Displaying 1 - 6 of 6
-
Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2021). Structure-(in)dependent interpretation of phrases in humans and LSTMs. In Proceedings of the Society for Computation in Linguistics (SCiL 2021) (pp. 459-463).
Abstract
In this study, we compared the performance of a long short-term memory (LSTM) neural network to the behavior of human participants on a language task that requires hierarchically structured knowledge. We show that humans interpret ambiguous noun phrases, such as second blue ball, in line with their hierarchical constituent structure. LSTMs, instead, only do
so after unambiguous training, and they do not systematically generalize to novel items. Overall, the results of our simulations indicate that a model can behave hierarchically without relying on hierarchical constituent structure.Additional information
full text via ScholarWorks@UMass Amherst -
Healthy Brain Study Consortium, Aarts, E., Akkerman, A., Altgassen, M., Bartels, R., Beckers, D., Bevelander, K., Bijleveld, E., Blaney Davidson, E., Boleij, A., Bralten, J., Cillessen, T., Claassen, J., Cools, R., Cornelissen, I., Dresler, M., Eijsvogels, T., Faber, M., Fernández, G., Figner, B., Fritsche, M. and 67 moreHealthy Brain Study Consortium, Aarts, E., Akkerman, A., Altgassen, M., Bartels, R., Beckers, D., Bevelander, K., Bijleveld, E., Blaney Davidson, E., Boleij, A., Bralten, J., Cillessen, T., Claassen, J., Cools, R., Cornelissen, I., Dresler, M., Eijsvogels, T., Faber, M., Fernández, G., Figner, B., Fritsche, M., Füllbrunn, S., Gayet, S., Van Gelder, M. M. H. J., Van Gerven, M., Geurts, S., Greven, C. U., Groefsema, M., Haak, K., Hagoort, P., Hartman, Y., Van der Heijden, B., Hermans, E., Heuvelmans, V., Hintz, F., Den Hollander, J., Hulsman, A. M., Idesis, S., Jaeger, M., Janse, E., Janzing, J., Kessels, R. P. C., Karremans, J. C., De Kleijn, W., Klein, M., Klumpers, F., Kohn, N., Korzilius, H., Krahmer, B., De Lange, F., Van Leeuwen, J., Liu, H., Luijten, M., Manders, P., Manevska, K., Marques, J. P., Matthews, J., McQueen, J. M., Medendorp, P., Melis, R., Meyer, A. S., Oosterman, J., Overbeek, L., Peelen, M., Popma, J., Postma, G., Roelofs, K., Van Rossenberg, Y. G. T., Schaap, G., Scheepers, P., Selen, L., Starren, M., Swinkels, D. W., Tendolkar, I., Thijssen, D., Timmerman, H., Tutunji, R., Tuladhar, A., Veling, H., Verhagen, M., Verkroost, J., Vink, J., Vriezekolk, V., Vrijsen, J., Vyrastekova, J., Van der Wal, S., Willems, R. M., & Willemsen, A. (2021). Protocol of the Healthy Brain Study: An accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context. PLoS One, 16(12): e0260952. doi:10.1371/journal.pone.0260952.
Abstract
The endeavor to understand the human brain has seen more progress in the last few decades than in the previous two millennia. Still, our understanding of how the human brain relates to behavior in the real world and how this link is modulated by biological, social, and environmental factors is limited. To address this, we designed the Healthy Brain Study (HBS), an interdisciplinary, longitudinal, cohort study based on multidimensional, dynamic assessments in both the laboratory and the real world. Here, we describe the rationale and design of the currently ongoing HBS. The HBS is examining a population-based sample of 1,000 healthy participants (age 30-39) who are thoroughly studied across an entire year. Data are collected through cognitive, affective, behavioral, and physiological testing, neuroimaging, bio-sampling, questionnaires, ecological momentary assessment, and real-world assessments using wearable devices. These data will become an accessible resource for the scientific community enabling the next step in understanding the human brain and how it dynamically and individually operates in its bio-social context. An access procedure to the collected data and bio-samples is in place and published on https://www.healthybrainstudy.nl/en/data-and-methods.
https://www.trialregister.nl/trial/7955Additional information
supplementary material -
Heyselaar, E., Peeters, D., & Hagoort, P. (2021). Do we predict upcoming speech content in naturalistic environments? Language, Cognition and Neuroscience, 36(4), 440-461. doi:10.1080/23273798.2020.1859568.
Abstract
The ability to predict upcoming actions is a hallmark of cognition. It remains unclear, however, whether the predictive behaviour observed in controlled lab environments generalises to rich, everyday settings. In four virtual reality experiments, we tested whether a well-established marker of linguistic prediction (anticipatory eye movements) replicated when increasing the naturalness of the paradigm by means of immersing participants in naturalistic scenes (Experiment 1), increasing the number of distractor objects (Experiment 2), modifying the proportion of predictable noun-referents (Experiment 3), and manipulating the location of referents relative to the joint attentional space (Experiment 4). Robust anticipatory eye movements were observed for Experiments 1–3. The anticipatory effect disappeared, however, in Experiment 4. Our findings suggest that predictive processing occurs in everyday communication if the referents are situated in the joint attentional space. Methodologically, our study confirms that ecological validity and experimental control may go hand-in-hand in the study of human predictive behaviour.Additional information
plcp_a_1859568_sm1317.docx plcp_a_1859568_sm1318.pdf plcp_a_1859568_sm1319.docx -
Misersky, J., Slivac, K., Hagoort, P., & Flecken, M. (2021). The State of the Onion: Grammatical aspect modulates object representation during event comprehension. Cognition, 214: 104744. doi:10.1016/j.cognition.2021.104744.
Abstract
The present ERP study assessed whether grammatical aspect is used as a cue in online event comprehension, in particular when reading about events in which an object is visually changed. While perfective aspect cues holistic event representations, including an event's endpoint, progressive aspect highlights intermediate phases of an event. In a 2 × 3 design, participants read SVO sentences describing a change-of-state event (e.g., to chop an onion), with grammatical Aspect manipulated (perfective “chopped” vs progressive “was chopping”). Thereafter, they saw a Picture of an object either having undergone substantial state-change (SC; a chopped onion), no state-change (NSC; an onion in its original state) or an unrelated object (U; a cactus, acting as control condition). Their task was to decide whether the object in the Picture was mentioned in the sentence. We focused on N400 modulation, with ERPs time-locked to picture onset. U pictures elicited an N400 response as expected, suggesting detection of categorical mismatches in object type. For SC and NSC pictures, a whole-head follow-up analysis revealed a P300, implying people were engaged in detailed evaluation of pictures of matching objects. SC pictures received most positive responses overall. Crucially, there was an interaction of Aspect and Picture: SC pictures resulted in a higher amplitude P300 after sentences in the perfective compared to the progressive. Thus, while the perfective cued for a holistic event representation, including the resultant state of the affected object (i.e., the chopped onion) constraining object representations online, the progressive defocused event completion and object-state change. Grammatical aspect thus guided online event comprehension by cueing the visual representation(s) of an object's state. -
Preisig, B., Riecke, L., Sjerps, M. J., Kösem, A., Kop, B. R., Bramson, B., Hagoort, P., & Hervais-Adelman, A. (2021). Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration. Proceedings of the National Academy of Sciences of the United States of America, 118(7): e2015488118. doi:10.1073/pnas.2015488118.
Abstract
Brain connectivity plays a major role in the encoding, transfer, and
integration of sensory information. Interregional synchronization
of neural oscillations in the γ-frequency band has been suggested
as a key mechanism underlying perceptual integration. In a recent
study, we found evidence for this hypothesis showing that the
modulation of interhemispheric oscillatory synchrony by means of
bihemispheric high-density transcranial alternating current stimulation
(HD-TACS) affects binaural integration of dichotic acoustic features.
Here, we aimed to establish a direct link between oscillatory
synchrony, effective brain connectivity, and binaural integration.
We experimentally manipulated oscillatory synchrony (using bihemispheric
γ-TACS with different interhemispheric phase lags) and
assessed the effect on effective brain connectivity and binaural integration
(as measured with functional MRI and a dichotic listening
task, respectively). We found that TACS reduced intrahemispheric
connectivity within the auditory cortices and antiphase (interhemispheric
phase lag 180°) TACS modulated connectivity between the
two auditory cortices. Importantly, the changes in intra- and interhemispheric
connectivity induced by TACS were correlated with
changes in perceptual integration. Our results indicate that γ-band
synchronization between the two auditory cortices plays a functional
role in binaural integration, supporting the proposed role
of interregional oscillatory synchrony in perceptual integration.Additional information
Supporting Information Data have been deposited in di.dccn.DSC_3011204.02_657 -
Slivac, K., Hervais-Adelman, A., Hagoort, P., & Flecken, M. (2021). Linguistic labels cue biological motion perception and misperception. Scientific Reports, 11: 17239. doi:10.1038/s41598-021-96649-1.
Abstract
Linguistic labels exert a particularly strong top-down influence on perception. The potency of this influence has been ascribed to their ability to evoke category-diagnostic features of concepts. In doing this, they facilitate the formation of a perceptual template concordant with those features, effectively biasing perceptual activation towards the labelled category. In this study, we employ a cueing paradigm with moving, point-light stimuli across three experiments, in order to examine how the number of biological motion features (form and kinematics) encoded in lexical cues modulates the efficacy of lexical top-down influence on perception. We find that the magnitude of lexical influence on biological motion perception rises as a function of the number of biological motion-relevant features carried by both cue and target. When lexical cues encode multiple biological motion features, this influence is robust enough to mislead participants into reporting erroneous percepts, even when a masking level yielding high performance is used.
Share this page