Displaying 1 - 6 of 6
-
Fisher, S. E. (2010). Genetic susceptibility to stuttering [Editorial]. New England Journal of Medicine, 362, 750-752. doi:10.1056/NEJMe0912594.
Files private
Request files -
Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9, 390-401. doi:10.1111/j.1601-183X.2010.00570.x.
Abstract
Heterozygous mutations of the human FOXP2 gene are implicated in a severe speech and language disorder. Aetiological mutations of murine Foxp2 yield abnormal synaptic plasticity and impaired motor-skill learning in mutant mice, while knockdown of the avian orthologue in songbirds interferes with auditory-guided vocal learning. Here, we investigate influences of two distinct Foxp2 point mutations on vocalizations of 4-day-old mouse pups (Mus musculus). The R552H missense mutation is identical to that causing speech and language deficits in a large well-studied human family, while the S321X nonsense mutation represents a null allele that does not produce Foxp2 protein. We ask whether vocalizations, based solely on innate mechanisms of production, are affected by these alternative Foxp2 mutations. Sound recordings were taken in two different situations: isolation and distress, eliciting a range of call types, including broadband vocalizations of varying noise content, ultrasonic whistles and clicks. Sound production rates and several acoustic parameters showed that, despite absence of functional Foxp2, homozygous mutants could vocalize all types of sounds in a normal temporal pattern, but only at comparably low intensities. We suggest that altered vocal output of these homozygotes may be secondary to developmental delays and somatic weakness. Heterozygous mutants did not differ from wild-types in any of the measures that we studied (R552H ) or in only a few (S321X ), which were in the range of differences routinely observed for different mouse strains. Thus, Foxp2 is not essential for the innate production of emotional vocalizations with largely normal acoustic properties by mouse pups. -
Newbury, D. F., Fisher, S. E., & Monaco, A. P. (2010). Recent advances in the genetics of language impairment. Genome Medicine, 2, 6. doi:10.1186/gm127.
Abstract
Specific language impairment (SLI) is defined as an unexpected and persistent impairment in language ability despite adequate opportunity and intelligence and in the absence of any explanatory medical conditions. This condition is highly heritable and affects between 5% and 8% of pre-school children. Over the past few years, investigations have begun to uncover genetic factors that may contribute to susceptibility to language impairment. So far, variants in four specific genes have been associated with spoken language disorders - forkhead box P2 (FOXP2) and contactin-associated protein-like 2 (CNTNAP2) on chromosome7 and calcium-transporting ATPase 2C2 (ATP2C2) and c-MAF inducing protein (CMIP) on chromosome 16. Here, we describe the different ways in which these genes were identified as candidates for language impairment. We discuss how characterization of these genes, and the pathways in which they are involved, may enhance our understanding of language disorders and improve our understanding of the biological foundations of language acquisition. -
Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., Rudolf, G., Khalife, M., Hirsch, E., Fisher, S. E., & Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19, 4848-4860. doi:10.1093/hmg/ddq415.
Abstract
It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), while mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2 binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites, and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired FOXP2 regulation of SRPX2 promoter activity, while that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNPA2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.Additional information
Roll_et_al_2010_Suppl_Material.doc -
Fisher, S. E., Ciccodicola, A., Tanaka, K., Curci, A., Desicato, S., D'urso, M., & Craig, I. W. (1997). Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp. Genomics, 45, 340-347. doi:10.1006/geno.1997.4941.
Abstract
The human Xp11.23-p11.22 interval has been implicated in several inherited diseases including Wiskott-Aldrich syndrome; three forms of X-linked hypercalciuric nephrolithiaisis; and the eye disorders retinitis pigmentosa 2, congenital stationary night blindness, and Aland Island eye disease. In constructing YAC contigs spanning Xp11. 23-p11.22, we have previously shown that the region around the synaptophysin (SYP) gene is refractory to cloning in YACs, but highly stable in cosmids. Preliminary analysis of the latter suggested that this might reflect a high density of coding sequences and we therefore undertook the complete sequencing of a SYP-containing cosmid. Sequence data were extensively analyzed using computer programs such as CENSOR (to mask repeats), BLAST (for homology searches), and GRAIL and GENE-ID (to predict exons). This revealed the presence of 29 putative exons, organized into three genes, in addition to the 7 exons of the complete SYP coding region, all mapping within a 44-kb interval. Two genes are novel, one (CACNA1F) showing high homology to alpha1 subunits of calcium channels, the other (LMO6) encoding a product with significant similarity to LIM-domain proteins. RT-PCR and Northern blot studies confirmed that these loci are indeed transcribed. The third locus is the previously described, but not previously localized, A4 differentiation-dependent gene. Given that the intron-exon boundaries predicted by the analysis are consistent with previous information where available, we have been able to suggest the genomic organization of the novel genes with some confidence. The region has an elevated GC content (>53%), and we identified CpG islands associated with the 5' ends of SYP, A4, and LMO6. The order of loci was Xpter-A4-LMO6-SYP-CACNA1F-Xcen, with intergenic distances ranging from approximately 300 bp to approximately 5 kb. The density of transcribed sequences in this area (>80%) is comparable to that found in the highly gene-rich chromosomal band Xq28. Further studies may aid our understanding of the long-range organization surrounding such gene-enriched regions. -
Lloyd, S. E., Günther, W., Pearce, S. H. S., Thomson, A., Bianchi, M. L., Bosio, M., Craig, I. W., Fisher, S. E., Scheinman, S. J., Wrong, O., Jentsch, T. J., & Thakker, R. V. (1997). Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Human Molecular Genetics, 6(8), 1233-1239. doi:10.1093/hmg/6.8.1233.
Abstract
Mutations of the renal-specific chloride channel (CLCN5) gene, which is located on chromosome Xp11.22, are associated with hypercalciuric nephrolithiasis (kidney stones) in the Northern European and Japanese populations. CLCN5 encodes a 746 amino acid channel (CLC-5) that has approximately 12 transmembrane domains, and heterologous expression of wild-type CLC-5 in Xenopus oocytes has yielded outwardly rectifying chloride currents that were markedly reduced or abolished by these mutations. In order to assess further the structural and functional relationships of this recently cloned chloride channel, additional CLCN5 mutations have been identified in five unrelated families with this disorder. Three of these mutations were missense (G57V, G512R and E527D), one was a nonsense (R648Stop) and one was an insertion (30:H insertion). In addition, two of the mutations (30:H insertion and E527D) were demonstrated to be de novo, and the G57V and E527D mutations were identified in families of Afro-American and Indian origin, respectively. The G57V and 30:H insertion mutations represent the first CLCN5 mutations to be identified in the N-terminus region, and the R648Stop mutation, which has been observed previously in an unrelated family, suggests that this codon may be particularly prone to mutations. Heterologous expression of the mutations resulted in a marked reduction or abolition of the chloride currents, thereby establishing their functional importance. These results help to elucidate further the structure-function relationships of this renal chloride channel.
Share this page