Displaying 1 - 10 of 10
-
Marcus, G., & Fisher, S. E. (2011). Genes and language. In P. Hogan (
Ed. ), The Cambridge encyclopedia of the language sciences (pp. 341-344). New York: Cambridge University Press. -
O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., Karakoc, E., MacKenzie, A. P., Ng, S. B., Baker, C., Rieder, M. J., Nickerson, D. A., Bernier, R., Fisher, S. E., Shendure, J., & Eichler, E. E. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585-589. doi:10.1038/ng.835.
Abstract
Evidence for the etiology of autism spectrum disorders (ASDs) has consistently pointed to a strong genetic component complicated by substantial locus heterogeneity1, 2. We sequenced the exomes of 20 individuals with sporadic ASD (cases) and their parents, reasoning that these families would be enriched for de novo mutations of major effect. We identified 21 de novo mutations, 11 of which were protein altering. Protein-altering mutations were significantly enriched for changes at highly conserved residues. We identified potentially causative de novo events in 4 out of 20 probands, particularly among more severely affected individuals, in FOXP1, GRIN2B, SCN1A and LAMC3. In the FOXP1 mutation carrier, we also observed a rare inherited CNTNAP2 missense variant, and we provide functional support for a multi-hit model for disease risk3. Our results show that trio-based exome sequencing is a powerful approach for identifying new candidate genes for ASDs and suggest that de novo mutations may contribute substantially to the genetic etiology of ASDs.Additional information
ORoak_Supplementary text.pdfFiles private
Request files -
Vernes, S. C., Oliver, P. L., Spiteri, E., Lockstone, H. E., Puliyadi, R., Taylor, J. M., Ho, J., Mombereau, C., Brewer, A., Lowy, E., Nicod, J., Groszer, M., Baban, D., Sahgal, N., Cazier, J.-B., Ragoussis, J., Davies, K. E., Geschwind, D. H., & Fisher, S. E. (2011). Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genetics, 7(7): e1002145. doi:10.1371/journal.pgen.1002145.
Abstract
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connectionsAdditional information
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002145… -
Vernes, S. C., & Fisher, S. E. (2011). Functional genomic dissection of speech and language disorders. In J. D. Clelland (
Ed. ), Genomics, proteomics, and the nervous system (pp. 253-278). New York: Springer.Abstract
Mutations of the human FOXP2 gene have been shown to cause severe difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech (developmental verbal dyspraxia or DVD). Affected individuals are impaired in multiple aspects of expressive and receptive linguistic processing and display abnormal grey matter volume and functional activation patterns in cortical and subcortical brain regions. The protein encoded by FOXP2 belongs to a divergent subgroup of forkhead-box transcription factors, with a distinctive DNA-binding domain and motifs that mediate hetero- and homodimerization. This chapter describes the successful use of FOXP2 as a unique molecular window into neurogenetic pathways that are important for speech and language development, adopting several complementary strategies. These include direct functional investigations of FOXP2 splice variants and the effects of etiological mutations. FOXP2’s role as a transcription factor also enabled the development of functional genomic routes for dissecting neurogenetic mechanisms that may be relevant for speech and language. By identifying downstream target genes regulated by FOXP2, it was possible to identify common regulatory themes in modulating synaptic plasticity, neurodevelopment, and axon guidance. These targets represent novel entrypoints into in vivo pathways that may be disturbed in speech and language disorders. The identification of FOXP2 target genes has also led to the discovery of a shared neurogenetic pathway between clinically distinct language disorders; the rare Mendelian form of DVD and a complex and more common form of language disorder known as Specific Language Impairment.Files private
Request files -
Whitehouse, A. J., Bishop, D. V., Ang, Q., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10, 451-456. doi:10.1111/j.1601-183X.2011.00684.x.
Abstract
Early language development is known to be under genetic influence, but the genes affecting normal variation in the general population remain largely elusive. Recent studies of disorder reported that variants of the CNTNAP2 gene are associated both with language deficits in specific language impairment (SLI) and with language delays in autism. We tested the hypothesis that these CNTNAP2 variants affect communicative behavior, measured at 2 years of age in a large epidemiological sample, the Western Australian Pregnancy Cohort (Raine) Study. Singlepoint analyses of 1149 children (606 males, 543 emales) revealed patterns of association which were strikingly reminiscent of those observed in previous investigations of impaired language, centered on the same genetic markers, and with a consistent direction of effect (rs2710102, p = .0239; rs759178, p = .0248). Based on these findings we performed analyses of four-marker haplotypes of rs2710102- s759178-rs17236239-rs2538976, and identified significant association (haplotype TTAA, p = .049; haplotype GCAG, p = .0014). Our study suggests that common variants in the exon 13-15 region of CNTNAP2 influence early language acquisition, as assessed at age 2, in the general population. We propose that these CNTNAP2 variants increase susceptibility to SLI or autism when they occur together with other risk factors.Additional information
Whitehouse_Additional_Information.doc -
Falcaro, M., Pickles, A., Newbury, D. F., Addis, L., Banfield, E., Fisher, S. E., Monaco, A. P., Simkin, Z., Conti-Ramsden, G., & Consortium (2008). Genetic and phenotypic effects of phonological short-term memory and grammatical morphology in specific language impairment. Genes, Brain and Behavior, 7, 393-402. doi:10.1111/j.1601-183X.2007.00364.x.
Abstract
Deficits in phonological short-term memory and aspects of verb grammar morphology have been proposed as phenotypic markers of specific language impairment (SLI) with the suggestion that these traits are likely to be under different genetic influences. This investigation in 300 first-degree relatives of 93 probands with SLI examined familial aggregation and genetic linkage of two measures thought to index these two traits, non-word repetition and tense marking. In particular, the involvement of chromosomes 16q and 19q was examined as previous studies found these two regions to be related to SLI. Results showed a strong association between relatives' and probands' scores on non-word repetition. In contrast, no association was found for tense marking when examined as a continuous measure. However, significant familial aggregation was found when tense marking was treated as a binary measure with a cut-off point of -1.5 SD, suggestive of the possibility that qualitative distinctions in the trait may be familial while quantitative variability may be more a consequence of non-familial factors. Linkage analyses supported previous findings of the SLI Consortium of linkage to chromosome 16q for phonological short-term memory and to chromosome 19q for expressive language. In addition, we report new findings that relate to the past tense phenotype. For the continuous measure, linkage was found on both chromosomes, but evidence was stronger on chromosome 19. For the binary measure, linkage was observed on chromosome 19 but not on chromosome 16. -
Groszer, M., Keays, D. A., Deacon, R. M. J., De Bono, J. P., Prasad-Mulcare, S., Gaub, S., Baum, M. G., French, C. A., Nicod, J., Coventry, J. A., Enard, W., Fray, M., Brown, S. D. M., Nolan, P. M., Pääbo, S., Channon, K. M., Costa, R. M., Eilers, J., Ehret, G., Rawlins, J. N. P. and 1 moreGroszer, M., Keays, D. A., Deacon, R. M. J., De Bono, J. P., Prasad-Mulcare, S., Gaub, S., Baum, M. G., French, C. A., Nicod, J., Coventry, J. A., Enard, W., Fray, M., Brown, S. D. M., Nolan, P. M., Pääbo, S., Channon, K. M., Costa, R. M., Eilers, J., Ehret, G., Rawlins, J. N. P., & Fisher, S. E. (2008). Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Current Biology, 18(5), 354-362. doi:10.1016/j.cub.2008.01.060.
Abstract
The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.Additional information
mmc1.pdf -
Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., Alarcón, M., Oliver, P. L., Davies, K. E., Geschwind, D. H., Monaco, A. P., & Fisher, S. E. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 2337 -2345. doi:10.1056/NEJMoa0802828.
Abstract
BACKGROUND: Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS: We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS: We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P=5.0x10(-5) at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS: The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language.Additional information
nejm_vernes_2337sa1.pdf -
Lloyd, S. E., Pearce, S. H. S., Fisher, S. E., Steinmeyer, K., Schwappach, B., Scheinman, S. J., Harding, B., Bolino, A., Devoto, M., Goodyer, P., Rigden, S. P. A., Wrong, O., Jentsch, T. J., Craig, I. W., & Thakker, R. V. (1996). A common molecular basis for three inherited kidney stone diseases [Letter to Nature]. Nature, 379, 445 -449. doi:10.1038/379445a0.
Abstract
Kidney stones (nephrolithiasis), which affect 12% of males and 5% of females in the western world, are familial in 45% of patients and are most commonly associated with hypercalciuria. Three disorders of hypercalciuric nephrolithiasis (Dent's disease, X-linked recessive nephrolithiasis (XRN), and X-linked recessive hypophosphataemic rickets (XLRH)) have been mapped to Xp11.22 (refs 5-7). A microdeletion in one Dent's disease kindred allowed the identification of a candidate gene, CLCN5 (refs 8,9) which encodes a putative renal chloride channel. Here we report the investigation of 11 kindreds with these renal tubular disorders for CLCN5 abnormalities; this identified three nonsense, four missense and two donor splice site mutations, together with one intragenic deletion and one microdeletion encompassing the entire gene. Heterologous expression of wild-type CLCN5 in Xenopus oocytes yielded outwardly rectifying chloride currents, which were either abolished or markedly reduced by the mutations. The common aetiology for Dent's disease, XRN and XLRH indicates that CLCN5 may be involved in other renal tubular disorders associated with kidney stones -
Weterman, M. A. J., Wilbrink, M. J. M., Janssen, I. M., Janssen, H. A. P., Berg, E. v. d., Fisher, S. E., Craig, I., & Geurts van Kessel, A. H. M. (1996). Molecular cloning of the papillary renal cell carcinoma-associated translocation (X;1)(p11;q21) breakpoint. Cytogenetic and genome research, 75(1), 2-6. doi:10.1159/000134444.
Abstract
A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization techniques was used to map YACs, cosmids and DNA markers from the Xp11.2 region relative to the X chromosome breakpoint of the renal cell carcinoma-associated t(X;1)(p11;q21). The position of the breakpoint could be determined as follows: Xcen-OATL2-DXS146-DXS255-SYP-t(X;1)-TFE 3-OATL1-Xpter. Fluorescence in situ hybridization experiments using TFE3-containing YACs and cosmids revealed split signals indicating that the corresponding DNA inserts span the breakpoint region. Subsequent Southern blot analysis showed that a 2.3-kb EcoRI fragment which is present in all TFE3 cosmids identified, hybridizes to aberrant restriction fragments in three independent t(X;1)-positive renal cell carcinoma DNAs. The breakpoints in these tumors are not the same, but map within a region of approximately 6.5 kb. Through preparative gel electrophoresis an (X;1) chimaeric 4.4-kb EcoRI fragment could be isolated which encompasses the breakpoint region present on der(X). Preliminary characterization of this fragment revealed the presence of a 150-bp region with a strong homology to the 5' end of the mouse TFE3 cDNA in the X-chromosome part, and a 48-bp segment in the chromosome 1-derived part identical to the 5' end of a known EST (accession number R93849). These observations suggest that a fusion gene is formed between the two corresponding genes in t(X;1)(p11;q21)-positive papillary renal cell carcinomas.
Share this page