Displaying 1 - 21 of 21
-
Hagoort, P. (2023). The language marker hypothesis. Cognition, 230: 105252. doi:10.1016/j.cognition.2022.105252.
Abstract
According to the language marker hypothesis language has provided homo sapiens with a rich symbolic system that plays a central role in interpreting signals delivered by our sensory apparatus, in shaping action goals, and in creating a powerful tool for reasoning and inferencing. This view provides an important correction on embodied accounts of language that reduce language to action, perception, emotion and mental simulation. The presence of a language system has, however, also important consequences for perception, action, emotion, and memory. Language stamps signals from perception, action, and emotional systems with rich cognitive markers that transform the role of these signals in the overall cognitive architecture of the human mind. This view does not deny that language is implemented by means of universal principles of neural organization. However, language creates the possibility to generate rich internal models of the world that are shaped and made accessible by the characteristics of a language system. This makes us less dependent on direct action-perception couplings and might even sometimes go at the expense of the veridicality of perception. In cognitive (neuro)science the pendulum has swung from language as the key to understand the organization of the human mind to the perspective that it is a byproduct of perception and action. It is time that it partly swings back again. -
Hagoort, P. (2023). Zij zijn ons brein en andere beschouwingen. Nijmegen: Max Planck Instituut voor Psycholinguistiek.
-
Huizeling, E., Alday, P. M., Peeters, D., & Hagoort, P. (2023). Combining EEG and 3D-eye-tracking to study the prediction of upcoming speech in naturalistic virtual environments: A proof of principle. Neuropsychologia, 191: 108730. doi:10.1016/j.neuropsychologia.2023.108730.
Abstract
EEG and eye-tracking provide complementary information when investigating language comprehension. Evidence that speech processing may be facilitated by speech prediction comes from the observation that a listener's eye gaze moves towards a referent before it is mentioned if the remainder of the spoken sentence is predictable. However, changes to the trajectory of anticipatory fixations could result from a change in prediction or an attention shift. Conversely, N400 amplitudes and concurrent spectral power provide information about the ease of word processing the moment the word is perceived. In a proof-of-principle investigation, we combined EEG and eye-tracking to study linguistic prediction in naturalistic, virtual environments. We observed increased processing, reflected in theta band power, either during verb processing - when the verb was predictive of the noun - or during noun processing - when the verb was not predictive of the noun. Alpha power was higher in response to the predictive verb and unpredictable nouns. We replicated typical effects of noun congruence but not predictability on the N400 in response to the noun. Thus, the rich visual context that accompanied speech in virtual reality influenced language processing compared to previous reports, where the visual context may have facilitated processing of unpredictable nouns. Finally, anticipatory fixations were predictive of spectral power during noun processing and the length of time fixating the target could be predicted by spectral power at verb onset, conditional on the object having been fixated. Overall, we show that combining EEG and eye-tracking provides a promising new method to answer novel research questions about the prediction of upcoming linguistic input, for example, regarding the role of extralinguistic cues in prediction during language comprehension. -
Kösem, A., Dai, B., McQueen, J. M., & Hagoort, P. (2023). Neural envelope tracking of speech does not unequivocally reflect intelligibility. NeuroImage, 272: 120040. doi:10.1016/j.neuroimage.2023.120040.
Abstract
During listening, brain activity tracks the rhythmic structures of speech signals. Here, we directly dissociated the contribution of neural envelope tracking in the processing of speech acoustic cues from that related to linguistic processing. We examined the neural changes associated with the comprehension of Noise-Vocoded (NV) speech using magnetoencephalography (MEG). Participants listened to NV sentences in a 3-phase training paradigm: (1) pre-training, where NV stimuli were barely comprehended, (2) training with exposure of the original clear version of speech stimulus, and (3) post-training, where the same stimuli gained intelligibility from the training phase. Using this paradigm, we tested if the neural responses of a speech signal was modulated by its intelligibility without any change in its acoustic structure. To test the influence of spectral degradation on neural envelope tracking independently of training, participants listened to two types of NV sentences (4-band and 2-band NV speech), but were only trained to understand 4-band NV speech. Significant changes in neural tracking were observed in the delta range in relation to the acoustic degradation of speech. However, we failed to find a direct effect of intelligibility on the neural tracking of speech envelope in both theta and delta ranges, in both auditory regions-of-interest and whole-brain sensor-space analyses. This suggests that acoustics greatly influence the neural tracking response to speech envelope, and that caution needs to be taken when choosing the control signals for speech-brain tracking analyses, considering that a slight change in acoustic parameters can have strong effects on the neural tracking response. -
Mishra, C., Verdonschot, R. G., Hagoort, P., & Skantze, G. (2023). Real-time emotion generation in human-robot dialogue using large language models. Frontiers in Robotics and AI, 10: 1271610. doi:10.3389/frobt.2023.1271610.
Abstract
Affective behaviors enable social robots to not only establish better connections with humans but also serve as a tool for the robots to express their internal states. It has been well established that emotions are important to signal understanding in Human-Robot Interaction (HRI). This work aims to harness the power of Large Language Models (LLM) and proposes an approach to control the affective behavior of robots. By interpreting emotion appraisal as an Emotion Recognition in Conversation (ERC) tasks, we used GPT-3.5 to predict the emotion of a robot’s turn in real-time, using the dialogue history of the ongoing conversation. The robot signaled the predicted emotion using facial expressions. The model was evaluated in a within-subjects user study (N = 47) where the model-driven emotion generation was compared against conditions where the robot did not display any emotions and where it displayed incongruent emotions. The participants interacted with the robot by playing a card sorting game that was specifically designed to evoke emotions. The results indicated that the emotions were reliably generated by the LLM and the participants were able to perceive the robot’s emotions. It was found that the robot expressing congruent model-driven facial emotion expressions were perceived to be significantly more human-like, emotionally appropriate, and elicit a more positive impression. Participants also scored significantly better in the card sorting game when the robot displayed congruent facial expressions. From a technical perspective, the study shows that LLMs can be used to control the affective behavior of robots reliably in real-time. Additionally, our results could be used in devising novel human-robot interactions, making robots more effective in roles where emotional interaction is important, such as therapy, companionship, or customer service. -
Quaresima, A., Fitz, H., Duarte, R., Van den Broek, D., Hagoort, P., & Petersson, K. M. (2023). The Tripod neuron: A minimal structural reduction of the dendritic tree. The Journal of Physiology, 601(15), 3007-3437. doi:10.1113/JP283399.
Abstract
Neuron models with explicit dendritic dynamics have shed light on mechanisms for coincidence detection, pathway selection and temporal filtering. However, it is still unclear which morphological and physiological features are required to capture these phenomena. In this work, we introduce the Tripod neuron model and propose a minimal structural reduction of the dendritic tree that is able to reproduce these computations. The Tripod is a three-compartment model consisting of two segregated passive dendrites and a somatic compartment modelled as an adaptive, exponential integrate-and-fire neuron. It incorporates dendritic geometry, membrane physiology and receptor dynamics as measured in human pyramidal cells. We characterize the response of the Tripod to glutamatergic and GABAergic inputs and identify parameters that support supra-linear integration, coincidence-detection and pathway-specific gating through shunting inhibition. Following NMDA spikes, the Tripod neuron generates plateau potentials whose duration depends on the dendritic length and the strength of synaptic input. When fitted with distal compartments, the Tripod encodes previous activity into a dendritic depolarized state. This dendritic memory allows the neuron to perform temporal binding, and we show that it solves transition and sequence detection tasks on which a single-compartment model fails. Thus, the Tripod can account for dendritic computations previously explained only with more detailed neuron models or neural networks. Due to its simplicity, the Tripod neuron can be used efficiently in simulations of larger cortical circuits. -
Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.
Abstract
Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models. -
Hagoort, P. (
Ed. ). (2019). Human language: From genes and brains to behavior. Cambridge, MA: MIT Press. -
Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (
Ed. ), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press. -
Hagoort, P. (2019). Introduction. In P. Hagoort (
Ed. ), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press. -
Hagoort, P. (2019). The meaning making mechanism(s) behind the eyes and between the ears. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190301. doi:10.1098/rstb.2019.0301.
Abstract
In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information. -
Hagoort, P. (2019). The neurobiology of language beyond single word processing. Science, 366(6461), 55-58. doi:10.1126/science.aax0289.
Abstract
In this Review, I propose a multiple-network view for the neurobiological basis of distinctly human language skills. A much more complex picture of interacting brain areas emerges than in the classical neurobiological model of language. This is because using language is more than single-word processing, and much goes on beyond the information given in the acoustic or orthographic tokens that enter primary sensory cortices. This requires the involvement of multiple networks with functionally nonoverlapping contributionsFiles private
Request files -
Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 424-427). doi:10.32470/CCN.2019.1096-0.
Abstract
Prediction in language has traditionally been studied using
simple designs in which neural responses to expected
and unexpected words are compared in a categorical
fashion. However, these designs have been contested
as being ‘prediction encouraging’, potentially exaggerating
the importance of prediction in language understanding.
A few recent studies have begun to address
these worries by using model-based approaches to probe
the effects of linguistic predictability in naturalistic stimuli
(e.g. continuous narrative). However, these studies
so far only looked at very local forms of prediction, using
models that take no more than the prior two words into
account when computing a word’s predictability. Here,
we extend this approach using a state-of-the-art neural
language model that can take roughly 500 times longer
linguistic contexts into account. Predictability estimates
fromthe neural network offer amuch better fit to EEG data
from subjects listening to naturalistic narrative than simpler
models, and reveal strong surprise responses akin to
the P200 and N400. These results show that predictability
effects in language are not a side-effect of simple designs,
and demonstrate the practical use of recent advances
in AI for the cognitive neuroscience of language. -
Hulten, A., Schoffelen, J.-M., Udden, J., Lam, N. H. L., & Hagoort, P. (2019). How the brain makes sense beyond the processing of single words – An MEG study. NeuroImage, 186, 586-594. doi:10.1016/j.neuroimage.2018.11.035.
Abstract
Human language processing involves combinatorial operations that make human communication stand out in the animal kingdom. These operations rely on a dynamic interplay between the inferior frontal and the posterior temporal cortices. Using source reconstructed magnetoencephalography, we tracked language processing in the brain, in order to investigate how individual words are interpreted when part of sentence context. The large sample size in this study (n = 68) allowed us to assess how event-related activity is associated across distinct cortical areas, by means of inter-areal co-modulation within an individual. We showed that, within 500 ms of seeing a word, the word's lexical information has been retrieved and unified with the sentence context. This does not happen in a strictly feed-forward manner, but by means of co-modulation between the left posterior temporal cortex (LPTC) and left inferior frontal cortex (LIFC), for each individual word. The co-modulation of LIFC and LPTC occurs around 400 ms after the onset of each word, across the progression of a sentence. Moreover, these core language areas are supported early on by the attentional network. The results provide a detailed description of the temporal orchestration related to single word processing in the context of ongoing language.Additional information
1-s2.0-S1053811918321165-mmc1.pdf -
Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.
Abstract
How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing. -
Schoffelen, J.-M., Oostenveld, R., Lam, N. H. L., Udden, J., Hulten, A., & Hagoort, P. (2019). A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data, 6(1): 17. doi:10.1038/s41597-019-0020-y.
Abstract
This dataset, colloquially known as the Mother Of Unification Studies (MOUS) dataset, contains multimodal neuroimaging data that has been acquired from 204 healthy human subjects. The neuroimaging protocol consisted of magnetic resonance imaging (MRI) to derive information at high spatial resolution about brain anatomy and structural connections, and functional data during task, and at rest. In addition, magnetoencephalography (MEG) was used to obtain high temporal resolution electrophysiological measurements during task, and at rest. All subjects performed a language task, during which they processed linguistic utterances that either consisted of normal or scrambled sentences. Half of the subjects were reading the stimuli, the other half listened to the stimuli. The resting state measurements consisted of 5 minutes eyes-open for the MEG and 7 minutes eyes-closed for fMRI. The neuroimaging data, as well as the information about the experimental events are shared according to the Brain Imaging Data Structure (BIDS) format. This unprecedented neuroimaging language data collection allows for the investigation of various aspects of the neurobiological correlates of language. -
Schoot, L., Hagoort, P., & Segaert, K. (2019). Stronger syntactic alignment in the presence of an interlocutor. Frontiers in Psychology, 10: 685. doi:10.3389/fpsyg.2019.00685.
Abstract
Speakers are influenced by the linguistic context: hearing one syntactic alternative leads to an increased chance that the speaker will repeat this structure in the subsequent utterance (i.e., syntactic priming, or structural persistence). Top-down influences, such as whether a conversation partner (or, interlocutor) is present, may modulate the degree to which syntactic priming occurs. In the current study, we indeed show that the magnitude of syntactic alignment increases when speakers are interacting with an interlocutor as opposed to doing the experiment alone. The structural persistence effect for passive sentences is stronger in the presence of an interlocutor than when no interlocutor is present (i.e., when the participant is primed by a recording). We did not find evidence, however, that a speaker’s syntactic priming magnitude is influenced by the degree of their conversation partner’s priming magnitude. Together, these results support a mediated account of syntactic priming, in which syntactic choices are not only affected by preceding linguistic input, but also by top-down influences, such as the speakers’ communicative intent. -
Sharoh, D., Van Mourik, T., Bains, L. J., Segaert, K., Weber, K., Hagoort, P., & Norris, D. (2019). Laminar specific fMRI reveals directed interactions in distributed networks during language processing. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21185-21190. doi:10.1073/pnas.1907858116.
Abstract
Interactions between top-down and bottom-up information streams are integral to brain function but challenging to measure noninvasively. Laminar resolution, functional MRI (lfMRI) is sensitive to depth-dependent properties of the blood oxygen level-dependent (BOLD) response, which can be potentially related to top-down and bottom-up signal contributions. In this work, we used lfMRI to dissociate the top-down and bottom-up signal contributions to the left occipitotemporal sulcus (LOTS) during word reading. We further demonstrate that laminar resolution measurements could be used to identify condition-specific distributed networks on the basis of whole-brain connectivity patterns specific to the depth-dependent BOLD signal. The networks corresponded to top-down and bottom-up signal pathways targeting the LOTS during word reading. We show that reading increased the top-down BOLD signal observed in the deep layers of the LOTS and that this signal uniquely related to the BOLD response in other language-critical regions. These results demonstrate that lfMRI can reveal important patterns of activation that are obscured at standard resolution. In addition to differences in activation strength as a function of depth, we also show meaningful differences in the interaction between signals originating from different depths both within a region and with the rest of the brain. We thus show that lfMRI allows the noninvasive measurement of directed interaction between brain regions and is capable of resolving different connectivity patterns at submillimeter resolution, something previously considered to be exclusively in the domain of invasive recordings. -
Udden, J., Hulten, A., Bendt, K., Mineroff, Z., Kucera, K. S., Vino, A., Fedorenko, E., Hagoort, P., & Fisher, S. E. (2019). Towards robust functional neuroimaging genetics of cognition. Journal of Neuroscience, 39(44), 8778-8787. doi:10.1523/JNEUROSCI.0888-19.2019.
Abstract
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.
SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.Additional information
The Perils of Neuroimaging Genetics for Cognitive Traits (feature commentary) -
Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221. doi:10.1111/lang.12327.
Abstract
New linguistic information must be integrated into our existing language system. Using a novel experimental task that incorporates a syntactic priming paradigm into artificial language learning, we investigated how new grammatical regularities and words are learned. This innovation allowed us to control the language input the learner received, while the syntactic priming paradigm provided insight into the nature of the underlying syntactic processing machinery. The results of the present study pointed to facilitatory syntactic processing effects within the first days of learning: Syntactic and lexical priming effects revealed participants’ sensitivity to both novel words and word orders. This suggested that novel syntactic structures and their meaning (form–function mapping) can be acquired rapidly through incidental learning. More generally, our study indicated similar mechanisms for learning and processing in both artificial and natural languages, with implications for the relationship between first and second language learning.Additional information
Weber_et_al-2018-Language_Learning.sup-1.pdf -
Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.
Abstract
Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
Share this page