Antje Meyer

Publications

Displaying 1 - 17 of 17
  • Corps, R. E., & Meyer, A. S. (2023). Word frequency has similar effects in picture naming and gender decision: A failure to replicate Jescheniak and Levelt (1994). Acta Psychologica, 241: 104073. doi:10.1016/j.actpsy.2023.104073.

    Abstract

    Word frequency plays a key role in theories of lexical access, which assume that the word frequency effect (WFE, faster access to high-frequency than low-frequency words) occurs as a result of differences in the representation and processing of the words. In a seminal paper, Jescheniak and Levelt (1994) proposed that the WFE arises during the retrieval of word forms, rather than the retrieval of their syntactic representations (their lemmas) or articulatory commands. An important part of Jescheniak and Levelt's argument was that they found a stable WFE in a picture naming task, which requires complete lexical access, but not in a gender decision task, which only requires access to the words' lemmas and not their word forms. We report two attempts to replicate this pattern, one with new materials, and one with Jescheniak and Levelt's orginal pictures. In both studies we found a strong WFE when the pictures were shown for the first time, but much weaker effects on their second and third presentation. Importantly these patterns were seen in both the picture naming and the gender decision tasks, suggesting that either word frequency does not exclusively affect word form retrieval, or that the gender decision task does not exclusively tap lemma access.

    Additional information

    raw data and analysis scripts
  • Hustá, C., Nieuwland, M. S., & Meyer, A. S. (2023). Effects of picture naming and categorization on concurrent comprehension: Evidence from the N400. Collabra: Psychology, 9(1): 88129. doi:10.1525/collabra.88129.

    Abstract

    n conversations, interlocutors concurrently perform two related processes: speech comprehension and speech planning. We investigated effects of speech planning on comprehension using EEG. Dutch speakers listened to sentences that ended with expected or unexpected target words. In addition, a picture was presented two seconds after target onset (Experiment 1) or 50 ms before target onset (Experiment 2). Participants’ task was to name the picture or to stay quiet depending on the picture category. In Experiment 1, we found a strong N400 effect in response to unexpected compared to expected target words. Importantly, this N400 effect was reduced in Experiment 2 compared to Experiment 1. Unexpectedly, the N400 effect was not smaller in the naming compared to categorization condition. This indicates that conceptual preparation or the decision whether to speak (taking place in both task conditions of Experiment 2) rather than processes specific to word planning interfere with comprehension.
  • Meyer, A. S. (2023). Timing in conversation. Journal of Cognition, 6(1), 1-17. doi:10.5334/joc.268.

    Abstract

    Turn-taking in everyday conversation is fast, with median latencies in corpora of conversational speech often reported to be under 300 ms. This seems like magic, given that experimental research on speech planning has shown that speakers need much more time to plan and produce even the shortest of utterances. This paper reviews how language scientists have combined linguistic analyses of conversations and experimental work to understand the skill of swift turn-taking and proposes a tentative solution to the riddle of fast turn-taking.
  • Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. The Journal of Neuroscience, 43(26), 4867-4883. doi:10.1523/JNEUROSCI.0964-22.2023.

    Abstract

    To understand language, we need to recognize words and combine them into phrases and sentences. During this process, responses to the words themselves are changed. In a step towards understanding how the brain builds sentence structure, the present study concerns the neural readout of this adaptation. We ask whether low-frequency neural readouts associated with words change as a function of being in a sentence. To this end, we analyzed an MEG dataset by Schoffelen et al. (2019) of 102 human participants (51 women) listening to sentences and word lists, the latter lacking any syntactic structure and combinatorial meaning. Using temporal response functions and a cumulative model-fitting approach, we disentangled delta- and theta-band responses to lexical information (word frequency), from responses to sensory- and distributional variables. The results suggest that delta-band responses to words are affected by sentence context in time and space, over and above entropy and surprisal. In both conditions, the word frequency response spanned left temporal and posterior frontal areas; however, the response appeared later in word lists than in sentences. In addition, sentence context determined whether inferior frontal areas were responsive to lexical information. In the theta band, the amplitude was larger in the word list condition around 100 milliseconds in right frontal areas. We conclude that low-frequency responses to words are changed by sentential context. The results of this study speak to how the neural representation of words is affected by structural context, and as such provide insight into how the brain instantiates compositionality in language.
  • Uluşahin, O., Bosker, H. R., McQueen, J. M., & Meyer, A. S. (2023). No evidence for convergence to sub-phonemic F2 shifts in shadowing. In R. Skarnitzl, & J. Volín (Eds.), Proceedings of the 20th International Congress of the Phonetic Sciences (ICPhS 2023) (pp. 96-100). Prague: Guarant International.

    Abstract

    Over the course of a conversation, interlocutors sound more and more like each other in a process called convergence. However, the automaticity and grain size of convergence are not well established. This study therefore examined whether female native Dutch speakers converge to large yet sub-phonemic shifts in the F2 of the vowel /e/. Participants first performed a short reading task to establish baseline F2s for the vowel /e/, then shadowed 120 target words (alongside 360 fillers) which contained one instance of a manipulated vowel /e/ where the F2 had been shifted down to that of the vowel /ø/. Consistent exposure to large (sub-phonemic) downward shifts in F2 did not result in convergence. The results raise issues for theories which view convergence as a product of automatic integration between perception and production.
  • Zormpa, E., Meyer, A. S., & Brehm, L. (2023). In conversation, answers are remembered better than the questions themselves. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(12), 1971-1988. doi:10.1037/xlm0001292.

    Abstract

    Language is used in communicative contexts to identify and successfully transmit new information that should be later remembered. In three studies, we used question–answer pairs, a naturalistic device for focusing information, to examine how properties of conversations inform later item memory. In Experiment 1, participants viewed three pictures while listening to a recorded question–answer exchange between two people about the locations of two of the displayed pictures. In a memory recognition test conducted online a day later, participants recognized the names of pictures that served as answers more accurately than the names of pictures that appeared as questions. This suggests that this type of focus indeed boosts memory. In Experiment 2, participants listened to the same items embedded in declarative sentences. There was a reduced memory benefit for the second item, confirming the role of linguistic focus on later memory beyond a simple serial-position effect. In Experiment 3, two participants asked and answered the same questions about objects in a dialogue. Here, answers continued to receive a memory benefit, and this focus effect was accentuated by language production such that information-seekers remembered the answers to their questions better than information-givers remembered the questions they had been asked. Combined, these studies show how people’s memory for conversation is modulated by the referential status of the items mentioned and by the speaker’s roles of the conversation participants.
  • Ganushchak, L. Y., Krott, A., & Meyer, A. S. (2012). From gr8 to great: Lexical access to SMS shortcuts. Frontiers in Psychology, 3, 150. doi:10.3389/fpsyg.2012.00150.

    Abstract

    Many contemporary texts include shortcuts, such as cu or phones4u. The aim of this study was to investigate how the meanings of shortcuts are retrieved. A primed lexical decision paradigm was used with shortcuts and the corresponding words as primes. The target word was associatively related to the meaning of the whole prime (cu/see you – goodbye), to a component of the prime (cu/see you – look), or unrelated to the prime. In Experiment 1, primes were presented for 57 ms. For both word and shortcut primes, responses were faster to targets preceded by whole-related than by unrelated primes. No priming from component-related primes was found. In Experiment 2, the prime duration was 1000 ms. The priming effect seen in Experiment 1 was replicated. Additionally, there was priming from component-related word primes, but not from component-related shortcut primes. These results indicate that the meanings of shortcuts can be retrieved without translating them first into corresponding words.
  • Lesage, E., Morgan, B. E., Olson, A. C., Meyer, A. S., & Miall, R. C. (2012). Cerebellar rTMS disrupts predictive language processing. Current Biology, 22, R794-R795. doi:10.1016/j.cub.2012.07.006.

    Abstract

    The human cerebellum plays an important role in language, amongst other cognitive and motor functions [1], but a unifying theoretical framework about cerebellar language function is lacking. In an established model of motor control, the cerebellum is seen as a predictive machine, making short-term estimations about the outcome of motor commands. This allows for flexible control, on-line correction, and coordination of movements [2]. The homogeneous cytoarchitecture of the cerebellar cortex suggests that similar computations occur throughout the structure, operating on different input signals and with different output targets [3]. Several authors have therefore argued that this ‘motor’ model may extend to cerebellar nonmotor functions [3], [4] and [5], and that the cerebellum may support prediction in language processing [6]. However, this hypothesis has never been directly tested. Here, we used the ‘Visual World’ paradigm [7], where on-line processing of spoken sentence content can be assessed by recording the latencies of listeners' eye movements towards objects mentioned. Repetitive transcranial magnetic stimulation (rTMS) was used to disrupt function in the right cerebellum, a region implicated in language [8]. After cerebellar rTMS, listeners showed delayed eye fixations to target objects predicted by sentence content, while there was no effect on eye fixations in sentences without predictable content. The prediction deficit was absent in two control groups. Our findings support the hypothesis that computational operations performed by the cerebellum may support prediction during both motor control and language processing.

    Additional information

    Lesage_Suppl_Information.pdf
  • Meyer, A. S., Wheeldon, L. R., Van der Meulen, F., & Konopka, A. E. (2012). Effects of speech rate and practice on the allocation of visual attention in multiple object naming. Frontiers in Psychology, 3, 39. doi:10.3389/fpsyg.2012.00039.

    Abstract

    Earlier studies had shown that speakers naming several objects typically look at each object until they have retrieved the phonological form of its name and therefore look longer at objects with long names than at objects with shorter names. We examined whether this tight eye-to-speech coordination was maintained at different speech rates and after increasing amounts of practice. Participants named the same set of objects with monosyllabic or disyllabic names on up to 20 successive trials. In Experiment 1, they spoke as fast as they could, whereas in Experiment 2 they had to maintain a fixed moderate or faster speech rate. In both experiments, the durations of the gazes to the objects decreased with increasing speech rate, indicating that at higher speech rates, the speakers spent less time planning the object names. The eye-speech lag (the time interval between the shift of gaze away from an object and the onset of its name) was independent of the speech rate but became shorter with increasing practice. Consistent word length effects on the durations of the gazes to the objects and the eye speech lags were only found in Experiment 2. The results indicate that shifts of eye gaze are often linked to the completion of phonological encoding, but that speakers can deviate from this default coordination of eye gaze and speech, for instance when the descriptive task is easy and they aim to speak fast.
  • Roberts, L., & Meyer, A. S. (Eds.). (2012). Individual differences in second language acquisition [Special Issue]. Language Learning, 62(Supplement S2).
  • Roberts, L., & Meyer, A. S. (2012). Individual differences in second language learning: Introduction. Language Learning, 62(Supplement S2), 1-4. doi:10.1111/j.1467-9922.2012.00703.x.

    Abstract

    First paragraph: The topic of the workshop from which this volume comes, “Individual Differences in Second Language Learning,” is timely and important for both practical and theoretical reasons. The practical reasons are obvious: While many people have some knowledge of a second or further language, there is enormous variability in how well they know these languages. Much of this variability is, of course, likely to be due to differences in the time spent studying or being immersed in the language, but even in similar learning environments learners differ greatly in how quickly they pick up a language and in their ultimate level of proficiency.
  • Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of individual differences in the speed of naming objects and actions: The contribution of executive control. Quarterly Journal of Experimental Psychology, 65, 1927-1944. doi:10.1080/17470218.2012.670252.

    Abstract

    We examined the contribution of executive control to individual differences in response time (RT) for naming objects and actions. Following Miyake, Friedman, Emerson, Witzki, Howerter, and Wager (2000), executive control was assumed to include updating, shifting, and inhibiting abilities, which were assessed using operation-span, task switching, and stop-signal tasks, respectively. Study 1 showed that updating ability was significantly correlated with the mean RT of action naming, but not of object naming. This finding was replicated in Study 2 using a larger stimulus set. Inhibiting ability was significantly correlated with the mean RT of both action and object naming, whereas shifting ability was not correlated with the mean naming RTs. Ex-Gaussian analyses of the RT distributions revealed that updating ability was correlated with the distribution tail of both action and object naming, whereas inhibiting ability was correlated with the leading edge of the distribution for action naming and the tail for object naming. Shifting ability provided no independent contribution. These results indicate that the executive control abilities of updating and inhibiting contribute to the speed of naming objects and actions, although there are differences in the way and extent these abilities are involved.
  • Belke, E., & Meyer, A. S. (2007). Single and multiple object naming in healthy ageing. Language and Cognitive Processes, 22, 1178-1211. doi:10.1080/01690960701461541.

    Abstract

    We compared the performance of young (college-aged) and older (50+years) speakers in a single object and a multiple object naming task and assessed their susceptibility to semantic and phonological context effects when producing words amidst semantically or phonologically similar or dissimilar words. In single object naming, there were no performance differences between the age groups. In multiple object naming, we observed significant age-related slowing, expressed in longer gazes to the objects and slower speech. In addition, the direction of the phonological context effects differed for the two groups. The results of a supplementary experiment showed that young speakers, when adopting a slow speech rate, coordinated their eye movements and speech differently from the older speakers. Our results imply that age-related slowing in connected speech is not a direct consequence of a slowing of lexical retrieval processes. Instead, older speakers might allocate more processing capacity to speech monitoring processes, which would slow down their concurrent speech planning processes

    Files private

    Request files
  • Meyer, A. S., Wheeldon, L. R., & Krott, A. (Eds.). (2007). Automaticity and control in language processing. Hove: Psychology Press.

    Abstract

    The use of language is a fundamental component of much of our day-to-day life. Language often co-occurs with other activities with which it must be coordinated. This raises the question of whether the cognitive processes involved in planning spoken utterances and in understanding them are autonomous or whether they are affected by, and perhaps affect, non-linguistic cognitive processes, with which they might share processing resources. This question is the central concern of Automaticity and Control in Language Processing. The chapters address key issues concerning the relationship between linguistic and non-linguistic processes, including: * How can the degree of automaticity of a component be defined? * Which linguistic processes are truly automatic, and which require processing capacity? * Through which mechanisms can control processes affect linguistic performance? How might these mechanisms be represented in the brain? * How do limitations in working memory and executive control capacity affect linguistic performance and language re-learning in persons with brain damage? This important collection from leading international researchers will be of great interest to researchers and students in the area.
  • Meyer, A. S., & Damian, M. F. (2007). Activation of distractor names in the picture-picture interference paradigm. Memory & Cognition, 35, 494-503.

    Abstract

    In four experiments, participants named target pictures that were accompanied by distractor pictures with phonologically related or unrelated names. Across experiments, the type of phonological relationship between the targets and the related distractors was varied: They were homophones (e.g., bat [animal/baseball]), or they shared word-initial segments (e.g., dog-doll) or word-final segments (e.g., ball-wall). The participants either named the objects after an extensive familiarization and practice phase or without any familiarization or practice. In all of the experiments, the mean target-naming latency was shorter in the related than in the unrelated condition, demonstrating that the phonological form of the name of the distractor picture became activated. These results are best explained within a cascaded model of lexical access—that is, under the assumption that the recognition of an object leads to the activation of its name.
  • Meyer, A. S., Belke, E., Telling, A. L., & Humphreys, G. W. (2007). Early activation of object names in visual search. Psychonomic Bulletin & Review, 14, 710-716.

    Abstract

    In a visual search experiment, participants had to decide whether or not a target object was present in a four-object search array. One of these objects could be a semantically related competitor (e.g., shirt for the target trousers) or a conceptually unrelated object with the same name as the target-for example, bat (baseball) for the target bat (animal). In the control condition, the related competitor was replaced by an unrelated object. The participants' response latencies and eye movements demonstrated that the two types of related competitors had similar effects: Competitors attracted the participants' visual attention and thereby delayed positive and negative decisions. The results imply that semantic and name information associated with the objects becomes rapidly available and affects the allocation of visual attention.
  • Meyer, A. S., Belke, E., Häcker, C., & Mortensen, L. (2007). Use of word length information in utterance planning. Journal of Memory and Language, 57, 210-231. doi:10.1016/j.jml.2006.10.005.

    Abstract

    Griffin [Griffin, Z. M. (2003). A reversed length effect in coordinating the preparation and articulation of words in speaking. Psychonomic Bulletin & Review, 10, 603-609.] found that speakers naming object pairs spent more time before utterance onset looking at the second object when the first object name was short than when it was long. She proposed that this reversed length effect arose because the speakers' decision when to initiate an utterance was based, in part, on their estimate of the spoken duration of the first object name and the time available during its articulation to plan the second object name. In Experiment I of the present study, participants named object pairs. They spent more time looking at the first object when its name was monosyllabic than when it was trisyllabic, and, as in Griffin's study, the average gaze-speech lag (the time between the end of the gaze to the first object and onset of its name, which corresponds closely to the pre-speech inspection time for the second object) showed a reversed length effect. Experiments 2 and 3 showed that this effect was not due to a trade-off between the time speakers spent looking at the first and second object before speech onset. Experiment 4 yielded a reversed length effect when the second object was replaced by a symbol (x or +), which the participants had to categorise. We propose a novel account of the reversed length effect, which links it to the incremental nature of phonological encoding and articulatory planning rather than the speaker's estimate of the length of the first object name.

Share this page