Simon E. Fisher

Publications

Displaying 1 - 33 of 33
  • Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatosova, S., Rehnstrom, K., Peltonen, L., Wheelwright, S., Allison, C., Fisher, S. E., & Warrier, V. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: A preliminary study. PLoS One, 9(5): e96374. doi:10.1371/journal.pone.0096374.

    Abstract

    Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10−5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10−6). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10−4). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.
  • Brucato, N., DeLisi, L. E., Fisher, S. E., & Francks, C. (2014). Hypomethylation of the paternally inherited LRRTM1 promoter linked to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(7), 555-563. doi:10.1002/ajmg.b.32258.

    Abstract

    Epigenetic effects on psychiatric traits remain relatively under-studied, and it remains unclear what the sizes of individual epigenetic effects may be, or how they vary between different clinical populations. The gene LRRTM1 (chromosome 2p12) has previously been linked and associated with schizophrenia in a parent-of-origin manner in a set of affected siblings (LOD = 4.72), indirectly suggesting a disruption of paternal imprinting at this locus in these families. From the same set of siblings that originally showed strong linkage at this locus, we analyzed 99 individuals using 454-bisulfite sequencing, from whole blood DNA, to measure the level of DNA methylation in the promoter region of LRRTM1. We also assessed seven additional loci that would be informative to compare. Paternal identity-by-descent sharing at LRRTM1, within sibling pairs, was linked to their similarity of methylation at the gene's promoter. Reduced methylation at the promoter showed a significant association with schizophrenia. Sibling pairs concordant for schizophrenia showed more similar methylation levels at the LRRTM1 promoter than diagnostically discordant pairs. The alleles of common SNPs spanning the locus did not explain this epigenetic linkage, which can therefore be considered as largely independent of DNA sequence variation and would not be detected in standard genetic association analysis. Our data suggest that hypomethylation at the LRRTM1 promoter, particularly of the paternally inherited allele, was a risk factor for the development of schizophrenia in this set of siblings affected with familial schizophrenia, and that had previously showed linkage at this locus in an affected-sib-pair context.
  • Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.

    Abstract

    Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology
  • Ceroni, F., Simpson, N. H., Francks, C., Baird, G., Conti-Ramsden, G., Clark, A., Bolton, P. F., Hennessy, E. R., Donnelly, P., Bentley, D. R., Martin, H., IMGSAC, SLI Consortium, WGS500 Consortium, Parr, J., Pagnamenta, A. T., Maestrini, E., Bacchelli, E., Fisher, S. E., & Newbury, D. F. (2014). Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. European Journal of Human Genetics, 22, 1165-1171. doi:10.1038/ejhg.2014.4.

    Abstract

    Specific language impairment (SLI), an unexpected failure to develop appropriate language skills despite adequate non-verbal intelligence, is a heterogeneous multifactorial disorder with a complex genetic basis. We identified a homozygous microdeletion of 21,379 bp in the ZNF277 gene (NM_021994.2), encompassing exon 5, in an individual with severe receptive and expressive language impairment. The microdeletion was not found in the proband’s affected sister or her brother who had mild language impairment. However, it was inherited from both parents, each of whom carries a heterozygous microdeletion and has a history of language problems. The microdeletion falls within the AUTS1 locus, a region linked to autistic spectrum disorders (ASDs). Moreover, ZNF277 is adjacent to the DOCK4 and IMMP2L genes, which have been implicated in ASD. We screened for the presence of ZNF277 microdeletions in cohorts of children with SLI or ASD and panels of control subjects. ZNF277 microdeletions were at an increased allelic frequency in SLI probands (1.1%) compared with both ASD family members (0.3%) and independent controls (0.4%). We performed quantitative RT-PCR analyses of the expression of IMMP2L, DOCK4 and ZNF277 in individuals carrying either an IMMP2L_DOCK4 microdeletion or a ZNF277 microdeletion. Although ZNF277 microdeletions reduce the expression of ZNF277, they do not alter the levels of DOCK4 or IMMP2L transcripts. Conversely, IMMP2L_DOCK4 microdeletions do not affect the expression levels of ZNF277. We postulate that ZNF277 microdeletions may contribute to the risk of language impairments in a manner that is independent of the autism risk loci previously described in this region.
  • Cousijn, H., Eissing, M., Fernández, G., Fisher, S. E., Franke, B., Zwers, M., Harrison, P. J., & Arias-Vasquez, A. (2014). No effect of schizophrenia risk genes MIR137, TCF4, and ZNF804A on macroscopic brain structure. Schizophrenia Research, 159, 329-332. doi:10.1016/j.schres.2014.08.007.

    Abstract

    Single nucleotide polymorphisms (SNPs) within the MIR137, TCF4, and ZNF804A genes show genome-wide association to schizophrenia. However, the biological basis for the associations is unknown. Here, we tested the effects of these genes on brain structure in 1300 healthy adults. Using volumetry and voxel-based morphometry, neither gene-wide effects—including the combined effect of the genes—nor single SNP effects—including specific psychosis risk SNPs—were found on total brain volume, grey matter, white matter, or hippocampal volume. These results suggest that the associations between these risk genes and schizophrenia are unlikely to be mediated via effects on macroscopic brain structure.
  • Deriziotis, P., O'Roak, B. J., Graham, S. A., Estruch, S. B., Dimitropoulou, D., Bernier, R. A., Gerdts, J., Shendure, J., Eichler, E. E., & Fisher, S. E. (2014). De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 5: 4954. doi:10.1038/ncomms5954.

    Abstract

    Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.
  • Deriziotis, P., Graham, S. A., Estruch, S. B., & Fisher, S. E. (2014). Investigating protein-protein interactions in live cells using Bioluminescence Resonance Energy Transfer. Journal of visualized experiments, 87: e51438. doi:10.3791/51438.

    Abstract

    Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ‘donor’ luciferase enzyme to an ‘acceptor’ fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.

    Additional information

    video
  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28, 72-79. doi:10.1016/j.conb.2014.07.003.

    Abstract

    Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., Pennington, B. F., Smith, S. D., Scerri, T. S., Simpson, N. H., The SLI Consortium, Luciano, M., Evans, D. M., Bates, T. C., Stein, J. F., Talcott, J. B., Monaco, A. P., Paracchini, S., Francks, C., & Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.

    Abstract

    Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
  • Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.

    Abstract

    The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition.
  • Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.

    Abstract

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries
  • Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8: 473. doi:10.3389/fnhum.2014.00473.

    Abstract

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than ten times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques
  • Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., Hennessy, E. R., SLI Consortium, Monaco, A. P., Fairfax, B. P., Knight, J. C., Winney, B., Fisher, S. E., & Newbury, D. F. (2014). Associations of HLA alleles with specific language impairment. Journal of Neurodevelopmental Disorders, 6: 1. doi:10.1186/1866-1955-6-1.

    Abstract

    Background Human leukocyte antigen (HLA) loci have been implicated in several neurodevelopmental disorders in which language is affected. However, to date, no studies have investigated the possible involvement of HLA loci in specific language impairment (SLI), a disorder that is defined primarily upon unexpected language impairment. We report association analyses of single-nucleotide polymorphisms (SNPs) and HLA types in a cohort of individuals affected by language impairment. Methods We perform quantitative association analyses of three linguistic measures and case-control association analyses using both SNP data and imputed HLA types. Results Quantitative association analyses of imputed HLA types suggested a role for the HLA-A locus in susceptibility to SLI. HLA-A A1 was associated with a measure of short-term memory (P = 0.004) and A3 with expressive language ability (P = 0.006). Parent-of-origin effects were found between HLA-B B8 and HLA-DQA1*0501 and receptive language. These alleles have a negative correlation with receptive language ability when inherited from the mother (P = 0.021, P = 0.034, respectively) but are positively correlated with the same trait when paternally inherited (P = 0.013, P = 0.029, respectively). Finally, case control analyses using imputed HLA types indicated that the DR10 allele of HLA-DRB1 was more frequent in individuals with SLI than population controls (P = 0.004, relative risk = 2.575), as has been reported for individuals with attention deficit hyperactivity disorder (ADHD). Conclusion These preliminary data provide an intriguing link to those described by previous studies of other neurodevelopmental disorders and suggest a possible role for HLA loci in language disorders.
  • Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., Hennessy, E. R., The SLli consortium, Ring, S. M., Smith, G. D., Francks, C., Paracchini, S., Monaco, A. P., Fisher, S. E., & Newbury, D. F. (2014). Genome-wide association analyses of child genotype effects and parent-of origin effects in specific language impairment. Genes, Brain and Behavior, 13, 418-429. doi:10.1111/gbb.12127.

    Abstract

    Specific language impairment (SLI) is a neurodevelopmental disorder that affects
    linguistic abilities when development is otherwise normal. We report the results of a genomewide association study of SLI which included parent-of-origin effects and child genotype effects and used 278 families of language-impaired children. The child genotype effects analysis did not identify significant associations. We found genome-wide significant paternal
    parent-of-origin effects on chromosome 14q12 (P=3.74×10-8) and suggestive maternal parent-of-origin-effects on chromosome 5p13 (P=1.16×10-7). A subsequent targeted association of six single-nucleotide-polymorphisms (SNPs) on chromosome 5 in 313 language-impaired individuals from the ALSPAC cohort replicated the maternal effects,
    albeit in the opposite direction (P=0.001); as fathers’ genotypes were not available in the ALSPAC study, the replication analysis did not include paternal parent-of-origin effects. The paternally-associated SNP on chromosome 14 yields a non-synonymous coding change within the NOP9 gene. This gene encodes an RNA-binding protein that has been reported to be significantly dysregulated in individuals with schizophrenia. The region of maternal
    association on chromosome 5 falls between the PTGER4 and DAB2 genes, in a region
    previously implicated in autism and ADHD. The top SNP in this association locus is a
    potential expression QTL of ARHGEF19 (also called WGEF) on chromosome 1. Members of this protein family have been implicated in intellectual disability. In sum, this study implicates parent-of-origin effects in language impairment, and adds an interesting new dimension to the emerging picture of shared genetic etiology across various neurodevelopmental disorders.
  • Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W., & Graybiel, A. M. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 111, 14253-14258. doi:10.1073/pnas.1414542111.

    Abstract

    The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2hum), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2hum/hum mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2hum/hum mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.

    Files private

    Request files
  • Simpson, N. H., Addis, L., Brandler, W. M., Slonims, V., Clark, A., Watson, J., Scerri, T. S., Hennessy, E. R., Stein, J., Talcott, J., Conti-Ramsden, G., O'Hare, A., Baird, G., Fairfax, B. P., Knight, J. C., Paracchini, S., Fisher, S. E., Newbury, D. F., & The SLI Consortium (2014). Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia. Developmental Medicine and Child Neurology, 56, 346-353. doi:10.1111/dmcn.12294.

    Abstract

    Aim Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals.
  • Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B., Wright, M. J., Martin, N. G., Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N. C., Andreassen, O. A. and 269 moreThompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B., Wright, M. J., Martin, N. G., Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N. C., Andreassen, O. A., Apostolova, L. G., Appel, K., Armstrong, N. J., Aribisala, B., Bastin, M. E., Bauer, M., Bearden, C. E., Bergmann, Ø., Binder, E. B., Blangero, J., Bockholt, H. J., Bøen, E., Bois, C., Boomsma, D. I., Booth, T., Bowman, I. J., Bralten, J., Brouwer, R. M., Brunner, H. G., Brohawn, D. G., Buckner, R. L., Buitelaar, J., Bulayeva, K., Bustillo, J. R., Calhoun, V. D., Cannon, D. M., Cantor, R. M., Carless, M. A., Caseras, X., Cavalleri, G. L., Chakravarty, M. M., Chang, K. D., Ching, C. R. K., Christoforou, A., Cichon, S., Clark, V. P., Conrod, P., Coppola, G., Crespo-Facorro, B., Curran, J. E., Czisch, M., Deary, I. J., de Geus, E. J. C., den Braber, A., Delvecchio, G., Depondt, C., de Haan, L., de Zubicaray, G. I., Dima, D., Dimitrova, R., Djurovic, S., Dong, H., Donohoe, G., Duggirala, R., Dyer, T. D., Ehrlich, S., Ekman, C. J., Elvsåshagen, T., Emsell, L., Erk, S., Espeseth, T., Fagerness, J., Fears, S., Fedko, I., Fernández, G., Fisher, S. E., Foroud, T., Fox, P. T., Francks, C., Frangou, S., Frey, E. M., Frodl, T., Frouin, V., Garavan, H., Giddaluru, S., Glahn, D. C., Godlewska, B., Goldstein, R. Z., Gollub, R. L., Grabe, H. J., Grimm, O., Gruber, O., Guadalupe, T., Gur, R. E., Gur, R. C., Göring, H. H. H., Hagenaars, S., Hajek, T., Hall, G. B., Hall, J., Hardy, J., Hartman, C. A., Hass, J., Hatton, S. N., Haukvik, U. K., Hegenscheid, K., Heinz, A., Hickie, I. B., Ho, B.-C., Hoehn, D., Hoekstra, P. J., Hollinshead, M., Holmes, A. J., Homuth, G., Hoogman, M., Hong, L. E., Hosten, N., Hottenga, J.-J., Pol, H. E. H., Hwang, K. S., Jr, C. R. J., Jenkinson, M., Johnston, C., Jönsson, E. G., Kahn, R. S., Kasperaviciute, D., Kelly, S., Kim, S., Kochunov, P., Koenders, L., Krämer, B., Kwok, J. B. J., Lagopoulos, J., Laje, G., Landen, M., Landman, B. A., Lauriello, J., Lawrie, S. M., Lee, P. H., Le Hellard, S., Lemaître, H., Leonardo, C. D., Li, C.-s., Liberg, B., Liewald, D. C., Liu, X., Lopez, L. M., Loth, E., Lourdusamy, A., Luciano, M., Macciardi, F., Machielsen, M. W. J., MacQueen, G. M., Malt, U. F., Mandl, R., Manoach, D. S., Martinot, J.-L., Matarin, M., Mather, K. A., Mattheisen, M., Mattingsdal, M., Meyer-Lindenberg, A., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Meisenzahl, E., Melle, I., Milaneschi, Y., Mohnke, S., Montgomery, G. W., Morris, D. W., Moses, E. K., Mueller, B. A., Maniega, S. M., Mühleisen, T. W., Müller-Myhsok, B., Mwangi, B., Nauck, M., Nho, K., Nichols, T. E., Nilsson, L.-G., Nugent, A. C., Nyberg, L., Olvera, R. L., Oosterlaan, J., Ophoff, R. A., Pandolfo, M., Papalampropoulou-Tsiridou, M., Papmeyer, M., Paus, T., Pausova, Z., Pearlson, G. D., Penninx, B. W., Peterson, C. P., Pfennig, A., Phillips, M., Pike, G. B., Poline, J.-B., Potkin, S. G., Pütz, B., Ramasamy, A., Rasmussen, J., Rietschel, M., Rijpkema, M., Risacher, S. L., Roffman, J. L., Roiz-Santiañez, R., Romanczuk-Seiferth, N., Rose, E. J., Royle, N. A., Rujescu, D., Ryten, M., Sachdev, P. S., Salami, A., Satterthwaite, T. D., Savitz, J., Saykin, A. J., Scanlon, C., Schmaal, L., Schnack, H. G., Schork, A. J., Schulz, S. C., Schür, R., Seidman, L., Shen, L., Shoemaker, J. M., Simmons, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soares, J. C., Sponheim, S. R., Sprooten, E., Starr, J. M., Steen, V. M., Strakowski, S., Strike, L., Sussmann, J., Sämann, P. G., Teumer, A., Toga, A. W., Tordesillas-Gutierrez, D., Trabzuni, D., Trost, S., Turner, J., Van den Heuvel, M., van der Wee, N. J., van Eijk, K., van Erp, T. G. M., van Haren, N. E. M., van Ent, D. ‘., van Tol, M.-J., Hernández, M. C. V., Veltman, D. J., Versace, A., Völzke, H., Walker, R., Walter, H., Wang, L., Wardlaw, J. M., Weale, M. E., Weiner, M. W., Wen, W., Westlye, L. T., Whalley, H. C., Whelan, C. D., White, T., Winkler, A. M., Wittfeld, K., Woldehawariat, G., Wolf, C., Zilles, D., Zwiers, M. P., Thalamuthu, A., Schofield, P. R., Freimer, N. B., Lawrence, N. S., & Drevets, W. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153-182. doi:10.1007/s11682-013-9269-5.

    Abstract

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA’s first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way
  • Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.

    Abstract

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.
  • Ayub, Q., Yngvadottir, B., Chen, Y., Xue, Y., Hu, M., Vernes, S. C., Fisher, S. E., & Tyler-Smith, C. (2013). FOXP2 targets show evidence of positive selection in European populations. American Journal of Human Genetics, 92, 696-706. doi:10.1016/j.ajhg.2013.03.019.

    Abstract

    Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction.
  • Baron-Cohen, S., Johnson, D., Asher, J. E., Wheelwright, S., Fisher, S. E., Gregersen, P. K., & Allison, C. (2013). Is synaesthesia more common in autism? Molecular Autism, 4(1): 40. doi:10.1186/2040-2392-4-40.

    Abstract

    BACKGROUND:
    Synaesthesia is a neurodevelopmental condition in which a sensation in one modality triggers a perception in a second modality. Autism (shorthand for Autism Spectrum Conditions) is a neurodevelopmental condition involving social-communication disability alongside resistance to change and unusually narrow interests or activities. Whilst on the surface they appear distinct, they have been suggested to share common atypical neural connectivity.

    METHODS:
    In the present study, we carried out the first prevalence study of synaesthesia in autism to formally test whether these conditions are independent. After exclusions, 164 adults with autism and 97 controls completed a synaesthesia questionnaire, autism spectrum quotient, and test of genuineness-revised (ToG-R) online.

    RESULTS:
    The rate of synaesthesia in adults with autism was 18.9% (31 out of 164), almost three times greater than in controls (7.22%, 7 out of 97, P <0.05). ToG-R proved unsuitable for synaesthetes with autism.

    CONCLUSIONS:
    The significant increase in synaesthesia prevalence in autism suggests that the two conditions may share some common underlying mechanisms. Future research is needed to develop more feasible validation methods of synaesthesia in autism.

    Files private

    Request files
  • Brandler, W. M., Morris, A. P., Evans, D. M., Scerri, T. S., Kemp, J. P., Timpson, N. J., St Pourcain, B., Davey Smith, G., Ring, S. M., Stein, J., Monaco, A. P., Talcott, J. B., Fisher, S. E., Webber, C., & Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9(9): e1003751. doi:10.1371/journal.pgen.1003751.

    Abstract

    Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.
  • Carrion Castillo, A., Franke, B., & Fisher, S. E. (2013). Molecular genetics of dyslexia: An overview. Dyslexia, 19(4), 214-240. doi:10.1002/dys.1464.

    Abstract

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs
  • Deriziotis, P., & Fisher, S. E. (2013). Neurogenomics of speech and language disorders: The road ahead. Genome Biology, 14: 204. doi:10.1186/gb-2013-14-4-204.

    Abstract

    Next-generation sequencing is set to transform the discovery of genes underlying neurodevelopmental disorders, and so off er important insights into the biological bases of spoken language. Success will depend on functional assessments in neuronal cell lines, animal models and humans themselves.
  • Fisher, S. E. (2013). Building bridges between genes, brains and language. In J. J. Bolhuis, & M. Everaert (Eds.), Birdsong, speech and language: Exploring the evolution of mind and brain (pp. 425-454). Cambridge, Mass: MIT Press.
  • Fisher, S. E., & Ridley, M. (2013). Culture, genes, and the human revolution. Science, 340(6135), 929-930. doi:10.1126/science.1236171.

    Abstract

    State-of-the-art DNA sequencing is providing ever more detailed insights into the genomes of humans, extant apes, and even extinct hominins (1–3), offering unprecedented opportunities to uncover the molecular variants that make us human. A common assumption is that the emergence of behaviorally modern humans after 200,000 years ago required—and followed—a specific biological change triggered by one or more genetic mutations. For example, Klein has argued that the dawn of human culture stemmed from a single genetic change that “fostered the uniquely modern ability to adapt to a remarkable range of natural and social circumstance” (4). But are evolutionary changes in our genome a cause or a consequence of cultural innovation (see the figure)?

    Files private

    Request files
  • Gialluisi, A., Dediu, D., Francks, C., & Fisher, S. E. (2013). Persistence and transmission of recessive deafness and sign language: New insights from village sign languages. European Journal of Human Genetics, 21, 894-896. doi:10.1038/ejhg.2012.292.

    Abstract

    First paragraph: The study of the transmission of sign languages can give novel insights into the transmission of spoken languages1 and, more generally, into gene–culture coevolution. Over the years, several papers related to the persistence of sign language have been
    reported.2–6 All of these studies have emphasized the role of assortative (non-random) mating by deafness state (ie, a tendency for deaf individuals to partner together) for increasing the frequency of recessive deafness, and hence for the persistence of sign language in a population.
  • Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43-51. doi:10.1016/j.conb.2012.11.006.

    Abstract

    Researchers are beginning to uncover the neurogenetic pathways that underlie our unparalleled capacity for spoken language. Initial clues come from identification of genetic risk factors implicated in developmental language disorders. The underlying genetic architecture is complex, involving a range of molecular mechanisms. For example, rare protein-coding mutations of the FOXP2 transcription factor cause severe problems with sequencing of speech sounds, while common genetic risk variants of small effect size in genes like CNTNAP2, ATP2C2 and CMIP are associated with typical forms of language impairment. In this article, we describe how investigations of these and other candidate genes, in humans, animals and cellular models, are unravelling the connections between genes and cognition. This depends on interdisciplinary research at multiple levels, from determining molecular interactions and functional roles in neural cell-biology all the way through to effects on brain structure and activity.
  • Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. E., Asher, J. E., Ballard, D., Freudenberg, J., & Li, W. (2013). Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 22, 2097-2104. doi:10.1093/hmg/ddt059.

    Abstract

    Absolute pitch and synesthesia are two uncommon cognitive traits that reflect increased neuronal connectivity and have been anecdotally reported to occur together in a same individual. Here we systematically evaluate the occurrence of syesthesia in a population of 768 subjects with documented absolute pitch. Out of these 768 subjects, 151(20.1%) reported synesthesia, most commonly with color. These self-reports of synesthesia were validated in a subset of 21 study subjects using an established methodology. We further carried out combined linkage analysis of 53 multiplex families with absolute pitch and 36 multiplex families with synesthesia. We observed a peak NPL LOD=4.68 on chromosome 6q, as well as evidence of linkage on chromosome 2 using a dominant model. These data establish the close phenotypic and genetic relationship between absolute pitch and synesthesia. The chromosome 6 linkage region contains 73 genes; several leading candidate genes involved in neurodevelopment were investigated by exon resequencing. However, further studies will be required to definitively establish the identity of the causative gene(s) in the region.
  • Newbury, D. F., Mari, F., Akha, E. S., MacDermot, K. D., Canitano, R., Monaco, A. P., Taylor, J. C., Renieri, A., Fisher, S. E., & Knight, S. J. L. (2013). Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 21, 361-365. doi:10.1038/ejhg.2012.166.

    Abstract

    In this issue, Raca et al1 present two cases of childhood apraxia of speech (CAS) arising from microdeletions of chromosome 16p11.2. They propose that comprehensive phenotypic profiling may assist in the delineation and classification of such cases. To complement this study, we would like to report on a third, unrelated, child who presents with CAS and a chromosome 16p11.2 heterozygous deletion. We use genetic data from this child and his family to illustrate how comprehensive genetic profiling may also assist in the characterisation of 16p11.2 microdeletion syndrome.
  • Vernes, S. C., & Fisher, S. E. (2013). Genetic pathways implicated in speech and language. In S. Helekar (Ed.), Animal models of speech and language disorders (pp. 13-40). New York: Springer. doi:10.1007/978-1-4614-8400-4_2.

    Abstract

    Disorders of speech and language are highly heritable, providing strong
    support for a genetic basis. However, the underlying genetic architecture is complex,
    involving multiple risk factors. This chapter begins by discussing genetic loci associated
    with common multifactorial language-related impairments and goes on to
    detail the only gene (known as FOXP2) to be directly implicated in a rare monogenic
    speech and language disorder. Although FOXP2 was initially uncovered in
    humans, model systems have been invaluable in progressing our understanding of
    the function of this gene and its associated pathways in language-related areas of the
    brain. Research in species from mouse to songbird has revealed effects of this gene
    on relevant behaviours including acquisition of motor skills and learned vocalisations
    and demonstrated a role for Foxp2 in neuronal connectivity and signalling,
    particularly in the striatum. Animal models have also facilitated the identification of
    wider neurogenetic networks thought to be involved in language development and
    disorder and allowed the investigation of new candidate genes for disorders involving
    language, such as CNTNAP2 and FOXP1. Ongoing work in animal models promises
    to yield new insights into the genetic and neural mechanisms underlying human
    speech and language
  • Fisher, S. E., Stein, J. F., & Monaco, A. P. (1999). A genome-wide search strategy for identifying quantitative trait loci involved in reading and spelling disability (developmental dyslexia). European Child & Adolescent Psychiatry, 8(suppl. 3), S47-S51. doi:10.1007/PL00010694.

    Abstract

    Family and twin studies of developmental dyslexia have consistently shown that there is a significant heritable component for this disorder. However, any genetic basis for the trait is likely to be complex, involving reduced penetrance, phenocopy, heterogeneity and oligogenic inheritance. This complexity results in reduced power for traditional parametric linkage analysis, where specification of the correct genetic model is important. One strategy is to focus on large multigenerational pedigrees with severe phenotypes and/or apparent simple Mendelian inheritance, as has been successfully demonstrated for speech and language impairment. This approach is limited by the scarcity of such families. An alternative which has recently become feasible due to the development of high-throughput genotyping techniques is the analysis of large numbers of sib-pairs using allele-sharing methodology. This paper outlines our strategy for conducting a systematic genome-wide search for genes involved in dyslexia in a large number of affected sib-pair familites from the UK. We use a series of psychometric tests to obtain different quantitative measures of reading deficit, which should correlate with different components of the dyslexia phenotype, such as phonological awareness and orthographic coding ability. This enable us to use QTL (quantitative trait locus) mapping as a powerful tool for localising genes which may contribute to reading and spelling disability.
  • Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F., Richardson, A. J., Weeks, D. E., Stein, J. F., & Monaco, A. P. (1999). A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. American Journal of Human Genetics, 64(1), 146-156. doi:10.1086/302190.

    Abstract

    Recent application of nonparametric-linkage analysis to reading disability has implicated a putative quantitative-trait locus (QTL) on the short arm of chromosome 6. In the present study, we use QTL methods to evaluate linkage to the 6p25-21.3 region in a sample of 181 sib pairs from 82 nuclear families that were selected on the basis of a dyslexic proband. We have assessed linkage directly for several quantitative measures that should correlate with different components of the phenotype, rather than using a single composite measure or employing categorical definitions of subtypes. Our measures include the traditional IQ/reading discrepancy score, as well as tests of word recognition, irregular-word reading, and nonword reading. Pointwise analysis by means of sib-pair trait differences suggests the presence, in 6p21.3, of a QTL influencing multiple components of dyslexia, in particular the reading of irregular words (P=.0016) and nonwords (P=.0024). A complementary statistical approach involving estimation of variance components supports these findings (irregular words, P=.007; nonwords, P=.0004). Multipoint analyses place the QTL within the D6S422-D6S291 interval, with a peak around markers D6S276 and D6S105 consistently identified by approaches based on trait differences (irregular words, P=.00035; nonwords, P=.0035) and variance components (irregular words, P=.007; nonwords, P=.0038). Our findings indicate that the QTL affects both phonological and orthographic skills and is not specific to phoneme awareness, as has been previously suggested. Further studies will be necessary to obtain a more precise localization of this QTL, which may lead to the isolation of one of the genes involved in developmental dyslexia.
  • Tanaka, K., Fisher, S. E., & Craig, I. W. (1999). Characterization of novel promoter and enhancer elements of the mouse homologue of the Dent disease gene, CLCN5, implicated in X-linked hereditary nephrolithiasis. Genomics, 58, 281-292. doi:10.1006/geno.1999.5839.

    Abstract

    The murine homologue of the human chloride channel gene, CLCN5, defects in which are responsible for Dent disease, has been cloned and characterized. We isolated the entire coding region of mouse Clcn5 cDNA and approximately 45 kb of genomic sequence embracing the gene. To study its transcriptional control, the 5' upstream sequences of the mouse Clcn5 gene were cloned into a luciferase reporter vector. Deletion analysis of 1.5 kb of the 5' flanking sequence defined an active promoter region within 128 bp of the putative transcription start site, which is associated with a TATA motif but lacks a CAAT consensus. Within this sequence, there is a motif with homology to a purine-rich sequence responsible for the kidney-specific promoter activity of the rat CLC-K1 gene, another member of the chloride-channel gene family expressed in kidney. An enhancer element that confers a 10- to 20-fold increase in the promoter activity of the mouse Clcn5 gene was found within the first intron. The organization of the human CLCN5 and mouse Clcn5 gene structures is highly conserved, and the sequence of the murine protein is 98% similar to that of human, with its highest expression seen in the kidney. This study thus provides the first identification of the transcriptional control region of, and the basis for an understanding of the regulatory mechanism that controls, this kidney-specific, chloride-channel gene.

Share this page