Displaying 1 - 10 of 10
-
Fisher, S. E. (2010). Genetic susceptibility to stuttering [Editorial]. New England Journal of Medicine, 362, 750-752. doi:10.1056/NEJMe0912594.
Files private
Request files -
Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9, 390-401. doi:10.1111/j.1601-183X.2010.00570.x.
Abstract
Heterozygous mutations of the human FOXP2 gene are implicated in a severe speech and language disorder. Aetiological mutations of murine Foxp2 yield abnormal synaptic plasticity and impaired motor-skill learning in mutant mice, while knockdown of the avian orthologue in songbirds interferes with auditory-guided vocal learning. Here, we investigate influences of two distinct Foxp2 point mutations on vocalizations of 4-day-old mouse pups (Mus musculus). The R552H missense mutation is identical to that causing speech and language deficits in a large well-studied human family, while the S321X nonsense mutation represents a null allele that does not produce Foxp2 protein. We ask whether vocalizations, based solely on innate mechanisms of production, are affected by these alternative Foxp2 mutations. Sound recordings were taken in two different situations: isolation and distress, eliciting a range of call types, including broadband vocalizations of varying noise content, ultrasonic whistles and clicks. Sound production rates and several acoustic parameters showed that, despite absence of functional Foxp2, homozygous mutants could vocalize all types of sounds in a normal temporal pattern, but only at comparably low intensities. We suggest that altered vocal output of these homozygotes may be secondary to developmental delays and somatic weakness. Heterozygous mutants did not differ from wild-types in any of the measures that we studied (R552H ) or in only a few (S321X ), which were in the range of differences routinely observed for different mouse strains. Thus, Foxp2 is not essential for the innate production of emotional vocalizations with largely normal acoustic properties by mouse pups. -
Newbury, D. F., Fisher, S. E., & Monaco, A. P. (2010). Recent advances in the genetics of language impairment. Genome Medicine, 2, 6. doi:10.1186/gm127.
Abstract
Specific language impairment (SLI) is defined as an unexpected and persistent impairment in language ability despite adequate opportunity and intelligence and in the absence of any explanatory medical conditions. This condition is highly heritable and affects between 5% and 8% of pre-school children. Over the past few years, investigations have begun to uncover genetic factors that may contribute to susceptibility to language impairment. So far, variants in four specific genes have been associated with spoken language disorders - forkhead box P2 (FOXP2) and contactin-associated protein-like 2 (CNTNAP2) on chromosome7 and calcium-transporting ATPase 2C2 (ATP2C2) and c-MAF inducing protein (CMIP) on chromosome 16. Here, we describe the different ways in which these genes were identified as candidates for language impairment. We discuss how characterization of these genes, and the pathways in which they are involved, may enhance our understanding of language disorders and improve our understanding of the biological foundations of language acquisition. -
Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., Rudolf, G., Khalife, M., Hirsch, E., Fisher, S. E., & Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19, 4848-4860. doi:10.1093/hmg/ddq415.
Abstract
It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), while mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2 binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites, and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired FOXP2 regulation of SRPX2 promoter activity, while that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNPA2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.Additional information
Roll_et_al_2010_Suppl_Material.doc -
Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., Marlow, A. J., MacPhie, I. L., Walter, J., Pennington, B. F., Fisher, S. E., Olson, R. K., DeFries, J. C., Stein, J. F., & Monaco, A. P. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75(6), 1046-1058. doi:10.1086/426404.
Abstract
Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of ∼12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability. -
Loo, S. K., Fisher, S. E., Francks, C., Ogdie, M. N., MacPhie, I. L., Yang, M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2004). Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: Unique and shared genetic effects. Molecular Psychiatry, 9, 485-493. doi:10.1038/sj.mp.4001450.
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and reading disability (RD) are common highly heritable disorders of childhood, which frequently co-occur. Data from twin and family studies suggest that this overlap is, in part, due to shared genetic underpinnings. Here, we report the first genome-wide linkage analysis of measures of reading ability in children with ADHD, using a sample of 233 affected sibling pairs who previously participated in a genome-wide scan for susceptibility loci in ADHD. Quantitative trait locus (QTL) analysis of a composite reading factor defined from three highly correlated reading measures identified suggestive linkage (multipoint maximum lod score, MLS>2.2) in four chromosomal regions. Two regions (16p, 17q) overlap those implicated by our previous genome-wide scan for ADHD in the same sample: one region (2p) provides replication for an RD susceptibility locus, and one region (10q) falls approximately 35 cM from a modestly highlighted region in an independent genome-wide scan of siblings with ADHD. Investigation of an individual reading measure of Reading Recognition supported linkage to putative RD susceptibility regions on chromosome 8p (MLS=2.4) and 15q (MLS=1.38). Thus, the data support the existence of genetic factors that have pleiotropic effects on ADHD and reading ability--as suggested by shared linkages on 16p, 17q and possibly 10q--but also those that appear to be unique to reading--as indicated by linkages on 2p, 8p and 15q that coincide with those previously found in studies of RD. Our study also suggests that reading measures may represent useful phenotypes in ADHD research. The eventual identification of genes underlying these unique and shared linkages may increase our understanding of ADHD, RD and the relationship between the two. -
Newbury, D. F., Cleak, J. D., Banfield, E., Marlow, A. J., Fisher, S. E., Monaco, A. P., Stott, C. M., Merricks, M. J., Goodyer, I. M., Slonims, V., Baird, G., Bolton, P., Everitt, A., Hennessy, E., Main, M., Helms, P., Kindley, A. D., Hodson, A., Watson, J., O’Hare, A. and 9 moreNewbury, D. F., Cleak, J. D., Banfield, E., Marlow, A. J., Fisher, S. E., Monaco, A. P., Stott, C. M., Merricks, M. J., Goodyer, I. M., Slonims, V., Baird, G., Bolton, P., Everitt, A., Hennessy, E., Main, M., Helms, P., Kindley, A. D., Hodson, A., Watson, J., O’Hare, A., Cohen, W., Cowie, H., Steel, J., MacLean, A., Seckl, J., Bishop, D. V. M., Simkin, Z., Conti-Ramsden, G., & Pickles, A. (2004). Highly significant linkage to the SLI1 Locus in an expanded sample of Individuals affected by specific language impairment. American Journal of Human Genetics, 74(6), 1225-1238. doi:10.1086/421529.
Abstract
Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are ⩾1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions). -
Ogdie, M. N., Fisher, S. E., Yang, M., Ishii, J., Francks, C., Loo, S. K., Cantor, R. M., McCracken, J. T., McGough, J. J., Smalley, S. L., & Nelson, S. F. (2004). Attention Deficit Hyperactivity Disorder: Fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. American Journal of Human Genetics, 75(4), 661-668. doi:10.1086/424387.
Abstract
We completed fine mapping of nine positional candidate regions for attention-deficit/hyperactivity disorder (ADHD) in an extended population sample of 308 affected sibling pairs (ASPs), constituting the largest linkage sample of families with ADHD published to date. The candidate chromosomal regions were selected from all three published genomewide scans for ADHD, and fine mapping was done to comprehensively validate these positional candidate regions in our sample. Multipoint maximum LOD score (MLS) analysis yielded significant evidence of linkage on 6q12 (MLS 3.30; empiric P=.024) and 17p11 (MLS 3.63; empiric P=.015), as well as suggestive evidence on 5p13 (MLS 2.55; empiric P=.091). In conjunction with the previously reported significant linkage on the basis of fine mapping 16p13 in the same sample as this report, the analyses presented here indicate that four chromosomal regions—5p13, 6q12, 16p13, and 17p11—are likely to harbor susceptibility genes for ADHD. The refinement of linkage within each of these regions lays the foundation for subsequent investigations using association methods to detect risk genes of moderate effect size. -
Scerri, T. S., Fisher, S. E., Francks, C., MacPhie, I. L., Paracchini, S., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK [Letter to JMG]. Journal of Medical Genetics, 41(11), 853-857. doi:10.1136/jmg.2004.018341.
-
Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168 -170. doi:10.1038/ng0298-168.
Abstract
Between 2 and 5% of children who are otherwise unimpaired have significant difficulties in acquiring expressive and/or receptive language, despite adequate intelligence and opportunity. While twin studies indicate a significant role for genetic factors in developmental disorders of speech and language, the majority of families segregating such disorders show complex patterns of inheritance, and are thus not amenable for conventional linkage analysis. A rare exception is the KE family, a large three-generation pedigree in which approximately half of the members are affected with a severe speech and language disorder which appears to be transmitted as an autosomal dominant monogenic trait. This family has been widely publicised as suffering primarily from a defect in the use of grammatical suffixation rules, thus supposedly supporting the existence of genes specific to grammar. The phenotype, however, is broader in nature, with virtually every aspect of grammar and of language affected. In addition, affected members have a severe orofacial dyspraxia, and their speech is largely incomprehensible to the naive listener. We initiated a genome-wide search for linkage in the KE family and have identified a region on chromosome 7 which co-segregates with the speech and language disorder (maximum lod score = 6.62 at theta = 0.0), confirming autosomal dominant inheritance with full penetrance. Further analysis of microsatellites from within the region enabled us to fine map the locus responsible (designated SPCH1) to a 5.6-cM interval in 7q31, thus providing an important step towards its identification. Isolation of SPCH1 may offer the first insight into the molecular genetics of the developmental process that culminates in speech and language.
Share this page