Displaying 1 - 32 of 32
-
Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.
Abstract
Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models. -
Hagoort, P. (
Ed. ). (2019). Human language: From genes and brains to behavior. Cambridge, MA: MIT Press. -
Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (
Ed. ), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press. -
Hagoort, P. (2019). Introduction. In P. Hagoort (
Ed. ), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press. -
Hagoort, P. (2019). The meaning making mechanism(s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190301. doi:10.1098/rstb.2019.0301.
Abstract
In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information. -
Hagoort, P. (2019). The neurobiology of language beyond single word processing. Science, 366(6461), 55-58. doi:10.1126/science.aax0289.
Abstract
In this Review, I propose a multiple-network view for the neurobiological basis of distinctly human language skills. A much more complex picture of interacting brain areas emerges than in the classical neurobiological model of language. This is because using language is more than single-word processing, and much goes on beyond the information given in the acoustic or orthographic tokens that enter primary sensory cortices. This requires the involvement of multiple networks with functionally nonoverlapping contributionsFiles private
Request files -
Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 424-427). doi:10.32470/CCN.2019.1096-0.
Abstract
Prediction in language has traditionally been studied using
simple designs in which neural responses to expected
and unexpected words are compared in a categorical
fashion. However, these designs have been contested
as being ‘prediction encouraging’, potentially exaggerating
the importance of prediction in language understanding.
A few recent studies have begun to address
these worries by using model-based approaches to probe
the effects of linguistic predictability in naturalistic stimuli
(e.g. continuous narrative). However, these studies
so far only looked at very local forms of prediction, using
models that take no more than the prior two words into
account when computing a word’s predictability. Here,
we extend this approach using a state-of-the-art neural
language model that can take roughly 500 times longer
linguistic contexts into account. Predictability estimates
fromthe neural network offer amuch better fit to EEG data
from subjects listening to naturalistic narrative than simpler
models, and reveal strong surprise responses akin to
the P200 and N400. These results show that predictability
effects in language are not a side-effect of simple designs,
and demonstrate the practical use of recent advances
in AI for the cognitive neuroscience of language. -
Hulten, A., Schoffelen, J.-M., Udden, J., Lam, N. H. L., & Hagoort, P. (2019). How the brain makes sense beyond the processing of single words – An MEG study. NeuroImage, 186, 586-594. doi:10.1016/j.neuroimage.2018.11.035.
Abstract
Human language processing involves combinatorial operations that make human communication stand out in the animal kingdom. These operations rely on a dynamic interplay between the inferior frontal and the posterior temporal cortices. Using source reconstructed magnetoencephalography, we tracked language processing in the brain, in order to investigate how individual words are interpreted when part of sentence context. The large sample size in this study (n = 68) allowed us to assess how event-related activity is associated across distinct cortical areas, by means of inter-areal co-modulation within an individual. We showed that, within 500 ms of seeing a word, the word's lexical information has been retrieved and unified with the sentence context. This does not happen in a strictly feed-forward manner, but by means of co-modulation between the left posterior temporal cortex (LPTC) and left inferior frontal cortex (LIFC), for each individual word. The co-modulation of LIFC and LPTC occurs around 400 ms after the onset of each word, across the progression of a sentence. Moreover, these core language areas are supported early on by the attentional network. The results provide a detailed description of the temporal orchestration related to single word processing in the context of ongoing language.Additional information
1-s2.0-S1053811918321165-mmc1.pdf -
Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.
Abstract
How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing. -
Schoffelen, J.-M., Oostenveld, R., Lam, N. H. L., Udden, J., Hulten, A., & Hagoort, P. (2019). A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data, 6(1): 17. doi:10.1038/s41597-019-0020-y.
Abstract
This dataset, colloquially known as the Mother Of Unification Studies (MOUS) dataset, contains multimodal neuroimaging data that has been acquired from 204 healthy human subjects. The neuroimaging protocol consisted of magnetic resonance imaging (MRI) to derive information at high spatial resolution about brain anatomy and structural connections, and functional data during task, and at rest. In addition, magnetoencephalography (MEG) was used to obtain high temporal resolution electrophysiological measurements during task, and at rest. All subjects performed a language task, during which they processed linguistic utterances that either consisted of normal or scrambled sentences. Half of the subjects were reading the stimuli, the other half listened to the stimuli. The resting state measurements consisted of 5 minutes eyes-open for the MEG and 7 minutes eyes-closed for fMRI. The neuroimaging data, as well as the information about the experimental events are shared according to the Brain Imaging Data Structure (BIDS) format. This unprecedented neuroimaging language data collection allows for the investigation of various aspects of the neurobiological correlates of language. -
Schoot, L., Hagoort, P., & Segaert, K. (2019). Stronger syntactic alignment in the presence of an interlocutor. Frontiers in Psychology, 10: 685. doi:10.3389/fpsyg.2019.00685.
Abstract
Speakers are influenced by the linguistic context: hearing one syntactic alternative leads to an increased chance that the speaker will repeat this structure in the subsequent utterance (i.e., syntactic priming, or structural persistence). Top-down influences, such as whether a conversation partner (or, interlocutor) is present, may modulate the degree to which syntactic priming occurs. In the current study, we indeed show that the magnitude of syntactic alignment increases when speakers are interacting with an interlocutor as opposed to doing the experiment alone. The structural persistence effect for passive sentences is stronger in the presence of an interlocutor than when no interlocutor is present (i.e., when the participant is primed by a recording). We did not find evidence, however, that a speaker’s syntactic priming magnitude is influenced by the degree of their conversation partner’s priming magnitude. Together, these results support a mediated account of syntactic priming, in which syntactic choices are not only affected by preceding linguistic input, but also by top-down influences, such as the speakers’ communicative intent. -
Sharoh, D., Van Mourik, T., Bains, L. J., Segaert, K., Weber, K., Hagoort, P., & Norris, D. (2019). Laminar specific fMRI reveals directed interactions in distributed networks during language processing. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21185-21190. doi:10.1073/pnas.1907858116.
Abstract
Interactions between top-down and bottom-up information streams are integral to brain function but challenging to measure noninvasively. Laminar resolution, functional MRI (lfMRI) is sensitive to depth-dependent properties of the blood oxygen level-dependent (BOLD) response, which can be potentially related to top-down and bottom-up signal contributions. In this work, we used lfMRI to dissociate the top-down and bottom-up signal contributions to the left occipitotemporal sulcus (LOTS) during word reading. We further demonstrate that laminar resolution measurements could be used to identify condition-specific distributed networks on the basis of whole-brain connectivity patterns specific to the depth-dependent BOLD signal. The networks corresponded to top-down and bottom-up signal pathways targeting the LOTS during word reading. We show that reading increased the top-down BOLD signal observed in the deep layers of the LOTS and that this signal uniquely related to the BOLD response in other language-critical regions. These results demonstrate that lfMRI can reveal important patterns of activation that are obscured at standard resolution. In addition to differences in activation strength as a function of depth, we also show meaningful differences in the interaction between signals originating from different depths both within a region and with the rest of the brain. We thus show that lfMRI allows the noninvasive measurement of directed interaction between brain regions and is capable of resolving different connectivity patterns at submillimeter resolution, something previously considered to be exclusively in the domain of invasive recordings. -
Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787. doi:10.1523/JNEUROSCI.0888-19.2019.
Abstract
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.
SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.Additional information
The Perils of Neuroimaging Genetics for Cognitive Traits (feature commentary) -
Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221. doi:10.1111/lang.12327.
Abstract
New linguistic information must be integrated into our existing language system. Using a novel experimental task that incorporates a syntactic priming paradigm into artificial language learning, we investigated how new grammatical regularities and words are learned. This innovation allowed us to control the language input the learner received, while the syntactic priming paradigm provided insight into the nature of the underlying syntactic processing machinery. The results of the present study pointed to facilitatory syntactic processing effects within the first days of learning: Syntactic and lexical priming effects revealed participants’ sensitivity to both novel words and word orders. This suggested that novel syntactic structures and their meaning (form–function mapping) can be acquired rapidly through incidental learning. More generally, our study indicated similar mechanisms for learning and processing in both artificial and natural languages, with implications for the relationship between first and second language learning.Additional information
Weber_et_al-2018-Language_Learning.sup-1.pdf -
Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.
Abstract
Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension. -
Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain's language network: Syntactic ambiguity resolution after TMS to the IFG and MTG. Journal of Cognitive Neuroscience, 25(10), 1664-1677. doi:10.1162/jocn_a_00430.
Abstract
The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG is involved in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to a control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension. -
Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4: 416. doi:10.3389/fpsyg.2013.00416.
Abstract
A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions. -
Hagoort, P., & Poeppel, D. (2013). The infrastructure of the language-ready brain. In M. A. Arbib (
Ed. ), Language, music, and the brain: A mysterious relationship (pp. 233-255). Cambridge, MA: MIT Press.Abstract
This chapter sketches in very general terms the cognitive architecture of both language comprehension and production, as well as the neurobiological infrastructure that makes the human brain ready for language. Focus is on spoken language, since that compares most directly to processing music. It is worth bearing in mind that humans can also interface with language as a cognitive system using sign and text (visual) as well as Braille (tactile); that is to say, the system can connect with input/output processes in any sensory modality. Language processing consists of a complex and nested set of subroutines to get from sound to meaning (in comprehension) or meaning to sound (in production), with remarkable speed and accuracy. The fi rst section outlines a selection of the major constituent operations, from fractionating the input into manageable units to combining and unifying information in the construction of meaning. The next section addresses the neurobiological infrastructure hypothesized to form the basis for language processing. Principal insights are summarized by building on the notion of “brain networks” for speech–sound processing, syntactic processing, and the construction of meaning, bearing in mind that such a neat three-way subdivision overlooks important overlap and shared mechanisms in the neural architecture subserving language processing. Finally, in keeping with the spirit of the volume, some possible relations are highlighted between language and music that arise from the infrastructure developed here. Our characterization of language and its neurobiological foundations is necessarily selective and brief. Our aim is to identify for the reader critical questions that require an answer to have a plausible cognitive neuroscience of language processing. -
Hagoort, P., & Meyer, A. S. (2013). What belongs together goes together: the speaker-hearer perspective. A commentary on MacDonald's PDC account. Frontiers in Psychology, 4: 228. doi:10.3389/fpsyg.2013.00228.
Abstract
First paragraph:
MacDonald (2013) proposes that distributional properties of language and processing biases in language comprehension can to a large extent be attributed to consequences of the language production process. In essence, the account is derived from the principle of least effort that was formulated by Zipf, among others (Zipf, 1949; Levelt, 2013). However, in Zipf's view the outcome of the least effort principle was a compromise between least effort for the speaker and least effort for the listener, whereas MacDonald puts most of the burden on the production process. -
Holler, J., Schubotz, L., Kelly, S., Schuetze, M., Hagoort, P., & Ozyurek, A. (2013). Here's not looking at you, kid! Unaddressed recipients benefit from co-speech gestures when speech processing suffers. In M. Knauff, M. Pauen, I. Sebanz, & I. Wachsmuth (
Eds. ), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 2560-2565). Austin, TX: Cognitive Science Society. Retrieved from http://mindmodeling.org/cogsci2013/papers/0463/index.html.Abstract
In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from these different modalities, and how perceived communicative intentions, often signaled through visual signals, such as eye
gaze, may influence this processing. We address this question by simulating a triadic communication context in which a
speaker alternated her gaze between two different recipients. Participants thus viewed speech-only or speech+gesture
object-related utterances when being addressed (direct gaze) or unaddressed (averted gaze). Two object images followed
each message and participants’ task was to choose the object that matched the message. Unaddressed recipients responded significantly slower than addressees for speech-only
utterances. However, perceiving the same speech accompanied by gestures sped them up to a level identical to
that of addressees. That is, when speech processing suffers due to not being addressed, gesture processing remains intact and enhances the comprehension of a speaker’s message -
Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.
Abstract
The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills. -
Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.
Abstract
In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.Additional information
Kirstensen_Cer_Cor_Suppl_Mat.doc -
Meyer, A. S., & Hagoort, P. (2013). What does it mean to predict one's own utterances? [Commentary on Pickering & Garrod]. Behavioral and Brain Sciences, 36, 367-368. doi:10.1017/S0140525X12002786.
Abstract
Many authors have recently highlighted the importance of prediction for language comprehension. Pickering & Garrod (P&G) are the first to propose a central role for prediction in language production. This is an intriguing idea, but it is not clear what it means for speakers to predict their own utterances, and how prediction during production can be empirically distinguished from production proper. -
Peeters, D., Chu, M., Holler, J., Ozyurek, A., & Hagoort, P. (2013). Getting to the point: The influence of communicative intent on the kinematics of pointing gestures. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (
Eds. ), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 1127-1132). Austin, TX: Cognitive Science Society.Abstract
In everyday communication, people not only use speech but
also hand gestures to convey information. One intriguing
question in gesture research has been why gestures take the
specific form they do. Previous research has identified the
speaker-gesturer’s communicative intent as one factor
shaping the form of iconic gestures. Here we investigate
whether communicative intent also shapes the form of
pointing gestures. In an experimental setting, twenty-four
participants produced pointing gestures identifying a referent
for an addressee. The communicative intent of the speakergesturer
was manipulated by varying the informativeness of
the pointing gesture. A second independent variable was the
presence or absence of concurrent speech. As a function of their communicative intent and irrespective of the presence of speech, participants varied the durations of the stroke and the post-stroke hold-phase of their gesture. These findings add to our understanding of how the communicative context influences the form that a gesture takes.Additional information
http://mindmodeling.org/cogsci2013/papers/0219/index.html -
Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.
Abstract
Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.Additional information
Segaert_Supplementary_data_2013.docx -
Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.
Abstract
Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects. -
Stolk, A., Verhagen, L., Schoffelen, J.-M., Oostenveld, R., Blokpoel, M., Hagoort, P., van Rooij, I., & Tonia, I. (2013). Neural mechanisms of communicative innovation. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14574-14579. doi:10.1073/pnas.1303170110.
Abstract
Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.Additional information
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303170110/-/DCSupplemental -
Thompson-Schill, S., Hagoort, P., Dominey, P. F., Honing, H., Koelsch, S., Ladd, D. R., Lerdahl, F., Levinson, S. C., & Steedman, M. (2013). Multiple levels of structure in language and music. In M. A. Arbib (
Ed. ), Language, music, and the brain: A mysterious relationship (pp. 289-303). Cambridge, MA: MIT Press.Abstract
A forum devoted to the relationship between music and language begins with an implicit assumption: There is at least one common principle that is central to all human musical systems and all languages, but that is not characteristic of (most) other domains. Why else should these two categories be paired together for analysis? We propose that one candidate for a common principle is their structure. In this chapter, we explore the nature of that structure—and its consequences for psychological and neurological processing mechanisms—within and across these two domains. -
Van Leeuwen, T. M., Hagoort, P., & Händel, B. F. (2013). Real color captures attention and overrides spatial cues in grapheme-color synesthetes but not in controls. Neuropsychologia, 51(10), 1802-1813. doi:10.1016/j.neuropsychologia.2013.06.024.
Abstract
Grapheme-color synesthetes perceive color when reading letters or digits. We investigated oscillatory brain signals of synesthetes vs. controls using magnetoencephalography. Brain oscillations specifically in the alpha band (∼10 Hz) have two interesting features: alpha has been linked to inhibitory processes and can act as a marker for attention. The possible role of reduced inhibition as an underlying cause of synesthesia, as well as the precise role of attention in synesthesia is widely discussed. To assess alpha power effects due to synesthesia, synesthetes as well as matched controls viewed synesthesia-inducing graphemes, colored control graphemes, and non-colored control graphemes while brain activity was recorded. Subjects had to report a color change at the end of each trial which allowed us to assess the strength of synesthesia in each synesthete. Since color (synesthetic or real) might allocate attention we also included an attentional cue in our paradigm which could direct covert attention. In controls the attentional cue always caused a lateralization of alpha power with a contralateral decrease and ipsilateral alpha increase over occipital sensors. In synesthetes, however, the influence of the cue was overruled by color: independent of the attentional cue, alpha power decreased contralateral to the color (synesthetic or real). This indicates that in synesthetes color guides attention. This was confirmed by reaction time effects due to color, i.e. faster RTs for the color side independent of the cue. Finally, the stronger the observed color dependent alpha lateralization, the stronger was the manifestation of synesthesia as measured by congruency effects of synesthetic colors on RTs. Behavioral and imaging results indicate that color induces a location-specific, automatic shift of attention towards color in synesthetes but not in controls. We hypothesize that this mechanism can facilitate coupling of grapheme and color during the development of synesthesia. -
Wagensveld, B., Van Alphen, P. M., Segers, E., Hagoort, P., & Verhoeven, L. (2013). The neural correlates of rhyme awareness in preliterate and literate children. Clinical Neurophysiology, 124, 1336-1345. doi:10.1016/j.clinph.2013.01.022.
Abstract
Objective Most rhyme awareness assessments do not encompass measures of the global similarity effect (i.e., children who are able to perform simple rhyme judgments get confused when presented with globally similar non-rhyming pairs). The present study examines the neural nature of this effect by studying the N450 rhyme effect. Methods Behavioral and electrophysiological responses of Dutch pre-literate kindergartners and literate second graders were recorded while they made rhyme judgments of word pairs in three conditions; phonologically rhyming (e.g., wijn-pijn), overlapping non-rhyming (e.g., pen-pijn) and unrelated non-rhyming pairs (e.g., boom-pijn). Results Behaviorally, both groups had difficulty judging overlapping but not rhyming and unrelated pairs. The neural data of second graders showed overlapping pairs were processed in a similar fashion as unrelated pairs; both showed a more negative deflection of the N450 component than rhyming items. Kindergartners did not show a typical N450 rhyme effect. However, some other interesting ERP differences were observed, indicating preliterates are sensitive to rhyme at a certain level. Significance Rhyme judgments of globally similar items rely on the same process as rhyme judgments of rhyming and unrelated items. Therefore, incorporating a globally similar condition in rhyme assessments may lead to a more in-depth measure of early phonological awareness skills. Highlights Behavioral and electrophysiological responses were recorded while (pre)literate children made rhyme judgments of rhyming, overlapping and unrelated words. Behaviorally both groups had difficulty judging overlapping pairs as non-rhyming while overlapping and unrelated neural patterns were similar in literates. Preliterates show a different pattern indicating a developing phonological system. -
Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2013). ERP evidence on the interaction between information structure and emotional salience of words. Cognitive, Affective and Behavioral Neuroscience, 13, 297-310. doi:10.3758/s13415-012-0146-2.
Abstract
Both emotional words and words focused by information structure can capture attention. This study examined the interplay between emotional salience and information structure in modulating attentional resources in the service of integrating emotional words into sentence context. Event-related potentials (ERPs) to affectively negative, neutral, and positive words, which were either focused or nonfocused in question–answer pairs, were evaluated during sentence comprehension. The results revealed an early negative effect (90–200 ms), a P2 effect, as well as an effect in the N400 time window, for both emotional salience and information structure. Moreover, an interaction between emotional salience and information structure occurred within the N400 time window over right posterior electrodes, showing that information structure influences the semantic integration only for neutral words, but not for emotional words. This might reflect the fact that the linguistic salience of emotional words can override the effect of information structure on the integration of words into context. The interaction provides evidence for attention–emotion interactions at a later stage of processing. In addition, the absence of interaction in the early time window suggests that the processing of emotional information is highly automatic and independent of context. The results suggest independent attention capture systems of emotional salience and information structure at the early stage but an interaction between them at a later stage, during the semantic integration of words. -
Wang, L., Zhu, Z., Bastiaansen, M. C. M., Hagoort, P., & Yang, Y. (2013). Recognizing the emotional valence of names: An ERP study. Brain and Language, 125, 118-127. doi:10.1016/j.bandl.2013.01.006.
Abstract
Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional valence only for nouns. This might reflect automatic attention directed towards emotional stimuli. The absence of such an effect for names supports the notion that the emotional meaning carried by names is accessed after word recognition and person identification. In addition, both names with negative valence and emotional nouns elicited late positive effects, which have been associated with evaluation of emotional significance. This positive effect started earlier for nouns than for names, but with similar durations. Our results suggest that distinct neural systems are involved in the retrieval of names’ and nouns’ emotional meaning.
Share this page