Antje Meyer

Presentations

Displaying 1 - 27 of 27
  • Araújo, S., Huettig, F., & Meyer, A. S. (2016). What's the nature of the deficit underlying impaired naming? An eye-tracking study with dyslexic readers. Talk presented at IWORDD - International Workshop on Reading and Developmental Dyslexia. Bilbao, Spain. 2016-05-05 - 2016-05-07.

    Abstract

    Serial naming deficits have been identified as core symptoms of developmental dyslexia. A prominent hypothesis is that naming delays are due to inefficient phonological encoding, yet the exact nature of this underlying impairment remains largely underspecified. Here we used recordings of eye movements and word onset latencies to examine at what processing level the dyslexic naming deficit emerges: localized at an early stage of lexical encoding or rather later at the level of phonetic or motor planning. 23 dyslexic and 25 control adult readers were tested on a serial object naming task for 30 items and an analogous reading task, where phonological neighborhood density and word-frequency were manipulated. Results showed that both word properties influenced early stages of phonological activation (first fixation and first-pass duration) equally in both groups of participants. Moreover, in the control group any difficulty appeared to be resolved early in the reading process, while for dyslexic readers a processing disadvantage for low-frequency words and for words with sparse neighborhood also emerged in a measure that included late stages of output planning (eye-voice span). Thus, our findings suggest suboptimal phonetic and/or articulatory planning in dyslexia.
  • Hoedemaker, R. S., Ernst, J., Meyer, A. S., & Belke, E. (2016). Language production in a shared task: Cumulative semantic interference from self- and other-produced context words. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.
  • Hoedemaker, R. S., Ernst, J., Meyer, A. S., & Belke, E. (2016). Language production in a shared task: Cumulative semantic interference from self- and other-produced context words. Talk presented at Psycholinguistics in Flanders (PiF 2016). Antwerp, Belgium. 2016-05-25 - 2016-05-27.
  • Kösem, A., Bosker, H. R., Meyer, A. S., Jensen, O., & Hagoort, P. (2016). Neural entrainment reflects temporal predictions guiding speech comprehension. Poster presented at the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016), London, UK.

    Abstract

    Speech segmentation requires flexible mechanisms to remain robust to features such as speech rate and pronunciation. Recent hypotheses suggest that low-frequency neural oscillations entrain to ongoing syllabic and phrasal rates, and that neural entrainment provides a speech-rate invariant means to discretize linguistic tokens from the acoustic signal. How this mechanism functionally operates remains unclear. Here, we test the hypothesis that neural entrainment reflects temporal predictive mechanisms. It implies that neural entrainment is built on the dynamics of past speech information: the brain would internalize the rhythm of preceding speech to parse the ongoing acoustic signal at optimal time points. A direct prediction is that ongoing neural oscillatory activity should match the rate of preceding speech even if the stimulation changes, for instance when the speech rate suddenly increases or decreases. Crucially, the persistence of neural entrainment to past speech rate should modulate speech perception. We performed an MEG experiment in which native Dutch speakers listened to sentences with varying speech rates. The beginning of the sentence (carrier window) was either presented at a fast or a slow speech rate, while the last three words (target window) were displayed at an intermediate rate across trials. Participants had to report the perception of the last word of the sentence, which was ambiguous with regards to its vowel duration (short vowel /ɑ/ – long vowel /aː/ contrast). MEG data was analyzed in source space using beamformer methods. Consistent with previous behavioral reports, the perception of the ambiguous target word was influenced by the past speech rate; participants reported more /aː/ percepts after a fast speech rate, and more /ɑ/ after a slow speech rate. During the carrier window, neural oscillations efficiently tracked the dynamics of the speech envelope. During the target window, we observed oscillatory activity that corresponded in frequency to the preceding speech rate. Traces of neural entrainment to the past speech rate were significantly observed in medial prefrontal areas. Right superior temporal cortex also showed persisting oscillatory activity which correlated with the observed perceptual biases: participants whose perception was more influenced by the manipulation in speech rate also showed stronger remaining neural oscillatory patterns. The results show that neural entrainment lasts after rhythmic stimulation. The findings further provide empirical support for oscillatory models of speech processing, suggesting that neural oscillations actively encode temporal predictions for speech comprehension.
  • Kösem, A., Bosker, H. R., Meyer, A. S., Jensen, O., & Hagoort, P. (2016). Neural entrainment to speech rhythms reflects temporal predictions and influences word comprehension. Poster presented at the 20th International Conference on Biomagnetism (BioMag 2016), Seoul, South Korea.
  • Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A. S. (2016). The contribution of vocabulary size to language processing: Evidence from lexical decision and picture-word interference. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.

    Abstract

    Previous research indicates that general cognitive abilities, such as attention or executive control, contribute to language processing (Hartsuiker & Barkhuysen, 2006; Jongman et al., 2014; Shao et al., 2013). Potential effects of language-specific abilities, such as vocabulary, on language processing in adult native speakers have been examined less extensively. Goals: a) develop and assess measures of vocabulary size in Dutch native speakers, and b) investigate the relationship between individual differences in vocabulary and language processing.
  • Maslowski, M., Bosker, H. R., & Meyer, A. S. (2016). Slow speech can sound fast: How the speech rate of one talker affects perception of another talker. Talk presented at the Donders Discussions 2016. Nijmegen, The Netherlands. 2016-11-24 - 2016-11-25.
  • Maslowski, M., Bosker, H. R., & Meyer, A. S. (2016). Slow speech can sound fast: How the speech rate of one talker has a contrastive effect on the perception of another talker. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.

    Abstract

    Listeners are continuously exposed to a broad range of speech rates. Earlier work has shown that listeners perceive phonetic category boundaries relative to contextual speech rate. It has been suggested that this process of speech rate normalization occurs across talker changes. This would predict that the speech rate of talker A influences perception of the rate of another talker B. We assessed this hypothesis by testing effects of speech rate on the perception on the Dutch vowel continuum /A/-/a:/. One participant group was exposed to 'neutral' speech from talker A intermixed with fast speech from talker B. Another group listened to the same speech from talker A, but to slow speech from talker B. We observed a difference in perception of talker A depending on the speech rate of talker B: A's 'neutral' speech was perceived as slow when B spoke faster. These findings corroborate the idea that speech rate normalization occurs across talkers, but they challenge the assumption that listeners average over speech rates from multiple talkers. Instead, they suggest that listeners contrast talker-specific rates.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2016). Slow speech can sound fast: How the speech rate of one talker has a contrastive effect on the perception of another talker. Talk presented at MPI Proudly Presents. Nijmegen, The Netherlands. 2016-06-01.
  • McQueen, J. M., & Meyer, A. S. (2016). Cognitive architectures [Session Chair]. Talk presented at the Language in Interaction Summerschool on Human Language: From Genes and Brains to Behavior. Berg en Dal, The Netherlands. 2016-07-03 - 2016-07-14.
  • Meyer, A. S. (2016). Utterance planning and resource allocation in dialogue. Talk presented at the Psychology Department, University of Geneva. Geneva, Italy. 2016-05-09.
  • Meyer, A. S. (2016). Utterance planning and resource allocation in dialogue. Talk presented at the International Workshop on Language Production (IWLP 2016). La Jolla, CA, USA. 2016-07-25 - 2016-07-27.

    Abstract

    Natural conversations are characterized by smooth transitions of turns between interlocutors. For instance, speakers often respond to questions or requests within half a second. As planning the first word of an utterance can easily take a second or more, this suggests that utterance planning often overlaps with listening to the preceding speaker's utterance. A specific proposal concerning the temporal coordination of listening and speech planning has recently been made by Levinson and Torreira (2016, Frontiers in Psychology; Levinson, 2016, Trends in Cognitive Sciences). They propose that speakers initiate their speech planning as soon as they have understood the speech act and gist of the preceding utterance. However, direct evidence for simultaneous listening and speech planning is scarce. I will first review studies demonstrating that both comprehending spoken utterances and planning them require processing capacity and that these processes can substantially interfere with each other. These data suggest that concurrent speech planning and listening should be cognitively quite challenging. In the second part of the talk I will turn to studies examining directly when utterance planning in dialogue begins. These studies indicate that (regrettably) there are probably no hard-and-fast rules for the temporal coordination of listening and speech planning. I will argue that (regrettably again) we need models that are far more complex than Levinson and Torreira's proposal to understand how listening and speech planning are coordinated in conversation
  • Weber, K., Meyer, A. S., & Hagoort, P. (2016). The acquisition of verb-argument and verb-noun category biases in a novel word learning task. Poster presented at Architectures and Mechanisms for Language Processing (AMLaP 2016), Bilbao, Spain.

    Abstract

    We show that language users readily learn the probabilities of novel lexical cues to syntactic information (verbs biasing towards a prepositional object dative vs. double-object dative and words biasing towards a verb vs. noun reading) and use these biases in a subsequent production task. In a one-hour exposure phase participants read 12 novel lexical items, embedded in 30 sentence contexts each, in their native language. The items were either strongly (100%) biased towards one grammatical frame or syntactic category assignment or unbiased (50%). The next day participants produced sentences with the newly learned lexical items. They were given the sentence beginning up to the novel lexical item. Their output showed that they were highly sensitive to the biases introduced in the exposure phase.
    Given this rapid learning and use of novel lexical cues, this paradigm opens up new avenues to test sentence processing theories. Thus, with close control on the biases participants are acquiring, competition between different frames or category assignments can be investigated using reaction times or neuroimaging methods.
    Generally, these results show that language users adapt to the statistics of the linguistic input, even to subtle lexically-driven cues to syntactic information.
  • Hintz, F., Meyer, A. S., & Huettig, F. (2012). Looking at nothing facilitates memory retrieval. Poster presented at Donders Discussions 2012, Nijmegen (NL).

    Abstract

    When processing visual objects, we integrate visual, linguistic and spatial information to form an episodic trace. Re-activating one aspect of the episodic trace of an object re-activates the entire bundle making all integrated information available. Using the blank screen paradigm [1], researchers observed that upon processing spoken linguistic input, participants tended to make eye movements on a blank screen, fixating locations that were previously occupied by objects mentioned in the linguistic utterance or were related. Ferreira and colleagues [2] suggested that 'looking at nothing' facilitated memory retrieval. However, this claim lacks convincing empirical support. In Experiment 1, Dutch participants looked at four-object-displays. Three objects were related to a spoken target word. Given the target word 'beker' (beaker), the display featured a phonological (a bear), a shape (a bobbin), a semantic (a fork) competitor, and an unrelated distractor (an umbrella). Participants were asked to name the objects as fast as possible. Subsequently, the objects disappeared. Participants fixated the center of the screen and listened to the target word. They had to carry out a semantic judgment task (indicating in which position an object had appeared that was semantically related to the objects) or a visual shape similarity judgment (indicating the position of the object similar in shape to the target). In both conditions, we observed that participants re-fixated the empty target location before responding. The set-up of Experiment 2 was identical except that we asked participants to maintain fixating the center of the screen while listening to the spoken word and responding. Performance accuracy was significantly lower in Experiment 2 than in Experiment 1. The results indicate that memory retrieval for objects is impaired when participants are not allowed to look at relevant, though empty locations. [1] Altmann, G. (2004). Language-mediated eye movements in the absence of a visual world: the 'blank screen paradigm'. Cognition, 93(2), B79-B87. [2] Ferreira, F., Apel, J., & Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends Cogn Sci, 12(11), 405-410.
  • Konopka, A. E., Van de Velde, M., & Meyer, A. S. (2012). Mapping “easy” and “hard” messages onto language: Conceptual and structural variables jointly affect the timecourse of sentence formulation. Poster presented at the 18th Conference on Architectures and Mechanisms for Language Processing [AMLaP 2012], Riva del Garda, Italy.

    Abstract

    Sentence formulation requires mapping pre-verbal messages onto linguistic structures. This message-to-language
    mapping is often evaluated in eye-tracking tasks where speakers describe pictured events (The dog chased the mailman).
    Speakers can begin sentence formulation by quickly selecting the first-fixated character as the sentential starting point
    (lexical incrementality), or generating a rudimentary sentence plan based on their construal of the event gist before
    selecting a starting point (hierarchical incrementality; Kuchinsky & Bock, 2010). Lexical incrementality predicts fast
    divergence of fixations while hierarchical incrementality predicts slower divergence of fixations to the two characters
    within 200ms of picture onset.
  • Lesage, E., Morgan, B., Olson, A., Meyer, A. S., & Miall, R. (2012). Disruption of right cerebellum with rTMS blocks predictive language processing. Poster presented at the 42nd annual meeting of the Society for Neuroscience [Neuroscience 2012] Poster# 379.07/UU5, New Orleans, LA.

    Abstract

    Much evidence demonstrates cerebellar involvement in language [1] but a theoretical framework about its precise role is lacking. In cerebellar motor control an influential model ascribes the cerebellum a predictive role [2]. It has been argued that cerebellar nonmotor regions perform similar computations as motor regions, and both are involved in online prediction [2]. We test this hypothesis by administering repetitive transcranial magnetic stimulation (rTMS) to the right cerebellum, a region implicated in language [3] during a predictive language task. Methods Visual World task [4]: Participants' eye movements were recorded while they listened to sentences and looked at a computer display of an agent and 4 objects, one of which (the target) was mentioned in the sentence. In the Prediction condition the object could be predicted on the basis of the verb; on Control trials it could not. We hypothesised that rTMS to the right cerebellum should make target fixation slower in the Prediction condition, but not in the Control condition. TMS protocol: TMS was delivered between two task blocks. In the cerebellar rTMS group (n = 22) the stimulation site was 1cm down and 3cm right of the inion. Participants received 10min of 1Hz rTMS. In addition, we tested two control groups. In the vertex rTMS group (n = 21), rTMS was applied at the same intensity, duration and frequency as in the cerebellar rTMS group, but over the vertex. In the no stimulation group (n = 22) the coil was placed over the cerebellar stimulation site but no pulses were delivered. Results As hypothesised, participants in the cerebellar rTMS group took longer to fixate the target after TMS in the Prediction condition but not in the Control condition (Block-by-Condition interaction: F(1,21) = 8.848, p = 0.007). This interaction was not found in either the vertex rTMS group (F(1,20) = 0.064, p = 0.802) or the no stimulation group (F(1,21) = 2.461, p = 0.132). Conclusions Here, we show that rTMS to the right cerebellum selectively affects linguistic prediction. These results provide additional evidence that the cerebellum plays a role in language and support theoretical accounts that the cerebellum contributes to nonmotor functions, as it does to motor functions, by online prediction. 1. Strick et al (2009). Cerebellum and nonmotor function. Annu Rev Neurosci, 32, 413-134 2. Miall et al (1993). Is the cerebellum a Smith predictor. J Mot Behav, 25, 203-216 3. Marien et al (2001). The lateralised linguistic cerebellum: a review and a new hypothesis. Brain and Language, 79, 580-600 4. Altmann & Kamide (1999). Incremental interpretation at verbs. Cognition, 73, 247-264
  • Meyer, A. S. (2012). What's in it for me? What's in it for me? Applying adult speech production models to young learners. Talk presented at a workshop at the University of Leiden. Leiden, The Netherlands. 2012-12.
  • Moers, C., Meyer, A. S., & Janse, E. (2012). Effects of transitional probabilities on word durations in read speech of younger & older speakers. Talk presented at the Workshop Fluent Speech: Combining Cognitive and Educational Approaches, Utrecht Institute of Linguistics. Utrecht, The Netherlands. 2012-11-12 - 2012-11-13.
  • Reifegerste, J., & Meyer, A. S. (2012). The influence of age on the mental representation of polymorphemic words in Dutch. Talk presented at the Conference on Morphological Complexity. London, UK. 2012-01-13 - 2012-01-15.
  • Rommers, J., Meyer, A. S., Praamstra, P., & Huettig, F. (2012). Object shape representations in the contents of predictions for upcoming words. Talk presented at Psycholinguistics in Flanders [PiF 2012]. Berg en Dal, The Netherlands. 2012-06-06 - 2012-06-07.
  • Rommers, J., Meyer, A. S., Praamstra, P., & Huettig, F. (2012). The content of predictions: Involvement of object shape representations in the anticipation of upcoming words. Talk presented at the Tagung experimentell arbeitender Psychologen [TeaP 2012]. Mannheim, Germany. 2012-04-04 - 2012-04-06.
  • Rommers, J., Meyer, A. S., & Huettig, F. (2012). Predicting upcoming meaning involves specific contents and domain-general mechanisms. Talk presented at the 18th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2012]. Riva del Garda, Italy. 2012-09-06 - 2012-09-08.

    Abstract

    In sentence comprehension, readers and listeners often anticipate upcoming information (e.g., Altmann & Kamide, 1999). We investigated two aspects of this process, namely 1) what is pre-activated when anticipating an upcoming word (the contents of predictions), and 2) which cognitive mechanisms are involved. The contents of predictions at the level of meaning could be restricted to functional semantic attributes (e.g., edibility; Altmann & Kamide, 1999). However, when words are processed other types of information can also be activated, such as object shape representations. It is unknown whether this type of information is already activated when upcoming words are predicted. Forty-five adult participants listened to predictable words in sentence contexts (e.g., "In 1969 Neil Armstrong was the first man to set foot on the moon.") while looking at visual displays of four objects. Their eye movements were recorded. There were three conditions: target present (e.g., a moon and three distractor objects that were unrelated to the predictable word in terms of semantics, shape, and phonology), shape competitor (e.g., a tomato and three unrelated distractors), and distractors only (e.g., rice and three other unrelated objects). Across lists, the same pictures and sentences were used in the different conditions. We found that participants already showed a significant bias for the target object (moon) over unrelated distractors several seconds before the target was mentioned, demonstrating that they were predicting. Importantly, there was also a smaller but significant shape competitor (tomato) preference starting at about a second before critical word onset, consistent with predictions involving the referent’s shape. The mechanisms of predictions could be specific to language tasks, or language could use processing principles that are also used in other domains of cognition. We investigated whether performance in non-linguistic prediction is related to prediction in language processing, taking an individual differences approach. In addition to the language processing task, the participants performed a simple cueing task (after Posner, Nissen, & Ogden, 1978). They pressed one of two buttons (left/right) to indicate the location of an X symbol on the screen. On half of the trials, the X was preceded by a neutral cue (+). On the other half, an arrow cue pointing left (<) or right (>) indicated the upcoming X's location with 80% validity (i.e., the arrow cue was correct 80% of the time). The SOA between cue and target was 500 ms. Prediction was quantified as the mean response latency difference between the neutral and valid condition. This measure correlated positively with individual participants' anticipatory target and shape competitor preference (r = .27; r = .45), and was a significant predictor of anticipatory looks in linear mixed-effects regression models of the data. Participants who showed more facilitation from the arrow cues predicted to a higher degree in the linguistic task. This suggests that prediction in language processing may use mechanisms that are also used in other domains of cognition. References Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73(3), 247-264. Posner, M. I., Nissen, M. J., & Ogden, W. C. (1978). Attended and unattended processing modes: The role of set for spatial location. In: H.L. Pick, & I.J. Saltzman (Eds.), Modes of perceiving and processing information. Hillsdale, N.J.: Lawrence Erlbaum Associates.
  • Sjerps, M. J., & Meyer, A. S. (2012). Variation in cognitive demands across turn-taking. Poster presented at the 7th International Workshop on Language Production (IWOLP 2012), New York, United States.
  • Van de Velde, M., Konopka, A. E., & Meyer, A. S. (2012). Relative clause processing: Linking clause frequency and reading experience. Poster presented at the 11th Psycholinguistics in Flanders Conference [PIF 2012], Nijmegen, the Netherlands.
  • Veenstra, A., Acheson, D. J., Bock, K., & Meyer, A. S. (2012). Conceptual and grammatical factors in the production of subject-verb agreement. Poster presented at the 7th International Workshop on Language Production (IWOLP 2012), New York, United States.
  • Veenstra, A., Acheson, D. J., & Meyer, A. S. (2012). Conceptual and grammatical factors in the production of subject-verb agreement. Talk presented at The 11th edition of the Psycholinguistics in Flanders conference (PiF). Berg en Dal, The Netherlands. 2012-06-06 - 2012-06-07.
  • Veenstra, A., Acheson, D. J., & Meyer, A. S. (2012). Life after the spoken preamble completion paradigm. Talk presented at the 33th TABU Dag. Groningen, The Netherlands. 2012-06-18 - 2012-06-19.

Share this page