Displaying 1 - 40 of 40
-
Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.
Abstract
Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. -
Dimitrova, D. V., Chu, M., Wang, L., Ozyurek, A., & Hagoort, P. (2016). Beat that word: How listeners integrate beat gesture and focus in multimodal speech discourse. Journal of Cognitive Neuroscience, 28(9), 1255-1269. doi:10.1162/jocn_a_00963.
Abstract
Communication is facilitated when listeners allocate their attention to important information (focus) in the message, a process called "information structure." Linguistic cues like the preceding context and pitch accent help listeners to identify focused information. In multimodal communication, relevant information can be emphasized by nonverbal cues like beat gestures, which represent rhythmic nonmeaningful hand movements. Recent studies have found that linguistic and nonverbal attention cues are integrated independently in single sentences. However, it is possible that these two cues interact when information is embedded in context, because context allows listeners to predict what information is important. In an ERP study, we tested this hypothesis and asked listeners to view videos capturing a dialogue. In the critical sentence, focused and nonfocused words were accompanied by beat gestures, grooming hand movements, or no gestures. ERP results showed that focused words are processed more attentively than nonfocused words as reflected in an N1 and P300 component. Hand movements also captured attention and elicited a P300 component. Importantly, beat gesture and focus interacted in a late time window of 600-900 msec relative to target word onset, giving rise to a late positivity when nonfocused words were accompanied by beat gestures. Our results show that listeners integrate beat gesture with the focus of the message and that integration costs arise when beat gesture falls on nonfocused information. This suggests that beat gestures fulfill a unique focusing function in multimodal discourse processing and that they have to be integrated with the information structure of the message. -
Gijssels, T., Staum Casasanto, L., Jasmin, K., Hagoort, P., & Casasanto, D. (2016). Speech accommodation without priming: The case of pitch. Discourse Processes, 53(4), 233-251. doi:10.1080/0163853X.2015.1023965.
Abstract
People often accommodate to each other's speech by aligning their linguistic production with their partner's. According to an influential theory, the Interactive Alignment Model (Pickering & Garrod, 2004), alignment is the result of priming. When people perceive an utterance, the corresponding linguistic representations are primed, and become easier to produce. Here we tested this theory by investigating whether pitch (F0) alignment shows two characteristic signatures of priming: dose dependence and persistence. In a virtual reality experiment, we manipulated the pitch of a virtual interlocutor's speech to find out (a.) whether participants accommodated to the agent's F0, (b.) whether the amount of accommodation increased with increasing exposure to the agent's speech, and (c.) whether changes to participants' F0 persisted beyond the conversation. Participants accommodated to the virtual interlocutor, but accommodation did not increase in strength over the conversation, and it disappeared immediately after the conversation ended. Results argue against a priming-based account of F0 accommodation, and indicate that an alternative mechanism is needed to explain alignment along continuous dimensions of language such as speech rate and pitch. -
Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (
Eds. ), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.Abstract
A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. -
Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (
Ed. ), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing. -
Hartung, F., Burke, M., Hagoort, P., & Willems, R. M. (2016). Taking perspective: Personal pronouns affect experiential aspects of literary reading. PLoS One, 11(5): e0154732. doi:10.1371/journal.pone.0154732.
Abstract
Personal pronouns have been shown to influence cognitive perspective taking during comprehension. Studies using single sentences found that 3rd person pronouns facilitate the construction of a mental model from an observer’s perspective, whereas 2nd person pronouns support an actor’s perspective. The direction of the effect for 1st person pronouns seems to depend on the situational context. In the present study, we investigated how personal pronouns influence discourse comprehension when people read fiction stories and if this has consequences for affective components like emotion during reading or appreciation of the story. We wanted to find out if personal pronouns affect immersion and arousal, as well as appreciation of fiction. In a natural reading paradigm, we measured electrodermal activity and story immersion, while participants read literary stories with 1st and 3rd person pronouns referring to the protagonist. In addition, participants rated and ranked the stories for appreciation. Our results show that stories with 1st person pronouns lead to higher immersion. Two factors—transportation into the story world and mental imagery during reading—in particular showed higher scores for 1st person as compared to 3rd person pronoun stories. In contrast, arousal as measured by electrodermal activity seemed tentatively higher for 3rd person pronoun stories. The two measures of appreciation were not affected by the pronoun manipulation. Our findings underscore the importance of perspective for language processing, and additionally show which aspects of the narrative experience are influenced by a change in perspective. -
Kunert, R., Willems, R. M., & Hagoort, P. (2016). An independent psychometric evaluation of the PROMS measure of music perception skills. PLoS One, 11(7): e0159103. doi:10.1371/journal.pone.0159103.
Abstract
The Profile of Music Perception Skills (PROMS) is a recently developed measure of perceptual music skills which has been shown to have promising psychometric properties. In this paper we extend the evaluation of its brief version to three kinds of validity using an individual difference approach. The brief PROMS displays good discriminant validity with working memory, given that it does not correlate with backward digit span (r = .04). Moreover, it shows promising criterion validity (association with musical training (r = .45), musicianship status (r = .48), and self-rated musical talent (r = .51)). Finally, its convergent validity, i.e. relation to an unrelated measure of music perception skills, was assessed by correlating the brief PROMS to harmonic closure judgment accuracy. Two independent samples point to good convergent validity of the brief PROMS (r = .36; r = .40). The same association is still significant in one of the samples when including self-reported music skill in a partial correlation (rpartial = .30; rpartial = .17). Overall, the results show that the brief version of the PROMS displays a very good pattern of construct validity. Especially its tuning subtest stands out as a valuable part for music skill evaluations in Western samples. We conclude by briefly discussing the choice faced by music cognition researchers between different musical aptitude measures of which the brief PROMS is a well evaluated example.Additional information
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159103#sec015 -
Kunert, R., Willems, R. M., & Hagoort, P. (2016). Language influences music harmony perception: effects of shared syntactic integration resources beyond attention. Royal Society Open Science, 3(2): 150685. doi:10.1098/rsos.150685.
Abstract
Many studies have revealed shared music–language processing resources by finding an influence of music harmony manipulations on concurrent language processing. However, the nature of the shared resources has remained ambiguous. They have been argued to be syntax specific and thus due to shared syntactic integration resources. An alternative view regards them as related to general attention and, thus, not specific to syntax. The present experiments evaluated these accounts by investigating the influence of language on music. Participants were asked to provide closure judgements on harmonic sequences in order to assess the appropriateness of sequence endings. At the same time participants read syntactic garden-path sentences. Closure judgements revealed a change in harmonic processing as the result of reading a syntactically challenging word. We found no influence of an arithmetic control manipulation (experiment 1) or semantic garden-path sentences (experiment 2). Our results provide behavioural evidence for a specific influence of linguistic syntax processing on musical harmony judgements. A closer look reveals that the shared resources appear to be needed to hold a harmonic key online in some form of syntactic working memory or unification workspace related to the integration of chords and words. Overall, our results support the syntax specificity of shared music–language processing resources.Additional information
http://rsos.royalsocietypublishing.org/content/3/2/150685.figures-only -
Lam, N. H. L., Schoffelen, J.-M., Udden, J., Hulten, A., & Hagoort, P. (2016). Neural activity during sentence processing as reflected in theta, alpha, beta and gamma oscillations. NeuroImage, 142(15), 43-54. doi:10.1016/j.neuroimage.2016.03.007.
Abstract
We used magnetoencephalography (MEG) to explore the spatio-temporal dynamics of neural oscillations associated with sentence processing, in 102 participants. We quantified changes in oscillatory power as the sentence unfolded, and in response to individual words in the sentence. For words early in a sentence compared to those late in the same sentence, we observed differences in left temporal and frontal areas, and bilateral frontal and right parietal regions for the theta, alpha, and beta frequency bands. The neural response to words in a sentence differed from the response to words in scrambled sentences in left-lateralized theta, alpha, beta, and gamma. The theta band effects suggest that a sentential context facilitates lexical retrieval, and that this facilitation is stronger for words late in the sentence. Effects in the alpha and beta band may reflect the unification of semantic and syntactic information, and are suggestive of easier unification late in a sentence. The gamma oscillations are indicative of predicting the upcoming word during sentence processing. In conclusion, changes in oscillatory neuronal activity capture aspects of sentence processing. Our results support earlier claims that language (sentence) processing recruits areas distributed across both hemispheres, and extends beyond the classical language regionsAdditional information
http://www.sciencedirect.com/science/article/pii/S1053811916002032 -
Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). How iconicity helps people learn new words: neural correlates and individual differences in sound-symbolic bootstrapping. Collabra, 2(1): 7. doi:10.1525/collabra.42.
Abstract
Sound symbolism is increasingly understood as involving iconicity, or perceptual analogies and cross-modal correspondences between form and meaning, but the search for its functional and neural correlates is ongoing. Here we study how people learn sound-symbolic words, using behavioural, electrophysiological and individual difference measures. Dutch participants learned Japanese ideophones —lexical sound-symbolic words— with a translation of either the real meaning (in which form and meaning show cross-modal correspondences) or the opposite meaning (in which form and meaning show cross-modal clashes). Participants were significantly better at identifying the words they learned in the real condition, correctly remembering the real word pairing 86.7% of the time, but the opposite word pairing only 71.3% of the time. Analysing event-related potentials (ERPs) during the test round showed that ideophones in the real condition elicited a greater P3 component and late positive complex than ideophones in the opposite condition. In a subsequent forced choice task, participants were asked to guess the real translation from two alternatives. They did this with 73.0% accuracy, well above chance level even for words they had encountered in the opposite condition, showing that people are generally sensitive to the sound-symbolic cues in ideophones. Individual difference measures showed that the ERP effect in the test round of the learning task was greater for participants who were more sensitive to sound symbolism in the forced choice task. The main driver of the difference was a lower amplitude of the P3 component in response to ideophones in the opposite condition, suggesting that people who are more sensitive to sound symbolism may have more difficulty to suppress conflicting cross-modal information. The findings provide new evidence that cross-modal correspondences between sound and meaning facilitate word learning, while cross-modal clashes make word learning harder, especially for people who are more sensitive to sound symbolism.Additional information
https://osf.io/ema3t/ -
Lockwood, G., Dingemanse, M., & Hagoort, P. (2016). Sound-symbolism boosts novel word learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(8), 1274-1281. doi:10.1037/xlm0000235.
Abstract
The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally occurring sound-symbolic words that depict sensory information, to investigate how sensitive Dutch speakers are to sound-symbolism in Japanese in a learning task. Participants were taught 2 sets of Japanese ideophones; 1 set with the ideophones’ real meanings in Dutch, the other set with their opposite meanings. In Experiment 1, participants learned the ideophones and their real meanings much better than the ideophones with their opposite meanings. Moreover, despite the learning rounds, participants were still able to guess the real meanings of the ideophones in a 2-alternative forced-choice test after they were informed of the manipulation. This shows that natural language sound-symbolism is robust beyond 2-alternative forced-choice paradigms and affects broader language processes such as word learning. In Experiment 2, participants learned regular Japanese adjectives with the same manipulation, and there was no difference between real and opposite conditions. This shows that natural language sound-symbolism is especially strong in ideophones, and that people learn words better when form and meaning match. The highlights of this study are as follows: (a) Dutch speakers learn real meanings of Japanese ideophones better than opposite meanings, (b) Dutch speakers accurately guess meanings of Japanese ideophones, (c) this sensitivity happens despite learning some opposite pairings, (d) no such learning effect exists for regular Japanese adjectives, and (e) this shows the importance of sound-symbolism in scaffolding language learning -
Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). Synthesized Size-Sound Sound Symbolism. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (
Eds. ), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1823-1828). Austin, TX: Cognitive Science Society.Abstract
Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from natural languages and has proposed a role for shared cross-modal correspondences in biasing form-to-meaning associations. An important open question is how the associations work, and particularly what the role is of sound-symbolic matches versus mismatches. We report on a learning task designed to distinguish between three existing theories by using a spectrum of sound-symbolically matching, mismatching, and neutral (neither matching nor mismatching) stimuli. Synthesized stimuli allow us to control for prosody, and the inclusion of a neutral condition allows a direct test of competing accounts. We find evidence for a sound-symbolic match boost, but not for a mismatch difficulty compared to the neutral condition.Additional information
https://mindmodeling.org/cogsci2016/papers/0319/index.html -
Schoot, L., Heyselaar, E., Hagoort, P., & Segaert, K. (2016). Does syntactic alignment effectively influence how speakers are perceived by their conversation partner. PLoS One, 11(4): e015352. doi:10.1371/journal.pone.0153521.
Abstract
The way we talk can influence how we are perceived by others. Whereas previous studies have started to explore the influence of social goals on syntactic alignment, in the current study, we additionally investigated whether syntactic alignment effectively influences conversation partners’ perception of the speaker. To this end, we developed a novel paradigm in which we can measure the effect of social goals on the strength of syntactic alignment for one participant (primed participant), while simultaneously obtaining usable social opinions about them from their conversation partner (the evaluator). In Study 1, participants’ desire to be rated favorably by their partner was manipulated by assigning pairs to a Control (i.e., primed participants did not know they were being evaluated) or Evaluation context (i.e., primed participants knew they were being evaluated). Surprisingly, results showed no significant difference in the strength with which primed participants aligned their syntactic choices with their partners’ choices. In a follow-up study, we used a Directed Evaluation context (i.e., primed participants knew they were being evaluated and were explicitly instructed to make a positive impression). However, again, there was no evidence supporting the hypothesis that participants’ desire to impress their partner influences syntactic alignment. With respect to the influence of syntactic alignment on perceived likeability by the evaluator, a negative relationship was reported in Study 1: the more primed participants aligned their syntactic choices with their partner, the more that partner decreased their likeability rating after the experiment. However, this effect was not replicated in the Directed Evaluation context of Study 2. In other words, our results do not support the conclusion that speakers’ desire to be liked affects how much they align their syntactic choices with their partner, nor is there convincing evidence that there is a reliable relationship between syntactic alignment and perceived likeability.Additional information
Data availability -
Schoot, L., Hagoort, P., & Segaert, K. (2016). What can we learn from a two-brain approach to verbal interaction? Neuroscience and Biobehavioral Reviews, 68, 454-459. doi:10.1016/j.neubiorev.2016.06.009.
Abstract
Verbal interaction is one of the most frequent social interactions humans encounter on a daily basis. In the current paper, we zoom in on what the multi-brain approach has contributed, and can contribute in the future, to our understanding of the neural mechanisms supporting verbal interaction. Indeed, since verbal interaction can only exist between individuals, it seems intuitive to focus analyses on inter-individual neural markers, i.e. between-brain neural coupling. To date, however, there is a severe lack of theoretically-driven, testable hypotheses about what between-brain neural coupling actually reflects. In this paper, we develop a testable hypothesis in which between-pair variation in between-brain neural coupling is of key importance. Based on theoretical frameworks and empirical data, we argue that the level of between-brain neural coupling reflects speaker-listener alignment at different levels of linguistic and extra-linguistic representation. We discuss the possibility that between-brain neural coupling could inform us about the highest level of inter-speaker alignment: mutual understanding -
Segaert, K., Wheeldon, L., & Hagoort, P. (2016). Unifying structural priming effects on syntactic choices and timing of sentence generation. Journal of Memory and Language, 91, 59-80. doi:10.1016/j.jml.2016.03.011.
Abstract
We investigated whether structural priming of production latencies is sensitive to the same factors known to influence persistence of structural choices: structure preference, cumulativity and verb repetition. In two experiments, we found structural persistence only for passives (inverse preference effect) while priming effects on latencies were stronger for the actives (positive preference effect). We found structural persistence for passives to be influenced by immediate primes and long lasting cumulativity (all preceding primes) (Experiment 1), and to be boosted by verb repetition (Experiment 2). In latencies we found effects for actives were sensitive to long lasting cumulativity (Experiment 1). In Experiment 2, in latencies we found priming for actives overall, while for passives the priming effects emerged as the cumulative exposure increased but only when also aided by verb repetition. These findings are consistent with the Two-stage Competition model, an integrated model of structural priming effects for sentence choice and latency -
Tromp, J., Hagoort, P., & Meyer, A. S. (2016). Pupillometry reveals increased pupil size during indirect request comprehension. Quarterly Journal of Experimental Psychology, 69, 1093-1108. doi:10.1080/17470218.2015.1065282.
Abstract
Fluctuations in pupil size have been shown to reflect variations in processing demands during lexical and syntactic processing in language comprehension. An issue that has not received attention is whether pupil size also varies due to pragmatic manipulations. In two pupillometry experiments, we investigated whether pupil diameter was sensitive to increased processing demands as a result of comprehending an indirect request versus a direct statement. Adult participants were presented with 120 picture–sentence combinations that could be interpreted either as an indirect request (a picture of a window with the sentence “it's very hot here”) or as a statement (a picture of a window with the sentence “it's very nice here”). Based on the hypothesis that understanding indirect utterances requires additional inferences to be made on the part of the listener, we predicted a larger pupil diameter for indirect requests than statements. The results of both experiments are consistent with this expectation. We suggest that the increase in pupil size reflects additional processing demands for the comprehension of indirect requests as compared to statements. This research demonstrates the usefulness of pupillometry as a tool for experimental research in pragmatics -
Vanlangendonck, F., Willems, R. M., Menenti, L., & Hagoort, P. (2016). An early influence of common ground during speech planning. Language, Cognition and Neuroscience, 31(6), 741-750. doi:10.1080/23273798.2016.1148747.
Abstract
In order to communicate successfully, speakers have to take into account which information they share with their addressee, i.e. common ground. In the current experiment we investigated how and when common ground affects speech planning by tracking speakers’ eye movements while they played a referential communication game. We found evidence that common ground exerts an early, but incomplete effect on speech planning. In addition, we did not find longer planning times when speakers had to take common ground into account, suggesting that taking common ground into account is not necessarily an effortful process. Common ground information thus appears to act as a partial constraint on language production that is integrated flexibly and efficiently in the speech planning process.Additional information
http://www.tandfonline.com/doi/figure/10.1080/23273798.2016.1148747 -
Weber, K., Christiansen, M., Petersson, K. M., Indefrey, P., & Hagoort, P. (2016). fMRI syntactic and lexical repetition effects reveal the initial stages of learning a new language. The Journal of Neuroscience, 36, 6872-6880. doi:10.1523/JNEUROSCI.3180-15.2016.
Abstract
When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared to the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning online using functional magnetic resonance imaging (fMRI). In left inferior frontal gyrus (LIFG) and posterior temporal cortex the repetition of novel syntactic structures led to repetition enhancement, while repetition of known structures resulted in repetition suppression. Additional verb repetition led to an
increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities. -
Weber, K., Luther, L., Indefrey, P., & Hagoort, P. (2016). Overlap and differences in brain networks underlying the processing of complex sentence structures in second language users compared to native speakers. Brain Connectivity, 6(4), 345-355. doi:10.1089/brain.2015.0383.
Abstract
When we learn a second language later in life do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study we investigated the underlying brain networks in native speakers compared to proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations as well as task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language. -
Willems, R. M., Frank, S. L., Nijhoff, A. D., Hagoort, P., & Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506-2516. doi:10.1093/cercor/bhv075.
Abstract
The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2 distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of entropy of next-word probability distributions as well as surprisal. A computational model determined entropy and surprisal for each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus (“visual word form area”), bilateral superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines the feasibility of studying continuous spoken language materials with fMRI.Additional information
Supplementary Material -
Baggio, G., Van Lambalgen, M., & Hagoort, P. (2008). Computing and recomputing discourse models: An ERP study. Journal of Memory and Language, 59, 36-53. doi:10.1016/j.jml.2008.02.005.
Abstract
While syntactic reanalysis has been extensively investigated in psycholinguistics, comparatively little is known about reanalysis in the semantic domain. We used event-related brain potentials (ERPs) to keep track of semantic processes involved in understanding short narratives such as ‘The girl was writing a letter when her friend spilled coffee on the paper’. We hypothesize that these sentences are interpreted in two steps: (1) when the progressive clause is processed, a discourse model is computed in which the goal state (a complete letter) is predicted to hold; (2) when the subordinate clause is processed, the initial representation is recomputed to the effect that, in the final discourse structure, the goal state is not satisfied. Critical sentences evoked larger sustained anterior negativities (SANs) compared to controls, starting around 400 ms following the onset of the sentence-final word, and lasting for about 400 ms. The amplitude of the SAN was correlated with the frequency with which participants, in an offline probe-selection task, responded that the goal state was not attained. Our results raise the possibility that the brain supports some form of non-monotonic recomputation to integrate information which invalidates previously held assumptions. -
Bastiaansen, M. C. M., Oostenveld, R., Jensen, O., & Hagoort, P. (2008). I see what you mean: Theta power increases are involved in the retrieval of lexical semantic information. Brain and Language, 106(1), 15-28. doi:10.1016/j.bandl.2007.10.006.
Abstract
An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects performed a visual lexical decision task while their EEG was recorded. We compared the EEG responses to nouns with either visual semantic properties (VIS, referring to colors and shapes) or with auditory semantic properties (AUD, referring to sounds). A time–frequency analysis of the EEG revealed power increases in the theta (4–7 Hz) and lower-beta (13–18 Hz) frequency bands, and an early power increase and subsequent decrease for the alpha (8–12 Hz) band. In the theta band we observed a double dissociation: temporal electrodes showed larger theta power increases in the AUD condition, while occipital leads showed larger theta responses in the VIS condition. The results support the notion that semantic representations are stored in functional networks with a topography that reflects the semantic properties of the stored items, and provide further evidence that oscillatory brain dynamics in the theta frequency range are functionally related to the retrieval of lexical semantic information. -
Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145, 132-150. doi:10.1196/annals.1416.012.
Abstract
Several studies have reported an association between dyslexia and implicit learning deficits. It has been suggested that the weakness in implicit learning observed in dyslexic individuals may be related to sequential processing and implicit sequence learning. In the present article, we review the current literature on implicit learning and dyslexia. We describe a novel, forced-choice structural "mere exposure" artificial grammar learning paradigm and characterize this paradigm in normal readers in relation to the standard grammaticality classification paradigm. We argue that preference classification is a more optimal measure of the outcome of implicit acquisition since in the preference version participants are kept completely unaware of the underlying generative mechanism, while in the grammaticality version, the subjects have, at least in principle, been informed about the existence of an underlying complex set of rules at the point of classification (but not during acquisition). On the basis of the "mere exposure effect," we tested the prediction that the development of preference will correlate with the grammaticality status of the classification items. In addition, we examined the effects of grammaticality (grammatical/nongrammatical) and associative chunk strength (ACS; high/low) on the classification tasks (preference/grammaticality). Using a balanced ACS design in which the factors of grammaticality (grammatical/nongrammatical) and ACS (high/low) were independently controlled in a 2 × 2 factorial design, we confirmed our predictions. We discuss the suitability of this task for further investigation of the implicit learning characteristics in dyslexia. -
Hagoort, P. (2008). Should psychology ignore the language of the brain? Current Directions in Psychological Science, 17(2), 96-101. doi:10.1111/j.1467-8721.2008.00556.x.
Abstract
Claims that neuroscientific data do not contribute to our understanding of psychological functions have been made recently. Here I argue that these criticisms are solely based on an analysis of functional magnetic resonance imaging (fMRI) studies. However, fMRI is only one of the methods in the toolkit of cognitive neuroscience. I provide examples from research on event-related brain potentials (ERPs) that have contributed to our understanding of the cognitive architecture of human language functions. In addition, I provide evidence of (possible) contributions from fMRI measurements to our understanding of the functional architecture of language processing. Finally, I argue that a neurobiology of human language that integrates information about the necessary genetic and neural infrastructures will allow us to answer certain questions that are not answerable if all we have is evidence from behavior. -
Hagoort, P. (2008). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 1055-1069. doi:10.1098/rstb.2007.2159.
Abstract
This paper focuses on what electrical and magnetic recordings of human brain activity reveal about spoken language understanding. Based on the high temporal resolution of these recordings, a fine-grained temporal profile of different aspects of spoken language comprehension can be obtained. Crucial aspects of speech comprehension are lexical access, selection and semantic integration. Results show that for words spoken in context, there is no ‘magic moment’ when lexical selection ends and semantic integration begins. Irrespective of whether words have early or late recognition points, semantic integration processing is initiated before words can be identified on the basis of the acoustic information alone. Moreover, for one particular event-related brain potential (ERP) component (the N400), equivalent impact of sentence- and discourse-semantic contexts is observed. This indicates that in comprehension, a spoken word is immediately evaluated relative to the widest interpretive domain available. In addition, this happens very quickly. Findings are discussed that show that often an unfolding word can be mapped onto discourse-level representations well before the end of the word. Overall, the time course of the ERP effects is compatible with the view that the different information types (lexical, syntactic, phonological, pragmatic) are processed in parallel and influence the interpretation process incrementally, that is as soon as the relevant pieces of information are available. This is referred to as the immediacy principle. -
Li, X., Hagoort, P., & Yang, Y. (2008). Event-related potential evidence on the influence of accentuation in spoken discourse comprehension in Chinese. Journal of Cognitive Neuroscience, 20(5), 906-915. doi:10.1162/jocn.2008.20512.
Abstract
In an event-related potential experiment with Chinese discourses as material, we investigated how and when accentuation influences spoken discourse comprehension in relation to the different information states of the critical words. These words could either provide new or old information. It was shown that variation of accentuation influenced the amplitude of the N400, with a larger amplitude for accented than deaccented words. In addition, there was an interaction between accentuation and information state. The N400 amplitude difference between accented and deaccented new information was smaller than that between accented and deaccented old information. The results demonstrate that, during spoken discourse comprehension, listeners rapidly extract the semantic consequences of accentuation in relation to the previous discourse context. Moreover, our results show that the N400 amplitude can be larger for correct (new,accented words) than incorrect (new, deaccented words) information. This, we argue, proves that the N400 does not react to semantic anomaly per se, but rather to semantic integration load, which is higher for new information. -
Hagoort, P., Ramsey, N. F., & Jensen, O. (2008). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (
Eds. ), Het brein te kijk: Verkenning van de cognitieve neurowetenschap (pp. 41-75). Amsterdam: Harcourt Assessment. -
Hagoort, P. (2008). Mijn omweg naar de filosofie. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 100(4), 303-310.
-
Hagoort, P. (2008). Über Broca, Gehirn und Bindung. In Jahrbuch 2008: Tätigkeitsberichte der Institute. München: Generalverwaltung der Max-Planck-Gesellschaft. Retrieved from http://www.mpg.de/306524/forschungsSchwerpunkt1?c=166434.
Abstract
Beim Sprechen und beim Sprachverstehen findet man die Wortbedeutung im Gedächtnis auf und kombiniert sie zu größeren Einheiten (Unifikation). Solche Unifikations-Operationen laufen auf unterschiedlichen Ebenen der Sprachverarbeitung ab. In diesem Beitrag wird ein Rahmen vorgeschlagen, in dem psycholinguistische Modelle mit neurobiologischer Sprachbetrachtung in Verbindung gebracht werden. Diesem Vorschlag zufolge spielt der linke inferiore frontale Gyrus (LIFG) eine bedeutende Rolle bei der Unifi kation -
Kho, K. H., Indefrey, P., Hagoort, P., Van Veelen, C. W. M., Van Rijen, P. C., & Ramsey, N. F. (2008). Unimpaired sentence comprehension after anterior temporal cortex resection. Neuropsychologia, 46(4), 1170-1178. doi:10.1016/j.neuropsychologia.2007.10.014.
Abstract
Functional imaging studies have demonstrated involvement of the anterior temporal cortex in sentence comprehension. It is unclear, however, whether the anterior temporal cortex is essential for this function.We studied two aspects of sentence comprehension, namely syntactic and prosodic comprehension in temporal lobe epilepsy patients who were candidates for resection of the anterior temporal lobe. Methods: Temporal lobe epilepsy patients (n = 32) with normal (left) language dominance were tested on syntactic and prosodic comprehension before and after removal of the anterior temporal cortex. The prosodic comprehension test was also compared with performance of healthy control subjects (n = 47) before surgery. Results: Overall, temporal lobe epilepsy patients did not differ from healthy controls in syntactic and prosodic comprehension before surgery. They did perform less well on an affective prosody task. Post-operative testing revealed that syntactic and prosodic comprehension did not change after removal of the anterior temporal cortex. Discussion: The unchanged performance on syntactic and prosodic comprehension after removal of the anterior temporal cortex suggests that this area is not indispensable for sentence comprehension functions in temporal epilepsy patients. Potential implications for the postulated role of the anterior temporal lobe in the healthy brain are discussed. -
De Lange, F. P., Koers, A., Kalkman, J. S., Bleijenberg, G., Hagoort, P., Van der Meer, J. W. M., & Toni, I. (2008). Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain, 131, 2172-2180. doi:10.1093/brain/awn140.
Abstract
Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an effective behavioural intervention for CFS, which combines a rehabilitative approach of a graded increase in physical activity with a psychological approach that addresses thoughts and beliefs about CFS which may impair recovery. Here, we test the hypothesis that cerebral atrophy may be a reversible state that can ameliorate with successful CBT. We have quantified cerebral structural changes in 22 CFS patients that underwent CBT and 22 healthy control participants. At baseline, CFS patients had significantly lower grey matter volume than healthy control participants. CBT intervention led to a significant improvement in health status, physical activity and cognitive performance. Crucially, CFS patients showed a significant increase in grey matter volume, localized in the lateral prefrontal cortex. This change in cerebral volume was related to improvements in cognitive speed in the CFS patients. Our findings indicate that the cerebral atrophy associated with CFS is partially reversed after effective CBT. This result provides an example of macroscopic cortical plasticity in the adult human brain, demonstrating a surprisingly dynamic relation between behavioural state and cerebral anatomy. Furthermore, our results reveal a possible neurobiological substrate of psychotherapeutic treatment. -
Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca's aphasia. Aphasiology, 22(7/8), 776-789. doi:10.1080/02687030701803804.
Abstract
Background: Growing evidence for overlap in the syntactic processing of language and music in non-brain-damaged individuals leads to the question of whether aphasic individuals with grammatical comprehension problems in language also have problems processing structural relations in music.
Aims: The current study sought to test musical syntactic processing in individuals with Broca's aphasia and grammatical comprehension deficits, using both explicit and implicit tasks.
Methods & Procedures: Two experiments were conducted. In the first experiment 12 individuals with Broca's aphasia (and 14 matched controls) were tested for their sensitivity to grammatical and semantic relations in sentences, and for their sensitivity to musical syntactic (harmonic) relations in chord sequences. An explicit task (acceptability judgement of novel sequences) was used. The second experiment, with 9 individuals with Broca's aphasia (and 12 matched controls), probed musical syntactic processing using an implicit task (harmonic priming).
Outcomes & Results: In both experiments the aphasic group showed impaired processing of musical syntactic relations. Control experiments indicated that this could not be attributed to low-level problems with the perception of pitch patterns or with auditory short-term memory for tones.
Conclusions: The results suggest that musical syntactic processing in agrammatic aphasia deserves systematic investigation, and that such studies could help probe the nature of the processing deficits underlying linguistic agrammatism. Methodological suggestions are offered for future work in this little-explored area. -
Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67, 242-251. doi:10.1016/j.ijpsycho.2007.05.017.
Abstract
We used simultaneously recorded EEG and fMRI to investigate in which areas the BOLD signal correlates with frontal theta power changes, while subjects were quietly lying resting in the scanner with their eyes open. To obtain a reliable estimate of frontal theta power we applied ICA on band-pass filtered (2–9 Hz) EEG data. For each subject we selected the component that best matched the mid-frontal scalp topography associated with the frontal theta rhythm. We applied a time-frequency analysis on this component and used the time course of the frequency bin with the highest overall power to form a regressor that modeled spontaneous fluctuations in frontal theta power. No significant positive BOLD correlations with this regressor were observed. Extensive negative correlations were observed in the areas that together form the default mode network. We conclude that frontal theta activity can be seen as an EEG index of default mode network activity. -
Toni, I., De Lange, F. P., Noordzij, M. L., & Hagoort, P. (2008). Language beyond action. Journal of Physiology, 102, 71-79. doi:10.1016/j.jphysparis.2008.03.005.
Abstract
The discovery of mirror neurons in macaques and of a similar system in humans has provided a new and fertile neurobiological ground for rooting a variety of cognitive faculties. Automatic sensorimotor resonance has been invoked as the key elementary process accounting for disparate (dys)functions, like imitation, ideomotor apraxia, autism, and schizophrenia. In this paper, we provide a critical appraisal of three of these claims that deal with the relationship between language and the motor system. Does language comprehension require the motor system? Was there an evolutionary switch from manual gestures to speech as the primary mode of language? Is human communication explained by automatic sensorimotor resonances? A positive answer to these questions would open the tantalizing possibility of bringing language and human communication within the fold of the motor system. We argue that the available empirical evidence does not appear to support these claims, and their theoretical scope fails to account for some crucial features of the phenomena they are supposed to explain. Without denying the enormous importance of the discovery of mirror neurons, we highlight the limits of their explanatory power for understanding language and communication. -
Uddén, J., Folia, V., Forkstam, C., Ingvar, M., Fernández, G., Overeem, S., Van Elswijk, G., Hagoort, P., & Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 69-78. doi:10.1016/j.brainres.2008.05.070.
Abstract
The human capacity to implicitly acquire knowledge of structured sequences has recently been investigated in artificial grammar learning using functional magnetic resonance imaging. It was found that the left inferior frontal cortex (IFC; Brodmann's area (BA) 44/45) was related to classification performance. The objective of this study was to investigate whether the IFC (BA 44/45) is causally related to classification of artificial syntactic structures by means of an off-line repetitive transcranial magnetic stimulation (rTMS) paradigm. We manipulated the stimulus material in a 2 × 2 factorial design with grammaticality status and local substring familiarity as factors. The participants showed a reliable effect of grammaticality on classification of novel items after 5days of exposure to grammatical exemplars without performance feedback in an implicit acquisition task. The results show that rTMS of BA 44/45 improves syntactic classification performance by increasing the rejection rate of non-grammatical items and by shortening reaction times of correct rejections specifically after left-sided stimulation. A similar pattern of results is observed in FMRI experiments on artificial syntactic classification. These results suggest that activity in the inferior frontal region is causally related to artificial syntax processing. -
Van Berkum, J. J. A., Van den Brink, D., Tesink, C. M. J. Y., Kos, M., & Hagoort, P. (2008). The neural integration of speaker and message. Journal of Cognitive Neuroscience, 20(4), 580-591. doi:10.1162/jocn.2008.20054.
Abstract
When do listeners take into account who the speaker is? We asked people to listen to utterances whose content sometimes did not match inferences based on the identity of the speaker (e.g., “If only I looked like Britney Spears” in a male voice, or “I have a large tattoo on my back” spoken with an upper-class accent). Event-related brain responses revealed that the speaker's identity is taken into account as early as 200–300 msec after the beginning of a spoken word, and is processed by the same early interpretation mechanism that constructs sentence meaning based on just the words. This finding is difficult to reconcile with standard “Gricean” models of sentence interpretation in which comprehenders initially compute a local, context-independent meaning for the sentence (“semantics”) before working out what it really means given the wider communicative context and the particular speaker (“pragmatics”). Because the observed brain response hinges on voice-based and usually stereotype-dependent inferences about the speaker, it also shows that listeners rapidly classify speakers on the basis of their voices and bring the associated social stereotypes to bear on what is being said. According to our event-related potential results, language comprehension takes very rapid account of the social context, and the construction of meaning based on language alone cannot be separated from the social aspects of language use. The linguistic brain relates the message to the speaker immediately.Additional information
VanBerkum2008-speakerandmessageitems-speakercoded.pdf -
Van Heuven, W. J. B., Schriefers, H., Dijkstra, T., & Hagoort, P. (2008). Language conflict in the bilingual brain. Cerebral Cortex, 18(11), 2706-2716. doi:10.1093/cercor/bhn030.
Abstract
The large majority of humankind is more or less fluent in 2 or even more languages. This raises the fundamental question how the language network in the brain is organized such that the correct target language is selected at a particular occasion. Here we present behavioral and functional magnetic resonance imaging data showing that bilingual processing leads to language conflict in the bilingual brain even when the bilinguals’ task only required target language knowledge. This finding demonstrates that the bilingual brain cannot avoid language conflict, because words from the target and nontarget languages become automatically activated during reading. Importantly, stimulus-based language conflict was found in brain regions in the LIPC associated with phonological and semantic processing, whereas response-based language conflict was only found in the pre-supplementary motor area/anterior cingulate cortex when language conflict leads to response conflicts. -
Willems, R. M., Ozyurek, A., & Hagoort, P. (2008). Seeing and hearing meaning: ERP and fMRI evidence of word versus picture integration into a sentence context. Journal of Cognitive Neuroscience, 20, 1235-1249. doi:10.1162/jocn.2008.20085.
Abstract
Understanding language always occurs within a situational context and, therefore, often implies combining streams of information from different domains and modalities. One such combination is that of spoken language and visual information, which are perceived together in a variety of ways during everyday communication. Here we investigate whether and how words and pictures differ in terms of their neural correlates when they are integrated into a previously built-up sentence context. This is assessed in two experiments looking at the time course (measuring event-related potentials, ERPs) and the locus (using functional magnetic resonance imaging, fMRI) of this integration process. We manipulated the ease of semantic integration of word and/or picture to a previous sentence context to increase the semantic load of processing. In the ERP study, an increased semantic load led to an N400 effect which was similar for pictures and words in terms of latency and amplitude. In the fMRI study, we found overlapping activations to both picture and word integration in the left inferior frontal cortex. Specific activations for the integration of a word were observed in the left superior temporal cortex. We conclude that despite obvious differences in representational format, semantic information coming from pictures and words is integrated into a sentence context in similar ways in the brain. This study adds to the growing insight that the language system incorporates (semantic) information coming from linguistic and extralinguistic domains with the same neural time course and by recruitment of overlapping brain areas. -
Willems, R. M., Oostenveld, R., & Hagoort, P. (2008). Early decreases in alpha and gamma band power distinguish linguistic from visual information during spoken sentence comprehension. Brain Research, 1219, 78-90. doi:10.1016/j.brainres.2008.04.065.
Abstract
Language is often perceived together with visual information. This raises the question on how the brain integrates information conveyed in visual and/or linguistic format during spoken language comprehension. In this study we investigated the dynamics of semantic integration of visual and linguistic information by means of time-frequency analysis of the EEG signal. A modified version of the N400 paradigm with either a word or a picture of an object being semantically incongruous with respect to the preceding sentence context was employed. Event-Related Potential (ERP) analysis showed qualitatively similar N400 effects for integration of either word or picture. Time-frequency analysis revealed early specific decreases in alpha and gamma band power for linguistic and visual information respectively. We argue that these reflect a rapid context-based analysis of acoustic (word) or visual (picture) form information. We conclude that although full semantic integration of linguistic and visual information occurs through a common mechanism, early differences in oscillations in specific frequency bands reflect the format of the incoming information and, importantly, an early context-based detection of its congruity with respect to the preceding language context -
Li, X., Yang, Y., & Hagoort, P. (2008). Pitch accent and lexical tone processing in Chinese discourse comprehension: An ERP study. Brain Research, 1222, 192-200. doi:10.1016/j.brainres.2008.05.031.
Abstract
In the present study, event-related brain potentials (ERP) were recorded to investigate the role of pitch accent and lexical tone in spoken discourse comprehension. Chinese was used as material to explore the potential difference in the nature and time course of brain responses to sentence meaning as indicated by pitch accent and to lexical meaning as indicated by tone. In both cases, the pitch contour of critical words was varied. The results showed that both inconsistent pitch accent and inconsistent lexical tone yielded N400 effects, and there was no interaction between them. The negativity evoked by inconsistent pitch accent had the some topography as that evoked by inconsistent lexical tone violation, with a maximum over central–parietal electrodes. Furthermore, the effect for the combined violations was the sum of effects for pure pitch accent and pure lexical tone violation. However, the effect for the lexical tone violation appeared approximately 90 ms earlier than the effect of the pitch accent violation. It is suggested that there might be a correspondence between the neural mechanism underlying pitch accent and lexical meaning processing in context. They both reflect the integration of the current information into a discourse context, independent of whether the current information was sentence meaning indicated by accentuation, or lexical meaning indicated by tone. In addition, lexical meaning was processed earlier than sentence meaning conveyed by pitch accent during spoken language processing.
Share this page