Displaying 1 - 39 of 39
-
Amelink, J., Postema, M., Kong, X., Schijven, D., Carrion Castillo, A., Soheili-Nezhad, S., Sha, Z., Molz, B., Joliot, M., Fisher, S. E., & Francks, C. (2024). Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Communications Biology, 7: 1209. doi:10.1038/s42003-024-06890-3.
Abstract
Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying the genetic architecture of its functional connectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis based on rare, protein-altering variants (frequencies < 1%) suggested 7 additional genes. These findings shed new light on the genetic contributions to language network connectivity and its asymmetry based on both common and rare genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference. -
Bignardi, G., Smit, D. J. A., Vessel, E. A., Trupp, M. D., Ticini, L. F., Fisher, S. E., & Polderman, T. J. C. (2024). Genetic effects on variability in visual aesthetic evaluations are partially shared across visual domains. Communications Biology, 7: 55. doi:10.1038/s42003-023-05710-4.
Abstract
The aesthetic values that individuals place on visual images are formed and shaped over a lifetime. However, whether the formation of visual aesthetic value is solely influenced by environmental exposure is still a matter of debate. Here, we considered differences in aesthetic value emerging across three visual domains: abstract images, scenes, and faces. We examined variability in two major dimensions of ordinary aesthetic experiences: taste-typicality and evaluation-bias. We build on two samples from the Australian Twin Registry where 1547 and 1231 monozygotic and dizygotic twins originally rated visual images belonging to the three domains. Genetic influences explained 26% to 41% of the variance in taste-typicality and evaluation-bias. Multivariate analyses showed that genetic effects were partially shared across visual domains. Results indicate that the heritability of major dimensions of aesthetic evaluations is comparable to that of other complex social traits, albeit lower than for other complex cognitive traits. The exception was taste-typicality for abstract images, for which we found only shared and unique environmental influences. Our study reveals that diverse sources of genetic and environmental variation influence the formation of aesthetic value across distinct visual domains and provides improved metrics to assess inter-individual differences in aesthetic value.Additional information
supplementary information -
Boen, R., Kaufmann, T., Van der Meer, D., Frei, O., Agartz, I., Ames, D., Andersson, M., Armstrong, N. J., Artiges, E., Atkins, J. R., Bauer, J., Benedetti, F., Boomsma, D. I., Brodaty, H., Brosch, K., Buckner, R. L., Cairns, M. J., Calhoun, V., Caspers, S., Cichon, S. and 96 moreBoen, R., Kaufmann, T., Van der Meer, D., Frei, O., Agartz, I., Ames, D., Andersson, M., Armstrong, N. J., Artiges, E., Atkins, J. R., Bauer, J., Benedetti, F., Boomsma, D. I., Brodaty, H., Brosch, K., Buckner, R. L., Cairns, M. J., Calhoun, V., Caspers, S., Cichon, S., Corvin, A. P., Crespo Facorro, B., Dannlowski, U., David, F. S., De Geus, E. J., De Zubicaray, G. I., Desrivières, S., Doherty, J. L., Donohoe, G., Ehrlich, S., Eising, E., Espeseth, T., Fisher, S. E., Forstner, A. J., Fortaner Uyà, L., Frouin, V., Fukunaga, M., Ge, T., Glahn, D. C., Goltermann, J., Grabe, H. J., Green, M. J., Groenewold, N. A., Grotegerd, D., Hahn, T., Hashimoto, R., Hehir-Kwa, J. Y., Henskens, F. A., Holmes, A. J., Haberg, A. K., Haavik, J., Jacquemont, S., Jansen, A., Jockwitz, C., Jonsson, E. G., Kikuchi, M., Kircher, T., Kumar, K., Le Hellard, S., Leu, C., Linden, D. E., Liu, J., Loughnan, R., Mather, K. A., McMahon, K. L., McRae, A. F., Medland, S. E., Meinert, S., Moreau, C. A., Morris, D. W., Mowry, B. J., Muhleisen, T. W., Nenadić, I., Nöthen, M. M., Nyberg, L., Owen, M. J., Paolini, M., Paus, T., Pausova, Z., Persson, K., Quidé, Y., Reis Marques, T., Sachdev, P. S., Sando, S. B., Schall, U., Scott, R. J., Selbæk, G., Shumskaya, E., Silva, A. I., Sisodiya, S. M., Stein, F., Stein, D. J., Straube, B., Streit, F., Strike, L. T., Teumer, A., Teutenberg, L., Thalamuthu, A., Tooney, P. A., Tordesillas-Gutierrez, D., Trollor, J. N., Van 't Ent, D., Van den Bree, M. B. M., Van Haren, N. E. M., Vazquez-Bourgon, J., Volzke, H., Wen, W., Wittfeld, K., Ching, C. R., Westlye, L. T., Thompson, P. M., Bearden, C. E., Selmer, K. K., Alnæs, D., Andreassen, O. A., & Sonderby, I. E. (2024). Beyond the global brain differences: Intra-individual variability differences in 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers. Biological Psychiatry, 95(2), 147-160. doi:10.1016/j.biopsych.2023.08.018.
Abstract
Background
The 1q21.1 distal and 15q11.2 BP1-BP2 CNVs exhibit regional and global brain differences compared to non-carriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intra-individual variability measures can be used to test for regional differences beyond global differences in brain structure.
Methods
Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n=30) and duplication (n=27), and 15q11.2 BP1-BP2 deletion (n=170) and duplication (n=243) carriers and matched non-carriers (n=2,350). Regional intra-deviation (RID) scores i.e., the standardized difference between an individual’s regional difference and global difference, were used to test for regional differences that diverge from the global difference.
Results
For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate and temporal pole differed less, and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex and temporal pole differed less, and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness.
Conclusion
We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 CNVs. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs, with the potential to increase our understanding of mechanisms involved in altered neurodevelopment.Additional information
supplementary material -
Yu, Y., Cui, H., Haas, S. S., New, F., Sanford, N., Yu, K., Zhan, D., Yang, G., Gao, J., Wei, D., Qiu, J., Banaj, N., Boomsma, D. I., Breier, A., Brodaty, H., Buckner, R. L., Buitelaar, J. K., Cannon, D. M., Caseras, X., Clark, V. P. Yu, Y., Cui, H., Haas, S. S., New, F., Sanford, N., Yu, K., Zhan, D., Yang, G., Gao, J., Wei, D., Qiu, J., Banaj, N., Boomsma, D. I., Breier, A., Brodaty, H., Buckner, R. L., Buitelaar, J. K., Cannon, D. M., Caseras, X., Clark, V. P., Conrod, P. J., Crivello, F., Crone, E. A., Dannlowski, U., Davey, C. G., De Haan, L., De Zubicaray, G. I., Di Giorgio, A., Fisch, L., Fisher, S. E., Franke, B., Glahn, D. C., Grotegerd, D., Gruber, O., Gur, R. E., Gur, R. C., Hahn, T., Harrison, B. J., Hatton, S., Hickie, I. B., Hulshoff Pol, H. E., Jamieson, A. J., Jernigan, T. L., Jiang, J., Kalnin, A. J., Kang, S., Kochan, N. A., Kraus, A., Lagopoulos, J., Lazaro, L., McDonald, B. C., McDonald, C., McMahon, K. L., Mwangi, B., Piras, F., Rodriguez‐Cruces, R., Royer, J., Sachdev, P. S., Satterthwaite, T. D., Saykin, A. J., Schumann, G., Sevaggi, P., Smoller, J. W., Soares, J. C., Spalletta, G., Tamnes, C. K., Trollor, J. N., Van't Ent, D., Vecchio, D., Walter, H., Wang, Y., Weber, B., Wen, W., Wierenga, L. M., Williams, S. C. R., Wu, M., Zunta‐Soares, G. B., Bernhardt, B., Thompson, P., Frangou, S., Ge, R., & ENIGMA-Lifespan Working Group (2024). Brain‐age prediction: Systematic evaluation of site effects, and sample age range and size. Human Brain Mapping, 45(10): e26768. doi:10.1002/hbm.26768.
Abstract
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics. -
Den Hoed, J., Hashimoto, H., Khan, M., Semmekrot, F., Bosanko, K. A., Abe-Hatano, C., Nakagawa, E., Venselaar, H., Quercia, N., Chad, L., Kurosaka, H., Rondeau, S., Fisher, S. E., Yamamoto, S., & Zarate, Y. A. (2024). Pathogenic SATB2 missense variants affecting p.Gly392 have variable functional implications and result in diverse clinical phenotypes. Journal of Medical Genetics, 61, 1062-1067. doi:10.1136/jmg-2024-110015.
Abstract
SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.
In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2–16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype–phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype–phenotype correlations are needed. -
Eising, E., Vino, A., Mabie, H. L., Campbell, T. F., Shriberg, L. D., & Fisher, S. E. (2024). Genome sequencing of idiopathic speech delay. Human Mutation, 2024: 9692863. doi:10.1155/2024/9692863.
Abstract
Genetic investigations of people with speech and language disorders can provide windows into key aspects of human biology. Most genomic research into impaired speech development has so far focused on childhood apraxia of speech (CAS), a rare neurodevelopmental disorder characterized by difficulties with coordinating rapid fine motor sequences that underlie proficient speech. In 2001, pathogenic variants of FOXP2 provided the first molecular genetic accounts of CAS aetiology. Since then, disruptions in several other genes have been implicated in CAS, with a substantial proportion of cases being explained by high-penetrance variants. However, the genetic architecture underlying other speech-related disorders remains less well understood. Thus, in the present study, we used systematic DNA sequencing methods to investigate idiopathic speech delay, as characterized by delayed speech development in the absence of a motor speech diagnosis (such as CAS), a language/reading disorder, or intellectual disability. We performed genome sequencing in a cohort of 23 children with a rigorous diagnosis of idiopathic speech delay. For roughly half of the sample (ten probands), sufficient DNA was also available for genome sequencing in both parents, allowing discovery of de novo variants. In the thirteen singleton probands, we focused on identifying loss-of-function and likely damaging missense variants in genes intolerant to such mutations. We found that one speech delay proband carried a pathogenic frameshift deletion in SETD1A, a gene previously implicated in a broader variable monogenic syndrome characterized by global developmental problems including delayed speech and/or language development, mild intellectual disability, facial dysmorphisms, and behavioural and psychiatric symptoms. Of note, pathogenic SETD1A variants have been independently reported in children with CAS in two separate studies. In other probands in our speech delay cohort, likely pathogenic missense variants were identified affecting highly conserved amino acids in key functional domains of SPTBN1 and ARF3. Overall, this study expands the phenotype spectrum associated with pathogenic SETD1A variants, to also include idiopathic speech delay without CAS or intellectual disability, and suggests additional novel potential candidate genes that may harbour high-penetrance variants that can disrupt speech development.Additional information
supplemental table -
Engelen, M. M., Franken, M.-C.-J.-P., Stipdonk, L. W., Horton, S. E., Jackson, V. E., Reilly, S., Morgan, A. T., Fisher, S. E., Van Dulmen, S., & Eising, E. (2024). The association between stuttering burden and psychosocial aspects of life in adults. Journal of Speech, Language, and Hearing Research, 67(5), 1385-1399. doi:10.1044/2024_JSLHR-23-00562.
Abstract
Purpose:
Stuttering is a speech condition that can have a major impact on a person's quality of life. This descriptive study aimed to identify subgroups of people who stutter (PWS) based on stuttering burden and to investigate differences between these subgroups on psychosocial aspects of life.
Method:
The study included 618 adult participants who stutter. They completed a detailed survey examining stuttering symptomatology, impact of stuttering on anxiety, education and employment, experience of stuttering, and levels of depression, anxiety, and stress. A two-step cluster analytic procedure was performed to identify subgroups of PWS, based on self-report of stuttering frequency, severity, affect, and anxiety, four measures that together inform about stuttering burden.
Results:
We identified a high- (n = 230) and a low-burden subgroup (n = 372). The high-burden subgroup reported a significantly higher impact of stuttering on education and employment, and higher levels of general depression, anxiety, stress, and overall impact of stuttering. These participants also reported that they trialed more different stuttering therapies than those with lower burden.
Conclusions:
Our results emphasize the need to be attentive to the diverse experiences and needs of PWS, rather than treating them as a homogeneous group. Our findings also stress the importance of personalized therapeutic strategies for individuals with stuttering, considering all aspects that could influence their stuttering burden. People with high-burden stuttering might, for example, have a higher need for psychological therapy to reduce stuttering-related anxiety. People with less emotional reactions but severe speech distortions may also have a moderate to high burden, but they may have a higher need for speech techniques to communicate with more ease. Future research should give more insights into the therapeutic needs of people highly burdened by their stuttering.Additional information
supplemental material S1 supplemental material S2 supplemental material S3 primary data -
Ge, R., Yu, Y., Qi, Y. X., Fan, Y.-n., Chen, S., Gao, C., Haas, S. S., New, F., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buckner, R., Caseras, X., Crivello, F., Crone, E. A., Erk, S., Fisher, S. E., Franke, B., Glahn, D. C., Dannlowski, U. Ge, R., Yu, Y., Qi, Y. X., Fan, Y.-n., Chen, S., Gao, C., Haas, S. S., New, F., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buckner, R., Caseras, X., Crivello, F., Crone, E. A., Erk, S., Fisher, S. E., Franke, B., Glahn, D. C., Dannlowski, U., Grotegerd, D., Gruber, O., Hulshoff Pol, H. E., Schumann, G., Tamnes, C. K., Walter, H., Wierenga, L. M., Jahanshad, N., Thompson, P. M., Frangou, S., & ENIGMA Lifespan Working Group (2024). Normative modelling of brain morphometry across the lifespan with CentileBrain: Algorithm benchmarking and model optimisation. The Lancet Digital Health, 6(3), e211-e221. doi:10.1016/S2589-7500(23)00250-9.
Abstract
The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3–90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain. -
García-Marín, L. M., Campos, A. I., Diaz-Torres, S., Rabinowitz, J. A., Ceja, Z., Mitchell, B. L., Grasby, K. L., Thorp, J. G., Agartz, I., Alhusaini, S., Ames, D., Amouyel, P., Andreassen, O. A., Arfanakis, K., Arias Vasquez, A., Armstrong, N. J., Athanasiu, L., Bastin, M. E., Beiser, A. S., Bennett, D. A. García-Marín, L. M., Campos, A. I., Diaz-Torres, S., Rabinowitz, J. A., Ceja, Z., Mitchell, B. L., Grasby, K. L., Thorp, J. G., Agartz, I., Alhusaini, S., Ames, D., Amouyel, P., Andreassen, O. A., Arfanakis, K., Arias Vasquez, A., Armstrong, N. J., Athanasiu, L., Bastin, M. E., Beiser, A. S., Bennett, D. A., Bis, J. C., Boks, M. P. M., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Buitelaar, J. K., Burkhardt, R., Cahn, W., Calhoun, V. D., Carmichael, O. T., Chakravarty, M., Chen, Q., Ching, C. R. K., Cichon, S., Crespo-Facorro, B., Crivello, F., Dale, A. M., Smith, G. D., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Debette, S., DeCarli, C., Depondt, C., Desrivières, S., Djurovic, S., Ehrlich, S., Erk, S., Espeseth, T., Fernández, G., Filippi, I., Fisher, S. E., Fleischman, D. A., Fletcher, E., Fornage, M., Forstner, A. J., Francks, C., Franke, B., Ge, T., Goldman, A. L., Grabe, H. J., Green, R. C., Grimm, O., Groenewold, N. A., Gruber, O., Gudnason, V., Håberg, A. K., Haukvik, U. K., Heinz, A., Hibar, D. P., Hilal, S., Himali, J. J., Ho, B.-C., Hoehn, D. F., Hoekstra, P. J., Hofer, E., Hoffmann, W., Holmes, A. J., Homuth, G., Hosten, N., Ikram, M. K., Ipser, J. C., Jack Jr, C. R., Jahanshad, N., Jönsson, E. G., Kahn, R. S., Kanai, R., Klein, M., Knol, M. J., Launer, L. J., Lawrie, S. M., Le Hellard, S., Lee, P. H., Lemaître, H., Li, S., Liewald, D. C. M., Lin, H., Longstreth Jr, W. T., Lopez, O. L., Luciano, M., Maillard, P., Marquand, A. F., Martin, N. G., Martinot, J.-L., Mather, K. A., Mattay, V. S., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mirza-Schreiber, N., Milaneschi, Y., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Muñoz Maniega, S., Nauck, M., Nho, K., Niessen, W. J., Nöthen, M. M., Nyquist, P. A., Oosterlaan, J., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Psaty, B. M., Pütz, B., Reppermund, S., Rietschel, M. D., Risacher, S. L., Romanczuk-Seiferth, N., Romero-Garcia, R., Roshchupkin, G. V., Rotter, J. I., Sachdev, P. S., Sämann, P. G., Saremi, A., Sargurupremraj, M., Saykin, A. J., Schmaal, L., Schmidt, H., Schmidt, R., Schofield, P. R., Scholz, M., Schumann, G., Schwarz, E., Shen, L., Shin, J., Sisodiya, S. M., Smith, A. V., Smoller, J. W., Soininen, H. S., Steen, V. M., Stein, D. J., Stein, J. L., Thomopoulos, S. I., Toga, A., Tordesillas-Gutiérrez, D. T., Trollor, J. N., Valdes-Hernandez, M. C., Van 't Ent, D., Van Bokhoven, H., Van der Meer, D., Van der Wee, N. J. A., Vázquez-Bourgon, J., Veltman, D. J., Vernooij, M. W., Villringer, A., Vinke, L. N., Völzke, H., Walter, H., Wardlaw, J. M., Weinberger, D. R., Weiner, M. W., Wen, W., Westlye, L. T., Westman, E., White, T., Witte, A. V., Wolf, C., Yang, J., Zwiers, M. P., Ikram, M. A., Seshadri, S., Thompson, P. M., Satizabal, C. L., Medland, S. E., & Rentería, M. E. (2024). Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for brain variation across ancestries. Nature Genetics, 56, 2333-2344. doi:10.1038/s41588-024-01951-z.
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases. -
Goltermann*, O., Alagöz*, G., Molz, B., & Fisher, S. E. (2024). Neuroimaging genomics as a window into the evolution of human sulcal organization. Cerebral Cortex, 34(3): bhae078. doi:10.1093/cercor/bhae078.
Abstract
* Ole Goltermann and Gökberk Alagöz contributed equally.
Primate brain evolution has involved prominent expansions of the cerebral cortex, with largest effects observed in the human lineage. Such expansions were accompanied by fine-grained anatomical alterations, including increased cortical folding. However, the molecular bases of evolutionary alterations in human sulcal organization are not yet well understood. Here, we integrated data from recently completed large-scale neuroimaging genetic analyses with annotations of the human genome relevant to various periods and events in our evolutionary history. These analyses identified single-nucleotide polymorphism (SNP) heritability enrichments in fetal brain human-gained enhancer (HGE) elements for a number of sulcal structures, including the central sulcus, which is implicated in human hand dexterity. We zeroed in on a genomic region that harbors DNA variants associated with left central sulcus shape, an HGE element, and genetic loci involved in neurogenesis including ZIC4, to illustrate the value of this approach for probing the complex factors contributing to human sulcal evolution. -
Heim, F., Scharff, C., Fisher, S. E., Riebel, K., & Ten Cate, C. (2024). Auditory discrimination learning and acoustic cue weighing in female zebra finches with localized FoxP1 knockdowns. Journal of Neurophysiology, 131, 950-963. doi:10.1152/jn.00228.2023.
Abstract
Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.
NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition. -
Horton, S., Jackson, V., Boyce, J., Franken, M.-C., Siemers, S., St John, M., Hearps, S., Van Reyk, O., Braden, R., Parker, R., Vogel, A. P., Eising, E., Amor, D. J., Irvine, J., Fisher, S. E., Martin, N. G., Reilly, S., Bahlo, M., Scheffer, I., & Morgan, A. (2024). Self-reported stuttering severity is accurate: Informing methods for large-scale data collection in stuttering. Journal of Speech, Language, and Hearing Research, 67, 4015-4024. doi:10.1044/2023_JSLHR-23-00081.
Abstract
Purpose:
To our knowledge, there are no data examining the agreement between self-reported and clinician-rated stuttering severity. In the era of big data, self-reported ratings have great potential utility for large-scale data collection, where cost and time preclude in-depth assessment by a clinician. Equally, there is increasing emphasis on the need to recognize an individual's experience of their own condition. Here, we examined the agreement between self-reported stuttering severity compared to clinician ratings during a speech assessment. As a secondary objective, we determined whether self-reported stuttering severity correlated with an individual's subjective impact of stuttering.
Method:
Speech-language pathologists conducted face-to-face speech assessments with 195 participants (137 males) aged 5–84 years, recruited from a cohort of people with self-reported stuttering. Stuttering severity was rated on a 10-point scale by the participant and by two speech-language pathologists. Participants also completed the Overall Assessment of the Subjective Experience of Stuttering (OASES). Clinician and participant ratings were compared. The association between stuttering severity and the OASES scores was examined.
Results:
There was a strong positive correlation between speech-language pathologist and participant-reported ratings of stuttering severity. Participant-reported stuttering severity correlated weakly with the four OASES domains and with the OASES overall impact score.
Conclusions:
Participants were able to accurately rate their stuttering severity during a speech assessment using a simple one-item question. This finding indicates that self-report stuttering severity is a suitable method for large-scale data collection. Findings also support the collection of self-report subjective experience data using questionnaires, such as the OASES, which add vital information about the participants' experience of stuttering that is not captured by overt speech severity ratings alone. -
De Hoyos, L., Barendse, M. T., Schlag, F., Van Donkelaar, M. M. J., Verhoef, E., Shapland, C. Y., Klassmann, A., Buitelaar, J., Verhulst, B., Fisher, S. E., Rai, D., & St Pourcain, B. (2024). Structural models of genome-wide covariance identify multiple common dimensions in autism. Nature Communications, 15: 1770. doi:10.1038/s41467-024-46128-8.
Abstract
Common genetic variation has been associated with multiple symptoms in Autism Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures contributing to this highly heterogeneous neurodevelopmental condition is limited. Here, we developed a structural equation modelling framework to directly model genome-wide covariance across core and non-core ASD phenotypes, studying autistic individuals of European descent using a case-only design. We identified three independent genetic factors most strongly linked to language/cognition, behaviour and motor development, respectively, when studying a population-representative sample (N=5,331). These analyses revealed novel associations. For example, developmental delay in acquiring personal-social skills was inversely related to language, while developmental motor delay was linked to self-injurious behaviour. We largely confirmed the three-factorial structure in independent ASD-simplex families (N=1,946), but uncovered simplex-specific genetic overlap between behaviour and language phenotypes. Thus, the common genetic architecture in ASD is multi-dimensional and contributes, in combination with ascertainment-specific patterns, to phenotypic heterogeneity. -
Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S. Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S., Gruner, P., Sorensen, L., Pan, P. M., Silk, T. J., Gur, R. C., Cubillo, A. I., Haavik, J., O'Gorman Tuura, R. L., Hartman, C. A., Calvo, R., McGrath, J., Calderoni, S., Jackowski, A., Chantiluke, K. C., Satterthwaite, T. D., Busatto, G. F., Nigg, J. T., Gur, R. E., Retico, A., Tosetti, M., Gallagher, L., Szeszko, P. R., Neufeld, J., Ortiz, A. E., Ghisleni, C., Lazaro, L., Hoekstra, P. J., Anagnostou, E., Hoekstra, L., Simpson, B., Plessen, J. K., Deruelle, C., Soreni, N., James, A., Narayanaswamy, J., Reddy, J. Y. C., Fitzgerald, J., Bellgrove, M. A., Salum, G. A., Janssen, J., Muratori, F., Vila, M., Garcia Giral, M., Ameis, S. H., Bosco, P., Lundin Remnélius, K., Huyser, C., Pariente, J. C., Jalbrzikowski, M., Rosa, P. G. P., O'Hearn, K. M., Ehrlich, S., Mollon, J., Zugman, A., Christakou, A., Arango, C., Fisher, S. E., Kong, X., Franke, B., Medland, S. E., Thomopoulos, S. I., Jahanshad, N., Glahn, D. C., Thompson, P. M., Francks, C., & Luders, E. (2024). Large-scale analysis of structural brain asymmetries during neurodevelopment: Age effects and sex differences in 4,265 children and adolescents. Human Brain Mapping, 45(11): e26754. doi:10.1002/hbm.26754.
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1–18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females. -
Perugini, A., Fontanillas, P., Gordon, S. D., Fisher, S. E., Martin, N. G., Bates, T. C., & Luciano, M. (2024). Dyslexia polygenic scores show heightened prediction of verbal working memory and arithmetic. Scientific Studies of Reading, 28(5), 549-563. doi:10.1080/10888438.2024.2365697.
Abstract
Purpose
The aim of this study is to establish which specific cognitive abilities are phenotypically related to reading skill in adolescence and determine whether this phenotypic correlation is explained by polygenetic overlap.
Method
In an Australian population sample of twins and non-twin siblings of European ancestry (734 ≤ N ≤ 1542 [50.7% < F < 66%], mean age = 16.7, range = 11–28 years) from the Brisbane Adolescent Twin Study, mixed-effects models were used to test the association between a dyslexia polygenic score (based on genome-wide association results from a study of 51,800 dyslexics versus >1 million controls) and quantitative cognitive measures. The variance in the cognitive measure explained by the polygenic score was compared to that explained by a reading difficulties phenotype (scores that were lower than 1.5 SD below the mean reading skill) to derive the proportion of the association due to genetic influences.
Results
The strongest phenotypic correlations were between poor reading and verbal tests (R2 up to 6.2%); visuo-spatial working memory was the only measure that did not show association with poor reading. Dyslexia polygenic scores could completely explain the phenotypic covariance between poor reading and most working memory tasks and were most predictive of performance on a test of arithmetic (R2=2.9%).
Conclusion
Shared genetic pathways are thus highlighted for the commonly found association between reading and mathematics abilities, and for the verbal short-term/working memory deficits often observed in dyslexia.Additional information
supplementary materials -
Schijven, D., Soheili-Nezhad, S., Fisher, S. E., & Francks, C. (2024). Exome-wide analysis implicates rare protein-altering variants in human handedness. Nature Communications, 15: 2632. doi:10.1038/s41467-024-46277-w.
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.Additional information
supplementary information reporting summary peer review file link to preprint -
Soheili-Nezhad, S., Schijven, D., Mars, R. B., Fisher, S. E., & Francks, C. (2024). Distinct impact modes of polygenic disposition to dyslexia in the adult brain. Science Advances, 10(51): eadq2754. doi:10.1126/sciadv.adq2754.
Abstract
Dyslexia is a common condition that impacts reading ability. Identifying affected brain networks has been hampered by limited sample sizes of imaging case-control studies. We focused instead on brain structural correlates of genetic disposition to dyslexia in large-scale population data. In over 30,000 adults (UK Biobank), higher polygenic disposition to dyslexia was associated with lower head and brain size, and especially reduced volume and/or altered fiber density in networks involved in motor control, language and vision. However, individual genetic variants disposing to dyslexia often had quite distinct patterns of association with brain structural features. Independent component analysis applied to brain-wide association maps for thousands of dyslexia-disposing genetic variants revealed multiple impact modes on the brain, that corresponded to anatomically distinct areas with their own genomic profiles of association. Polygenic scores for dyslexia-related cognitive and educational measures, as well as attention-deficit/hyperactivity disorder, showed similarities to dyslexia polygenic disposition in terms of brain-wide associations, with microstructure of the internal capsule consistently implicated. In contrast, lower volume of the primary motor cortex was only associated with higher dyslexia polygenic disposition among all traits. These findings robustly reveal heterogeneous neurobiological aspects of dyslexia genetic disposition, and whether they are shared or unique with respect to other genetically correlated traits.Additional information
link to preprint -
Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O. Verhoef, E., Allegrini, A. G., Jansen, P. R., Lange, K., Wang, C. A., Morgan, A. T., Ahluwalia, T. S., Symeonides, C., EAGLE-Working Group, Eising, E., Franken, M.-C., Hypponen, E., Mansell, T., Olislagers, M., Omerovic, E., Rimfeld, K., Schlag, F., Selzam, S., Shapland, C. Y., Tiemeier, H., Whitehouse, A. J. O., Saffery, R., Bønnelykke, K., Reilly, S., Pennell, C. E., Wake, M., Cecil, C. A., Plomin, R., Fisher, S. E., & St Pourcain, B. (2024). Genome-wide analyses of vocabulary size in infancy and toddlerhood: Associations with Attention-Deficit/Hyperactivity Disorder and cognition-related traits. Biological Psychiatry, 95(1), 859-869. doi:10.1016/j.biopsych.2023.11.025.
Abstract
Background
The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD).
Methods
We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models.
Results
Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity.
Conclusions
The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits. -
Wesseldijk, L. W., Henechowicz, T. L., Baker, D. J., Bignardi, G., Karlsson, R., Gordon, R. L., Mosing, M. A., Ullén, F., & Fisher, S. E. (2024). Notes from Beethoven’s genome. Current Biology, 34(6), R233-R234. doi:10.1016/j.cub.2024.01.025.
Abstract
Rapid advances over the last decade in DNA sequencing and statistical genetics enable us to investigate the genomic makeup of individuals throughout history. In a recent notable study, Begg et al.1 used Ludwig van Beethoven’s hair strands for genome sequencing and explored genetic predispositions for some of his documented medical issues. Given that it was arguably Beethoven’s skills as a musician and composer that made him an iconic figure in Western culture, we here extend the approach and apply it to musicality. We use this as an example to illustrate the broader challenges of individual-level genetic predictions.Additional information
supplemental information -
Wong, M. M. K., Sha, Z., Lütje, L., Kong, X., Van Heukelum, S., Van de Berg, W. D. J., Jonkman, L. E., Fisher, S. E., & Francks, C. (2024). The neocortical infrastructure for language involves region-specific patterns of laminar gene expression. Proceedings of the National Academy of Sciences of the United States of America, 121(34): e2401687121. doi:10.1073/pnas.2401687121.
Abstract
The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here we generated a new gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with inter-individual variation in structural connectivity between left-hemisphere frontal and temporal language cortex, and with predisposition to dyslexia. The axon guidance genes SLIT1 and SLIT2 were consistently implicated. These findings identify region-specific patterns of laminar gene expression as a feature of the brain’s language network. -
Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatosova, S., Rehnstrom, K., Peltonen, L., Wheelwright, S., Allison, C., Fisher, S. E., & Warrier, V. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: A preliminary study. PLoS One, 9(5): e96374. doi:10.1371/journal.pone.0096374.
Abstract
Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10−5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10−6). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10−4). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.Additional information
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0096374#s5 -
Brucato, N., DeLisi, L. E., Fisher, S. E., & Francks, C. (2014). Hypomethylation of the paternally inherited LRRTM1 promoter linked to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(7), 555-563. doi:10.1002/ajmg.b.32258.
Abstract
Epigenetic effects on psychiatric traits remain relatively under-studied, and it remains unclear what the sizes of individual epigenetic effects may be, or how they vary between different clinical populations. The gene LRRTM1 (chromosome 2p12) has previously been linked and associated with schizophrenia in a parent-of-origin manner in a set of affected siblings (LOD = 4.72), indirectly suggesting a disruption of paternal imprinting at this locus in these families. From the same set of siblings that originally showed strong linkage at this locus, we analyzed 99 individuals using 454-bisulfite sequencing, from whole blood DNA, to measure the level of DNA methylation in the promoter region of LRRTM1. We also assessed seven additional loci that would be informative to compare. Paternal identity-by-descent sharing at LRRTM1, within sibling pairs, was linked to their similarity of methylation at the gene's promoter. Reduced methylation at the promoter showed a significant association with schizophrenia. Sibling pairs concordant for schizophrenia showed more similar methylation levels at the LRRTM1 promoter than diagnostically discordant pairs. The alleles of common SNPs spanning the locus did not explain this epigenetic linkage, which can therefore be considered as largely independent of DNA sequence variation and would not be detected in standard genetic association analysis. Our data suggest that hypomethylation at the LRRTM1 promoter, particularly of the paternally inherited allele, was a risk factor for the development of schizophrenia in this set of siblings affected with familial schizophrenia, and that had previously showed linkage at this locus in an affected-sib-pair context.Additional information
http://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32258/suppinfo -
Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.
Abstract
Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology -
Ceroni, F., Simpson, N. H., Francks, C., Baird, G., Conti-Ramsden, G., Clark, A., Bolton, P. F., Hennessy, E. R., Donnelly, P., Bentley, D. R., Martin, H., IMGSAC, SLI Consortium, WGS500 Consortium, Parr, J., Pagnamenta, A. T., Maestrini, E., Bacchelli, E., Fisher, S. E., & Newbury, D. F. (2014). Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. European Journal of Human Genetics, 22, 1165-1171. doi:10.1038/ejhg.2014.4.
Abstract
Specific language impairment (SLI), an unexpected failure to develop appropriate language skills despite adequate non-verbal intelligence, is a heterogeneous multifactorial disorder with a complex genetic basis. We identified a homozygous microdeletion of 21,379 bp in the ZNF277 gene (NM_021994.2), encompassing exon 5, in an individual with severe receptive and expressive language impairment. The microdeletion was not found in the proband’s affected sister or her brother who had mild language impairment. However, it was inherited from both parents, each of whom carries a heterozygous microdeletion and has a history of language problems. The microdeletion falls within the AUTS1 locus, a region linked to autistic spectrum disorders (ASDs). Moreover, ZNF277 is adjacent to the DOCK4 and IMMP2L genes, which have been implicated in ASD. We screened for the presence of ZNF277 microdeletions in cohorts of children with SLI or ASD and panels of control subjects. ZNF277 microdeletions were at an increased allelic frequency in SLI probands (1.1%) compared with both ASD family members (0.3%) and independent controls (0.4%). We performed quantitative RT-PCR analyses of the expression of IMMP2L, DOCK4 and ZNF277 in individuals carrying either an IMMP2L_DOCK4 microdeletion or a ZNF277 microdeletion. Although ZNF277 microdeletions reduce the expression of ZNF277, they do not alter the levels of DOCK4 or IMMP2L transcripts. Conversely, IMMP2L_DOCK4 microdeletions do not affect the expression levels of ZNF277. We postulate that ZNF277 microdeletions may contribute to the risk of language impairments in a manner that is independent of the autism risk loci previously described in this region. -
Cousijn, H., Eissing, M., Fernández, G., Fisher, S. E., Franke, B., Zwers, M., Harrison, P. J., & Arias-Vasquez, A. (2014). No effect of schizophrenia risk genes MIR137, TCF4, and ZNF804A on macroscopic brain structure. Schizophrenia Research, 159, 329-332. doi:10.1016/j.schres.2014.08.007.
Abstract
Single nucleotide polymorphisms (SNPs) within the MIR137, TCF4, and ZNF804A genes show genome-wide association to schizophrenia. However, the biological basis for the associations is unknown. Here, we tested the effects of these genes on brain structure in 1300 healthy adults. Using volumetry and voxel-based morphometry, neither gene-wide effects—including the combined effect of the genes—nor single SNP effects—including specific psychosis risk SNPs—were found on total brain volume, grey matter, white matter, or hippocampal volume. These results suggest that the associations between these risk genes and schizophrenia are unlikely to be mediated via effects on macroscopic brain structure.Additional information
http://www.sciencedirect.com/science/article/pii/S0920996414004186#appd001 -
Deriziotis, P., O'Roak, B. J., Graham, S. A., Estruch, S. B., Dimitropoulou, D., Bernier, R. A., Gerdts, J., Shendure, J., Eichler, E. E., & Fisher, S. E. (2014). De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 5: 4954. doi:10.1038/ncomms5954.
Abstract
Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.Additional information
http://www.nature.com/ncomms/2014/140918/ncomms5954/full/ncomms5954.html#supple… -
Deriziotis, P., Graham, S. A., Estruch, S. B., & Fisher, S. E. (2014). Investigating protein-protein interactions in live cells using Bioluminescence Resonance Energy Transfer. Journal of visualized experiments, 87: e51438. doi:10.3791/51438.
Abstract
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ‘donor’ luciferase enzyme to an ‘acceptor’ fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.Additional information
video -
French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.
Abstract
Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning. -
Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.
Abstract
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.Additional information
http://onlinelibrary.wiley.com/doi/10.1111/gbb.12158/suppinfo -
Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.
Abstract
The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition. -
Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.
Abstract
Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries -
Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8: 473. doi:10.3389/fnhum.2014.00473.
Abstract
The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than ten times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques -
Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., Hennessy, E. R., SLI Consortium, Monaco, A. P., Fairfax, B. P., Knight, J. C., Winney, B., Fisher, S. E., & Newbury, D. F. (2014). Associations of HLA alleles with specific language impairment. Journal of Neurodevelopmental Disorders, 6: 1. doi:10.1186/1866-1955-6-1.
Abstract
Background Human leukocyte antigen (HLA) loci have been implicated in several neurodevelopmental disorders in which language is affected. However, to date, no studies have investigated the possible involvement of HLA loci in specific language impairment (SLI), a disorder that is defined primarily upon unexpected language impairment. We report association analyses of single-nucleotide polymorphisms (SNPs) and HLA types in a cohort of individuals affected by language impairment. Methods We perform quantitative association analyses of three linguistic measures and case-control association analyses using both SNP data and imputed HLA types. Results Quantitative association analyses of imputed HLA types suggested a role for the HLA-A locus in susceptibility to SLI. HLA-A A1 was associated with a measure of short-term memory (P = 0.004) and A3 with expressive language ability (P = 0.006). Parent-of-origin effects were found between HLA-B B8 and HLA-DQA1*0501 and receptive language. These alleles have a negative correlation with receptive language ability when inherited from the mother (P = 0.021, P = 0.034, respectively) but are positively correlated with the same trait when paternally inherited (P = 0.013, P = 0.029, respectively). Finally, case control analyses using imputed HLA types indicated that the DR10 allele of HLA-DRB1 was more frequent in individuals with SLI than population controls (P = 0.004, relative risk = 2.575), as has been reported for individuals with attention deficit hyperactivity disorder (ADHD). Conclusion These preliminary data provide an intriguing link to those described by previous studies of other neurodevelopmental disorders and suggest a possible role for HLA loci in language disorders.Additional information
http://www.jneurodevdisorders.com/content/6/1/1/additional -
Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., Hennessy, E. R., The SLli consortium, Ring, S. M., Smith, G. D., Francks, C., Paracchini, S., Monaco, A. P., Fisher, S. E., & Newbury, D. F. (2014). Genome-wide association analyses of child genotype effects and parent-of origin effects in specific language impairment. Genes, Brain and Behavior, 13, 418-429. doi:10.1111/gbb.12127.
Abstract
Specific language impairment (SLI) is a neurodevelopmental disorder that affects
linguistic abilities when development is otherwise normal. We report the results of a genomewide association study of SLI which included parent-of-origin effects and child genotype effects and used 278 families of language-impaired children. The child genotype effects analysis did not identify significant associations. We found genome-wide significant paternal
parent-of-origin effects on chromosome 14q12 (P=3.74×10-8) and suggestive maternal parent-of-origin-effects on chromosome 5p13 (P=1.16×10-7). A subsequent targeted association of six single-nucleotide-polymorphisms (SNPs) on chromosome 5 in 313 language-impaired individuals from the ALSPAC cohort replicated the maternal effects,
albeit in the opposite direction (P=0.001); as fathers’ genotypes were not available in the ALSPAC study, the replication analysis did not include paternal parent-of-origin effects. The paternally-associated SNP on chromosome 14 yields a non-synonymous coding change within the NOP9 gene. This gene encodes an RNA-binding protein that has been reported to be significantly dysregulated in individuals with schizophrenia. The region of maternal
association on chromosome 5 falls between the PTGER4 and DAB2 genes, in a region
previously implicated in autism and ADHD. The top SNP in this association locus is a
potential expression QTL of ARHGEF19 (also called WGEF) on chromosome 1. Members of this protein family have been implicated in intellectual disability. In sum, this study implicates parent-of-origin effects in language impairment, and adds an interesting new dimension to the emerging picture of shared genetic etiology across various neurodevelopmental disorders.Additional information
http://onlinelibrary.wiley.com/doi/10.1111/gbb.12127/suppinfo -
Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W., & Graybiel, A. M. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 111, 14253-14258. doi:10.1073/pnas.1414542111.
Abstract
The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2hum), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2hum/hum mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2hum/hum mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.Additional information
http://www.pnas.org/content/early/2014/09/11/1414542111/suppl/DCSupplementalFiles private
Request files -
Simpson, N. H., Addis, L., Brandler, W. M., Slonims, V., Clark, A., Watson, J., Scerri, T. S., Hennessy, E. R., Stein, J., Talcott, J., Conti-Ramsden, G., O'Hare, A., Baird, G., Fairfax, B. P., Knight, J. C., Paracchini, S., Fisher, S. E., Newbury, D. F., & The SLI Consortium (2014). Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia. Developmental Medicine and Child Neurology, 56, 346-353. doi:10.1111/dmcn.12294.
Abstract
Aim Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals.Additional information
http://onlinelibrary.wiley.com/doi/10.1111/dmcn.12294/suppinfo -
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B., Wright, M. J., Martin, N. G., Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N. C., Andreassen, O. A. and 269 moreThompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B., Wright, M. J., Martin, N. G., Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N. C., Andreassen, O. A., Apostolova, L. G., Appel, K., Armstrong, N. J., Aribisala, B., Bastin, M. E., Bauer, M., Bearden, C. E., Bergmann, Ø., Binder, E. B., Blangero, J., Bockholt, H. J., Bøen, E., Bois, C., Boomsma, D. I., Booth, T., Bowman, I. J., Bralten, J., Brouwer, R. M., Brunner, H. G., Brohawn, D. G., Buckner, R. L., Buitelaar, J., Bulayeva, K., Bustillo, J. R., Calhoun, V. D., Cannon, D. M., Cantor, R. M., Carless, M. A., Caseras, X., Cavalleri, G. L., Chakravarty, M. M., Chang, K. D., Ching, C. R. K., Christoforou, A., Cichon, S., Clark, V. P., Conrod, P., Coppola, G., Crespo-Facorro, B., Curran, J. E., Czisch, M., Deary, I. J., de Geus, E. J. C., den Braber, A., Delvecchio, G., Depondt, C., de Haan, L., de Zubicaray, G. I., Dima, D., Dimitrova, R., Djurovic, S., Dong, H., Donohoe, G., Duggirala, R., Dyer, T. D., Ehrlich, S., Ekman, C. J., Elvsåshagen, T., Emsell, L., Erk, S., Espeseth, T., Fagerness, J., Fears, S., Fedko, I., Fernández, G., Fisher, S. E., Foroud, T., Fox, P. T., Francks, C., Frangou, S., Frey, E. M., Frodl, T., Frouin, V., Garavan, H., Giddaluru, S., Glahn, D. C., Godlewska, B., Goldstein, R. Z., Gollub, R. L., Grabe, H. J., Grimm, O., Gruber, O., Guadalupe, T., Gur, R. E., Gur, R. C., Göring, H. H. H., Hagenaars, S., Hajek, T., Hall, G. B., Hall, J., Hardy, J., Hartman, C. A., Hass, J., Hatton, S. N., Haukvik, U. K., Hegenscheid, K., Heinz, A., Hickie, I. B., Ho, B.-C., Hoehn, D., Hoekstra, P. J., Hollinshead, M., Holmes, A. J., Homuth, G., Hoogman, M., Hong, L. E., Hosten, N., Hottenga, J.-J., Pol, H. E. H., Hwang, K. S., Jr, C. R. J., Jenkinson, M., Johnston, C., Jönsson, E. G., Kahn, R. S., Kasperaviciute, D., Kelly, S., Kim, S., Kochunov, P., Koenders, L., Krämer, B., Kwok, J. B. J., Lagopoulos, J., Laje, G., Landen, M., Landman, B. A., Lauriello, J., Lawrie, S. M., Lee, P. H., Le Hellard, S., Lemaître, H., Leonardo, C. D., Li, C.-s., Liberg, B., Liewald, D. C., Liu, X., Lopez, L. M., Loth, E., Lourdusamy, A., Luciano, M., Macciardi, F., Machielsen, M. W. J., MacQueen, G. M., Malt, U. F., Mandl, R., Manoach, D. S., Martinot, J.-L., Matarin, M., Mather, K. A., Mattheisen, M., Mattingsdal, M., Meyer-Lindenberg, A., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Meisenzahl, E., Melle, I., Milaneschi, Y., Mohnke, S., Montgomery, G. W., Morris, D. W., Moses, E. K., Mueller, B. A., Maniega, S. M., Mühleisen, T. W., Müller-Myhsok, B., Mwangi, B., Nauck, M., Nho, K., Nichols, T. E., Nilsson, L.-G., Nugent, A. C., Nyberg, L., Olvera, R. L., Oosterlaan, J., Ophoff, R. A., Pandolfo, M., Papalampropoulou-Tsiridou, M., Papmeyer, M., Paus, T., Pausova, Z., Pearlson, G. D., Penninx, B. W., Peterson, C. P., Pfennig, A., Phillips, M., Pike, G. B., Poline, J.-B., Potkin, S. G., Pütz, B., Ramasamy, A., Rasmussen, J., Rietschel, M., Rijpkema, M., Risacher, S. L., Roffman, J. L., Roiz-Santiañez, R., Romanczuk-Seiferth, N., Rose, E. J., Royle, N. A., Rujescu, D., Ryten, M., Sachdev, P. S., Salami, A., Satterthwaite, T. D., Savitz, J., Saykin, A. J., Scanlon, C., Schmaal, L., Schnack, H. G., Schork, A. J., Schulz, S. C., Schür, R., Seidman, L., Shen, L., Shoemaker, J. M., Simmons, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soares, J. C., Sponheim, S. R., Sprooten, E., Starr, J. M., Steen, V. M., Strakowski, S., Strike, L., Sussmann, J., Sämann, P. G., Teumer, A., Toga, A. W., Tordesillas-Gutierrez, D., Trabzuni, D., Trost, S., Turner, J., Van den Heuvel, M., van der Wee, N. J., van Eijk, K., van Erp, T. G. M., van Haren, N. E. M., van Ent, D. ‘., van Tol, M.-J., Hernández, M. C. V., Veltman, D. J., Versace, A., Völzke, H., Walker, R., Walter, H., Wang, L., Wardlaw, J. M., Weale, M. E., Weiner, M. W., Wen, W., Westlye, L. T., Whalley, H. C., Whelan, C. D., White, T., Winkler, A. M., Wittfeld, K., Woldehawariat, G., Wolf, C., Zilles, D., Zwiers, M. P., Thalamuthu, A., Schofield, P. R., Freimer, N. B., Lawrence, N. S., & Drevets, W. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153-182. doi:10.1007/s11682-013-9269-5.
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA’s first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way -
Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.
Abstract
Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects. -
Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168 -170. doi:10.1038/ng0298-168.
Abstract
Between 2 and 5% of children who are otherwise unimpaired have significant difficulties in acquiring expressive and/or receptive language, despite adequate intelligence and opportunity. While twin studies indicate a significant role for genetic factors in developmental disorders of speech and language, the majority of families segregating such disorders show complex patterns of inheritance, and are thus not amenable for conventional linkage analysis. A rare exception is the KE family, a large three-generation pedigree in which approximately half of the members are affected with a severe speech and language disorder which appears to be transmitted as an autosomal dominant monogenic trait. This family has been widely publicised as suffering primarily from a defect in the use of grammatical suffixation rules, thus supposedly supporting the existence of genes specific to grammar. The phenotype, however, is broader in nature, with virtually every aspect of grammar and of language affected. In addition, affected members have a severe orofacial dyspraxia, and their speech is largely incomprehensible to the naive listener. We initiated a genome-wide search for linkage in the KE family and have identified a region on chromosome 7 which co-segregates with the speech and language disorder (maximum lod score = 6.62 at theta = 0.0), confirming autosomal dominant inheritance with full penetrance. Further analysis of microsatellites from within the region enabled us to fine map the locus responsible (designated SPCH1) to a 5.6-cM interval in 7q31, thus providing an important step towards its identification. Isolation of SPCH1 may offer the first insight into the molecular genetics of the developmental process that culminates in speech and language.
Share this page