Simon E. Fisher

Publications

Displaying 1 - 7 of 7
  • French, C. A., Jin, X., Campbell, T. G., Gerfen, E., Groszer, M., Fisher, S. E., & Costa, R. M. (2012). An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Molecular Psychiatry, 17, 1077-1085. doi:10.1038/mp.2011.105.

    Abstract

    Mutations in the human FOXP2 gene cause impaired speech development and linguistic deficits, which have been best characterised in a large pedigree called the KE family. The encoded protein is highly conserved in many vertebrates and is expressed in homologous brain regions required for sensorimotor integration and motor-skill learning, in particular corticostriatal circuits. Independent studies in multiple species suggest that the striatum is a key site of FOXP2 action. Here, we used in vivo recordings in awake-behaving mice to investigate the effects of the KE-family mutation on the function of striatal circuits during motor-skill learning. We uncovered abnormally high ongoing striatal activity in mice carrying an identical mutation to that of the KE family. Furthermore, there were dramatic alterations in striatal plasticity during the acquisition of a motor skill, with most neurons in mutants showing negative modulation of firing rate, starkly contrasting with the predominantly positive modulation seen in control animals. We also observed striking changes in the temporal coordination of striatal firing during motor-skill learning in mutants. Our results indicate that FOXP2 is critical for the function of striatal circuits in vivo, which are important not only for speech but also for other striatal-dependent skills.

    Additional information

    French_2011_Supplementary_Info.pdf
  • Kurt, S., Fisher, S. E., & Ehret, G. (2012). Foxp2 mutations impair auditory-motor-association learning. PLoS One, 7(3), e33130. doi:10.1371/journal.pone.0033130.

    Abstract

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.
  • Walker, R. M., Hill, A. E., Newman, A. C., Hamilton, G., Torrance, H. S., Anderson, S. M., Ogawa, F., Derizioti, P., Nicod, J., Vernes, S. C., Fisher, S. E., Thomson, P. A., Porteous, D. J., & Evans, K. L. (2012). The DISC1 promoter: Characterization and regulation by FOXP2. Human Molecular Genetics, 21, 2862-2872. doi:10.1093/hmg/dds111.

    Abstract

    Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder, and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterisation of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300bp to -177bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, whilst a region -982bp to -301bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by FOXP2, a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia (DVD). Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.
  • Whitehouse, A. J., Bishop, D. V., Ang, Q., Pennell, C. E., & Fisher, S. E. (2012). Corrigendum to CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 11, 501. doi:10.1111/j.1601-183X.2012.00806.x.

    Abstract

    Corrigendum to CNTNAP2 variants affect early language development in the general population A. J. O. Whitehouse, D. V. M. Bishop, Q. W. Ang, C. E. Pennell and S. E. Fisher Genes Brain Behav (2011) doi: 10.1111/j.1601-183X.2011.00684.x. The authors have detected a typographical error in the Abstract of this paper. The error is in the fifth sentence, which reads: ‘‘On the basis of these findings, we performed analyses of four-marker haplotypes of rs2710102–rs759178–rs17236239–rs2538976 and identified significant association (haplotype TTAA, P = 0.049; haplotype GCAG,P = .0014).’’ Rather than ‘‘GCAG’’, the final haplotype should read ‘‘CGAG’’. This typographical error was made in the Abstract only and this has no bearing on the results or conclusions of the study, which remain unchanged. Reference Whitehouse, A. J. O., Bishop, D. V. M., Ang, Q. W., Pennell, C. E. & Fisher, S. E. (2011) CNTNAP2 variants affect early language development in the general population. Genes Brain Behav 10, 451–456. doi: 10.1111/j.1601-183X.2011.00684.x.
  • Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168 -170. doi:10.1038/ng0298-168.

    Abstract

    Between 2 and 5% of children who are otherwise unimpaired have significant difficulties in acquiring expressive and/or receptive language, despite adequate intelligence and opportunity. While twin studies indicate a significant role for genetic factors in developmental disorders of speech and language, the majority of families segregating such disorders show complex patterns of inheritance, and are thus not amenable for conventional linkage analysis. A rare exception is the KE family, a large three-generation pedigree in which approximately half of the members are affected with a severe speech and language disorder which appears to be transmitted as an autosomal dominant monogenic trait. This family has been widely publicised as suffering primarily from a defect in the use of grammatical suffixation rules, thus supposedly supporting the existence of genes specific to grammar. The phenotype, however, is broader in nature, with virtually every aspect of grammar and of language affected. In addition, affected members have a severe orofacial dyspraxia, and their speech is largely incomprehensible to the naive listener. We initiated a genome-wide search for linkage in the KE family and have identified a region on chromosome 7 which co-segregates with the speech and language disorder (maximum lod score = 6.62 at theta = 0.0), confirming autosomal dominant inheritance with full penetrance. Further analysis of microsatellites from within the region enabled us to fine map the locus responsible (designated SPCH1) to a 5.6-cM interval in 7q31, thus providing an important step towards its identification. Isolation of SPCH1 may offer the first insight into the molecular genetics of the developmental process that culminates in speech and language.
  • Lloyd, S. E., Pearce, S. H. S., Fisher, S. E., Steinmeyer, K., Schwappach, B., Scheinman, S. J., Harding, B., Bolino, A., Devoto, M., Goodyer, P., Rigden, S. P. A., Wrong, O., Jentsch, T. J., Craig, I. W., & Thakker, R. V. (1996). A common molecular basis for three inherited kidney stone diseases [Letter to Nature]. Nature, 379, 445 -449. doi:10.1038/379445a0.

    Abstract

    Kidney stones (nephrolithiasis), which affect 12% of males and 5% of females in the western world, are familial in 45% of patients and are most commonly associated with hypercalciuria. Three disorders of hypercalciuric nephrolithiasis (Dent's disease, X-linked recessive nephrolithiasis (XRN), and X-linked recessive hypophosphataemic rickets (XLRH)) have been mapped to Xp11.22 (refs 5-7). A microdeletion in one Dent's disease kindred allowed the identification of a candidate gene, CLCN5 (refs 8,9) which encodes a putative renal chloride channel. Here we report the investigation of 11 kindreds with these renal tubular disorders for CLCN5 abnormalities; this identified three nonsense, four missense and two donor splice site mutations, together with one intragenic deletion and one microdeletion encompassing the entire gene. Heterologous expression of wild-type CLCN5 in Xenopus oocytes yielded outwardly rectifying chloride currents, which were either abolished or markedly reduced by the mutations. The common aetiology for Dent's disease, XRN and XLRH indicates that CLCN5 may be involved in other renal tubular disorders associated with kidney stones
  • Weterman, M. A. J., Wilbrink, M. J. M., Janssen, I. M., Janssen, H. A. P., Berg, E. v. d., Fisher, S. E., Craig, I., & Geurts van Kessel, A. H. M. (1996). Molecular cloning of the papillary renal cell carcinoma-associated translocation (X;1)(p11;q21) breakpoint. Cytogenetic and genome research, 75(1), 2-6. doi:10.1159/000134444.

    Abstract

    A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization techniques was used to map YACs, cosmids and DNA markers from the Xp11.2 region relative to the X chromosome breakpoint of the renal cell carcinoma-associated t(X;1)(p11;q21). The position of the breakpoint could be determined as follows: Xcen-OATL2-DXS146-DXS255-SYP-t(X;1)-TFE 3-OATL1-Xpter. Fluorescence in situ hybridization experiments using TFE3-containing YACs and cosmids revealed split signals indicating that the corresponding DNA inserts span the breakpoint region. Subsequent Southern blot analysis showed that a 2.3-kb EcoRI fragment which is present in all TFE3 cosmids identified, hybridizes to aberrant restriction fragments in three independent t(X;1)-positive renal cell carcinoma DNAs. The breakpoints in these tumors are not the same, but map within a region of approximately 6.5 kb. Through preparative gel electrophoresis an (X;1) chimaeric 4.4-kb EcoRI fragment could be isolated which encompasses the breakpoint region present on der(X). Preliminary characterization of this fragment revealed the presence of a 150-bp region with a strong homology to the 5' end of the mouse TFE3 cDNA in the X-chromosome part, and a 48-bp segment in the chromosome 1-derived part identical to the 5' end of a known EST (accession number R93849). These observations suggest that a fusion gene is formed between the two corresponding genes in t(X;1)(p11;q21)-positive papillary renal cell carcinomas.

Share this page