, P. (2007). Neurophysiological evidence of delayed segmentation in a foreign language. Brain Research, 1178, 106-113. doi:10.1016/j.brainres.2007.07.080.

    Abstract

    Previous studies have shown that segmentation skills are language-specific, making it difficult to segment continuous speech in an unfamiliar language into its component words. Here we present the first study capturing the delay in segmentation and recognition in the foreign listener using ERPs. We compared the ability of Dutch adults and of English adults without knowledge of Dutch (‘foreign listeners’) to segment familiarized words from continuous Dutch speech. We used the known effect of repetition on the event-related potential (ERP) as an index of recognition of words in continuous speech. Our results show that word repetitions in isolation are recognized with equivalent facility by native and foreign listeners, but word repetitions in continuous speech are not. First, words familiarized in isolation are recognized faster by native than by foreign listeners when they are repeated in continuous speech. Second, when words that have previously been heard only in a continuous-speech context re-occur in continuous speech, the repetition is detected by native listeners, but is not detected by foreign listeners. A preceding speech context facilitates word recognition for native listeners, but delays or even inhibits word recognition for foreign listeners. We propose that the apparent difference in segmentation rate between native and foreign listeners is grounded in the difference in language-specific skills available to the listeners.
  • Wassenaar, M., & Hagoort, P. (2007). Thematic role assignment in patients with Broca's aphasia: Sentence-picture matching electrified. Neuropsychologia, 45(4), 716-740. doi:10.1016/j.neuropsychologia.2006.08.016.

    Abstract

    An event-related brain potential experiment was carried out to investigate on-line thematic role assignment during sentence–picture matching in patients with Broca's aphasia. Subjects were presented with a picture that was followed by an auditory sentence. The sentence either matched the picture or mismatched the visual information depicted. Sentences differed in complexity, and ranged from simple active semantically irreversible sentences to passive semantically reversible sentences. ERPs were recorded while subjects were engaged in sentence–picture matching. In addition, reaction time and accuracy were measured. Three groups of subjects were tested: Broca patients (N = 10), non-aphasic patients with a right hemisphere (RH) lesion (N = 8), and healthy aged-matched controls (N = 15). The results of this study showed that, in neurologically unimpaired individuals, thematic role assignment in the context of visual information was an immediate process. This in contrast to patients with Broca's aphasia who demonstrated no signs of on-line sensitivity to the picture–sentence mismatches. The syntactic contribution to the thematic role assignment process seemed to be diminished given the reduction and even absence of P600 effects. Nevertheless, Broca patients showed some off-line behavioral sensitivity to the sentence–picture mismatches. The long response latencies of Broca's aphasics make it likely that off-line response strategies were used.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), 2322-2333. doi:10.1093/cercor/bhl141.

    Abstract

    Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system.
  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278-289. doi:10.1016/j.bandl.2007.03.004.

    Abstract

    Co-speech gestures embody a form of manual action that is tightly coupled to the language system. As such, the co-occurrence of speech and co-speech gestures is an excellent example of the interplay between language and action. There are, however, other ways in which language and action can be thought of as closely related. In this paper we will give an overview of studies in cognitive neuroscience that examine the neural underpinnings of links between language and action. Topics include neurocognitive studies of motor representations of speech sounds, action-related language, sign language and co-speech gestures. It will be concluded that there is strong evidence on the interaction between speech and gestures in the brain. This interaction however shares general properties with other domains in which there is interplay between language and action.

Share this page