Clyde Francks

Publications

Displaying 1 - 26 of 26
  • Carrion Castillo, A., Estruch, S. B., Maassen, B., Franke, B., Francks, C., & Fisher, S. E. (2021). Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Human Genetics, 140, 1183-1200. doi:10.1007/s00439-021-02289-w.

    Abstract

    Dyslexia is a common heritable developmental disorder involving impaired reading abilities. Its genetic underpinnings are thought to be complex and heterogeneous, involving common and rare genetic variation. Multigenerational families segregating apparent monogenic forms of language-related disorders can provide useful entrypoints into biological pathways. In the present study, we performed a genome-wide linkage scan in a three-generational family in which dyslexia affects 14 of its 30 members and seems to be transmitted with an autosomal dominant pattern of inheritance. We identified a locus on chromosome 7q21.11 which cosegregated with dyslexia status, with the exception of two cases of phenocopy (LOD = 2.83). Whole-genome sequencing of key individuals enabled the assessment of coding and noncoding variation in the family. Two rare single-nucleotide variants (rs144517871 and rs143835534) within the first intron of the SEMA3C gene cosegregated with the 7q21.11 risk haplotype. In silico characterization of these two variants predicted effects on gene regulation, which we functionally validated for rs144517871 in human cell lines using luciferase reporter assays. SEMA3C encodes a secreted protein that acts as a guidance cue in several processes, including cortical neuronal migration and cellular polarization. We hypothesize that these intronic variants could have a cis-regulatory effect on SEMA3C expression, making a contribution to dyslexia susceptibility in this family.
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C. and 29 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Kirsten, H., Müller, B., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 3004-3017. doi:10.1038/s41380-020-00898-x.

    Abstract

    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10−6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p  = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
  • Kong, X., Postema, M., Schijven, D., Carrion Castillo, A., Pepe, A., Crivello, F., Joliot, M., Mazoyer, B., Fisher, S. E., & Francks, C. (2021). Large-scale phenomic and genomic analysis of brain asymmetrical skew. Cerebral Cortex, 31(9), 4151-4168. doi:10.1093/cercor/bhab075.

    Abstract

    The human cerebral hemispheres show a left–right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4–13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry.
  • Postema, M., Hoogman, M., Ambrosino, S., Asherson, P., Banaschewski, T., Bandeira, C. E., Baranov, A., Bau, C. H. D., Baumeister, S., Baur-Streubel, R., Bellgrove, M. A., Biederman, J., Bralten, J., Brandeis, D., Brem, S., Buitelaar, J. K., Busatto, G. F., Castellanos, F. X., Cercignani, M., Chaim-Avancini, T. M. and 85 morePostema, M., Hoogman, M., Ambrosino, S., Asherson, P., Banaschewski, T., Bandeira, C. E., Baranov, A., Bau, C. H. D., Baumeister, S., Baur-Streubel, R., Bellgrove, M. A., Biederman, J., Bralten, J., Brandeis, D., Brem, S., Buitelaar, J. K., Busatto, G. F., Castellanos, F. X., Cercignani, M., Chaim-Avancini, T. M., Chantiluke, K. C., Christakou, A., Coghill, D., Conzelmann, A., Cubillo, A. I., Cupertino, R. B., De Zeeuw, P., Doyle, A. E., Durston, S., Earl, E. A., Epstein, J. N., Ethofer, T., Fair, D. A., Fallgatter, A. J., Faraone, S. V., Frodl, T., Gabel, M. C., Gogberashvili, T., Grevet, E. H., Haavik, J., Harrison, N. A., Hartman, C. A., Heslenfeld, D. J., Hoekstra, P. J., Hohmann, S., Høvik, M. F., Jernigan, T. L., Kardatzki, B., Karkashadze, G., Kelly, C., Kohls, G., Konrad, K., Kuntsi, J., Lazaro, L., Lera-Miguel, S., Lesch, K.-P., Louza, M. R., Lundervold, A. J., Malpas, C. B., Mattos, P., McCarthy, H., Namazova-Baranova, L., Nicolau, R., Nigg, J. T., Novotny, S. E., Oberwelland Weiss, E., O'Gorman Tuura, R. L., Oosterlaan, J., Oranje, B., Paloyelis, Y., Pauli, P., Picon, F. A., Plessen, K. J., Ramos-Quiroga, J. A., Reif, A., Reneman, L., Rosa, P. G. P., Rubia, K., Schrantee, A., Schweren, L. J. S., Seitz, J., Shaw, P., Silk, T. J., Skokauskas, N., Soliva Vila, J. C., Stevens, M. C., Sudre, G., Tamm, L., Tovar-Moll, F., Van Erp, T. G. M., Vance, A., Vilarroya, O., Vives-Gilabert, Y., Von Polier, G. G., Walitza, S., Yoncheva, Y. N., Zanetti, M. V., Ziegler, G. C., Glahn, D. C., Jahanshad, N., Medland, S. E., ENIGMA ADHD Working Group, Thompson, P. M., Fisher, S. E., Franke, B., & Francks, C. (2021). Analysis of structural brain asymmetries in Attention-Deficit/Hyperactivity Disorder in 39 datasets. Journal of Child Psychology and Psychiatry, 62(10), 1202-1219. doi:10.1111/jcpp.13396.

    Abstract

    Objective: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here we performed the largest-ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium.
    Methods: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modelling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries.
    Results: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t=2.1, P=0.04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t=2.7, P=0.01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing.
    Conclusion: Prior studies of altered structural brain asymmetry in ADHD were likely under-powered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.

    Additional information

    jcpp13396-sup-0001-supinfo.pdf
  • Sha, Z., Schijven, D., & Francks, C. (2021). Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Molecular Psychiatry, 26(12), 7652-7660. doi:10.1038/s41380-021-01204-z.

    Abstract

    Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing versus empathizing cognitive styles, with resemblances to male versus female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes, and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness and subcortical volume measures in 32,256 participants from the UK Biobank. Polygenic risks for the two disorders were positively correlated (r=0.08, p=7.13×10-50), and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each polygenic risk score was associated with multivariate brain asymmetry after adjusting for sex, ASD r=0.03, p=2.17×10-9, schizophrenia r=0.04, p=2.61×10-11, but the multivariate patterns were mostly distinct for the two polygenic risks, and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both polygenic risks were associated with asymmetries of regions important for language and executive functions, consistent with behavioural associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risks for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies.
  • Sha, Z., Pepe, A., Schijven, D., Carrion Castillo, A., Roe, J. M., Westerhausen, R., Joliot, M., Fisher, S. E., Crivello, F., & Francks, C. (2021). Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proceedings of the National Academy of Sciences of the United States of America, 118(47): e2113095118. doi:10.1073/pnas.2113095118.

    Abstract

    Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.
  • Sha, Z., Schijven, D., Carrion Castillo, A., Joliot, M., Mazoyer, B., Fisher, S. E., Crivello, F., & Francks, C. (2021). The genetic architecture of structural left–right asymmetry of the human brain. Nature Human Behaviour, 5, 1226-1236. doi:10.1038/s41562-021-01069-w.

    Abstract

    Left–right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain’s left–right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left–right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.
  • Zhong, S., Wei, L., Zhao, C., Yang, L., Di, Z., Francks, C., & Gong, G. (2021). Interhemispheric relationship of genetic influence on human brain connectivity. Cerebral Cortex, 31(1), 77-88. doi:10.1093/cercor/bhaa207.

    Abstract

    To understand the origins of interhemispheric differences and commonalities/coupling in human brain wiring, it is crucial to determine how homologous interregional connectivities of the left and right hemispheres are genetically determined and related. To address this, in the present study, we analyzed human twin and pedigree samples with high-quality diffusion magnetic resonance imaging tractography and estimated the heritability and genetic correlation of homologous left and right white matter (WM) connections. The results showed that the heritability of WM connectivity was similar and coupled between the 2 hemispheres and that the degree of overlap in genetic factors underlying homologous WM connectivity (i.e., interhemispheric genetic correlation) varied substantially across the human brain: from complete overlap to complete nonoverlap. Particularly, the heritability was significantly stronger and the chance of interhemispheric complete overlap in genetic factors was higher in subcortical WM connections than in cortical WM connections. In addition, the heritability and interhemispheric genetic correlations were stronger for long-range connections than for short-range connections. These findings highlight the determinants of the genetics underlying WM connectivity and its interhemispheric relationships, and provide insight into genetic basis of WM connectivity asymmetries in both healthy and disease states.

    Additional information

    Supplementary data
  • Carrion Castillo, A., Van der Haegen, L., Tzourio-Mazoyer, N., Kavaklioglu, T., Badillo, S., Chavent, M., Saracco, J., Brysbaert, M., Fisher, S. E., Mazoyer, B., & Francks, C. (2019). Genome sequencing for rightward hemispheric language dominance. Genes, Brain and Behavior, 18(5): e12572. doi:10.1111/gbb.12572.

    Abstract

    Most people have left‐hemisphere dominance for various aspects of language processing, but only roughly 1% of the adult population has atypically reversed, rightward hemispheric language dominance (RHLD). The genetic‐developmental program that underlies leftward language laterality is unknown, as are the causes of atypical variation. We performed an exploratory whole‐genome‐sequencing study, with the hypothesis that strongly penetrant, rare genetic mutations might sometimes be involved in RHLD. This was by analogy with situs inversus of the visceral organs (left‐right mirror reversal of the heart, lungs and so on), which is sometimes due to monogenic mutations. The genomes of 33 subjects with RHLD were sequenced and analyzed with reference to large population‐genetic data sets, as well as 34 subjects (14 left‐handed) with typical language laterality. The sample was powered to detect rare, highly penetrant, monogenic effects if they would be present in at least 10 of the 33 RHLD cases and no controls, but no individual genes had mutations in more than five RHLD cases while being un‐mutated in controls. A hypothesis derived from invertebrate mechanisms of left‐right axis formation led to the detection of an increased mutation load, in RHLD subjects, within genes involved with the actin cytoskeleton. The latter finding offers a first, tentative insight into molecular genetic influences on hemispheric language dominance.

    Additional information

    gbb12572-sup-0001-AppendixS1.docx
  • Eising, E., Carrion Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., Hildebrand, M. S., Webster, R., Ma, A., Mazoyer, B., Francks, C., Bahlo, M., Scheffer, I. E., Morgan, A. T., Shriberg, L. D., & Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24, 1065-1078. doi:10.1038/s41380-018-0020-x.

    Abstract

    Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.

    Additional information

    Eising_etal_2018sup.pdf
  • Francks, C. (2019). In search of the biological roots of typical and atypical human brain asymmetry. Physics of Life Reviews, 30, 22-24. doi:10.1016/j.plrev.2019.07.004.
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.

    Abstract

    Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
  • De Kovel, C. G. F., Carrion Castillo, A., & Francks, C. (2019). A large-scale population study of early life factors influencing left-handedness. Scientific Reports, 9: 584. doi:10.1038/s41598-018-37423-8.

    Abstract

    Hand preference is a conspicuous variation in human behaviour, with a worldwide proportion of around 90% of people preferring to use the right hand for many tasks, and 10% the left hand. We used the large cohort of the UK biobank (~500,000 participants) to study possible relations between early life factors and adult hand preference. The probability of being left-handed was affected by the year and location of birth, likely due to cultural effects. In addition, hand preference was affected by birthweight, being part of a multiple birth, season of birth, breastfeeding, and sex, with each effect remaining significant after accounting for all others. Analysis of genome-wide genotype data showed that left-handedness was very weakly heritable, but shared no genetic basis with birthweight. Although on average left-handers and right-handers differed for a number of early life factors, all together these factors had only a minimal predictive value for individual hand preference.

    Additional information

    Supplementary information
  • De Kovel, C. G. F., Aftanas, L., Aleman, A., Alexander-Bloch, A. F., Baune, B. T., Brack, I., Bülow, R., Filho, G. B., Carballedo, A., Connolly, C. G., Cullen, K. R., Dannlowski, U., Davey, C. G., Dima, D., Dohm, K., Erwin-Grabner, T., Frodl, T., Fu, C. H., Hall, G. B., Glahn, D. C. and 58 moreDe Kovel, C. G. F., Aftanas, L., Aleman, A., Alexander-Bloch, A. F., Baune, B. T., Brack, I., Bülow, R., Filho, G. B., Carballedo, A., Connolly, C. G., Cullen, K. R., Dannlowski, U., Davey, C. G., Dima, D., Dohm, K., Erwin-Grabner, T., Frodl, T., Fu, C. H., Hall, G. B., Glahn, D. C., Godlewska, B., Gotlib, I. H., Goya-Maldonado, R., Grabe, H. J., Groenewold, N. A., Grotegerd, D., Gruber, O., Harris, M. A., Harrison, B. J., Hatton, S. N., Hickie, I. B., Ho, T. C., Jahanshad, N., Kircher, T., Krämer, B., Krug, A., Lagopoulos, J., Leehr, E. J., Li, M., MacMaster, F. P., MacQueen, G., McIntosh, A. M., McLellan, Q., Medland, S. E., Mueller, B. A., Nenadic, I., Osipov, E., Papmeyer, M., Portella, M. J., Reneman, L., Rosa, P. G., Sacchet, M. D., Schnell, K., Schrantee, A., Sim, K., Simulionyte, E., Sindermann, L., Singh, A., Stein, D. J., Ubani, B. N., der Wee, N. J. V., der Werff, S. J. V., Veer, I. M., Vives-Gilabert, Y., Völzke, H., Walter, H., Walter, M., Schreiner, M. W., Whalley, H., Winter, N., Wittfeld, K., Yang, T. T., Yüksel, D., Zaremba, D., Thompson, P. M., Veltman, D. J., Schmaal, L., & Francks, C. (2019). No alterations of brain structural asymmetry in major depressive disorder: An ENIGMA consortium analysis. American Journal of Psychiatry, 176(12), 1039-1049. doi:10.1176/appi.ajp.2019.18101144.

    Abstract

    Objective:

    Asymmetry is a subtle but pervasive aspect of the human brain, and it may be altered in several psychiatric conditions. MRI studies have shown subtle differences of brain anatomy between people with major depressive disorder and healthy control subjects, but few studies have specifically examined brain anatomical asymmetry in relation to this disorder, and results from those studies have remained inconclusive. At the functional level, some electroencephalography studies have indicated left fronto-cortical hypoactivity and right parietal hypoactivity in depressive disorders, so aspects of lateralized anatomy may also be affected. The authors used pooled individual-level data from data sets collected around the world to investigate differences in laterality in measures of cortical thickness, cortical surface area, and subcortical volume between individuals with major depression and healthy control subjects.
    Methods:

    The authors investigated differences in the laterality of thickness and surface area measures of 34 cerebral cortical regions in 2,256 individuals with major depression and 3,504 control subjects from 31 separate data sets, and they investigated volume asymmetries of eight subcortical structures in 2,540 individuals with major depression and 4,230 control subjects from 32 data sets. T1-weighted MRI data were processed with a single protocol using FreeSurfer and the Desikan-Killiany atlas. The large sample size provided 80% power to detect effects of the order of Cohen’s d=0.1.
    Results:

    The largest effect size (Cohen’s d) of major depression diagnosis was 0.085 for the thickness asymmetry of the superior temporal cortex, which was not significant after adjustment for multiple testing. Asymmetry measures were not significantly associated with medication use, acute compared with remitted status, first episode compared with recurrent status, or age at onset.
    Conclusions:

    Altered brain macro-anatomical asymmetry may be of little relevance to major depression etiology in most cases.
  • De Kovel, C. G. F., & Francks, C. (2019). The molecular genetics of hand preference revisited. Scientific Reports, 9: 5986. doi:10.1038/s41598-019-42515-0.

    Abstract

    Hand preference is a prominent behavioural trait linked to human brain asymmetry. A handful of genetic variants have been reported to associate with hand preference or quantitative measures related to it. Most of these reports were on the basis of limited sample sizes, by current standards for genetic analysis of complex traits. Here we performed a genome-wide association analysis of hand preference in the large, population-based UK Biobank cohort (N = 331,037). We used gene-set enrichment analysis to investigate whether genes involved in visceral asymmetry are particularly relevant to hand preference, following one previous report. We found no evidence supporting any of the previously suggested variants or genes, nor that genes involved in visceral laterality have a role in hand preference. It remains possible that some of the previously reported genes or pathways are relevant to hand preference as assessed in other ways, or else are relevant within specific disorder populations. However, some or all of the earlier findings are likely to be false positives, and none of them appear relevant to hand preference as defined categorically in the general population. Our analysis did produce a small number of novel, significant associations, including one implicating the microtubule-associated gene MAP2 in handedness.
  • Postema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X. and 38 morePostema, M., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto Filho, G., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Feng, X., Fitzgerald, J., Floris, D. L., Freitag, C. M., Gallagher, L., Glahn, D. C., Gori, I., Haar, S., Hoekstra, L., Jahanshad, N., Jalbrzikowski, M., Janssen, J., King, J. A., Kong, X., Lazaro, L., Lerch, J. P., Luna, B., Martinho, M. M., McGrath, J., Medland, S. E., Muratori, F., Murphy, C. M., Murphy, D. G. M., O'Hearn, K., Oranje, B., Parellada, M., Puig, O., Retico, A., Rosa, P., Rubia, K., Shook, D., Taylor, M., Tosetti, M., Wallace, G. L., Zhou, F., Thompson, P., Fisher, S. E., Buitelaar, J. K., & Francks, C. (2019). Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 10: 4958. doi:10.1038/s41467-019-13005-8.
  • Satizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., Van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V. and 271 moreSatizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., Van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V., Li, S., Hu, Y., Koh, J. Y., Eicher, J. D., Desrivières, S., Arias-Vasquez, A., Chauhan, G., Athanasiu, L., Renteria, M. E., Kim, S., Höhn, D., Armstrong, N. J., Chen, Q., Holmes, A. J., Den Braber, A., Kloszewska, I., Andersson, M., Espeseth, T., Grimm, O., Abramovic, L., Alhusaini, S., Milaneschi, Y., Papmeyer, M., Axelsson, T., Ehrlich, S., Roiz-Santiañez, R., Kraemer, B., Håberg, A. K., Jones, H. J., Pike, G. B., Stein, D. J., Stevens, A., Bralten, J., Vernooij, M. W., Harris, T. B., Filippi, I., Witte, A. V., Guadalupe, T., Wittfeld, K., Mosley, T. H., Becker, J. T., Doan, N. T., Hagenaars, S. P., Saba, Y., Cuellar-Partida, G., Amin, N., Hilal, S., Nho, K., Karbalai, N., Arfanakis, K., Becker, D. M., Ames, D., Goldman, A. L., Lee, P. H., Boomsma, D. I., Lovestone, S., Giddaluru, S., Le Hellard, S., Mattheisen, M., Bohlken, M. M., Kasperaviciute, D., Schmaal, L., Lawrie, S. M., Agartz, I., Walton, E., Tordesillas-Gutierrez, D., Davies, G. E., Shin, J., Ipser, J. C., Vinke, L. N., Hoogman, M., Jia, T., Burkhardt, R., Klein, M., Crivello, F., Janowitz, D., Carmichael, O., Haukvik, U. K., Aribisala, B. S., Schmidt, H., Strike, L. T., Cheng, C.-Y., Risacher, S. L., Pütz, B., Fleischman, D. A., Assareh, A. A., Mattay, V. S., Buckner, R. L., Mecocci, P., Dale, A. M., Cichon, S., Boks, M. P., Matarin, M., Penninx, B. W. J. H., Calhoun, V. D., Chakravarty, M. M., Marquand, A., Macare, C., Masouleh, S. K., Oosterlaan, J., Amouyel, P., Hegenscheid, K., Rotter, J. I., Schork, A. J., Liewald, D. C. M., De Zubicaray, G. I., Wong, T. Y., Shen, L., Sämann, P. G., Brodaty, H., Roffman, J. L., De Geus, E. J. C., Tsolaki, M., Erk, S., Van Eijk, K. R., Cavalleri, G. L., Van der Wee, N. J. A., McIntosh, A. M., Gollub, R. L., Bulayeva, K. B., Bernard, M., Richards, J. S., Himali, J. J., Loeffler, M., Rommelse, N., Hoffmann, W., Westlye, L. T., Valdés Hernández, M. C., Hansell, N. K., Van Erp, T. G. M., Wolf, C., Kwok, J. B. J., Vellas, B., Heinz, A., Olde Loohuis, L. M., Delanty, N., Ho, B.-C., Ching, C. R. K., Shumskaya, E., Singh, B., Hofman, A., Van der Meer, D., Homuth, G., Psaty, B. M., Bastin, M., Montgomery, G. W., Foroud, T. M., Reppermund, S., Hottenga, J.-J., Simmons, A., Meyer-Lindenberg, A., Cahn, W., Whelan, C. D., Van Donkelaar, M. M. J., Yang, Q., Hosten, N., Green, R. C., Thalamuthu, A., Mohnke, S., Hulshoff Pol, H. E., Lin, H., Jack Jr., C. R., Schofield, P. R., Mühleisen, T. W., Maillard, P., Potkin, S. G., Wen, W., Fletcher, E., Toga, A. W., Gruber, O., Huentelman, M., Smith, G. D., Launer, L. J., Nyberg, L., Jönsson, E. G., Crespo-Facorro, B., Koen, N., Greve, D., Uitterlinden, A. G., Weinberger, D. R., Steen, V. M., Fedko, I. O., Groenewold, N. A., Niessen, W. J., Toro, R., Tzourio, C., Longstreth Jr., W. T., Ikram, M. K., Smoller, J. W., Van Tol, M.-J., Sussmann, J. E., Paus, T., Lemaître, H., Schroeter, M. L., Mazoyer, B., Andreassen, O. A., Holsboer, F., Depondt, C., Veltman, D. J., Turner, J. A., Pausova, Z., Schumann, G., Van Rooij, D., Djurovic, S., Deary, I. J., McMahon, K. L., Müller-Myhsok, B., Brouwer, R. M., Soininen, H., Pandolfo, M., Wassink, T. H., Cheung, J. W., Wolfers, T., Martinot, J.-L., Zwiers, M. P., Nauck, M., Melle, I., Martin, N. G., Kanai, R., Westman, E., Kahn, R. S., Sisodiya, S. M., White, T., Saremi, A., Van Bokhoven, H., Brunner, H. G., Völzke, H., Wright, M. J., Van 't Ent, D., Nöthen, M. M., Ophoff, R. A., Buitelaar, J. K., Fernández, G., Sachdev, P. S., Rietschel, M., Van Haren, N. E. M., Fisher, S. E., Beiser, A. S., Francks, C., Saykin, A. J., Mather, K. A., Romanczuk-Seiferth, N., Hartman, C. A., DeStefano, A. L., Heslenfeld, D. J., Weiner, M. W., Walter, H., Hoekstra, P. J., Nyquist, P. A., Franke, B., Bennett, D. A., Grabe, H. J., Johnson, A. D., Chen, C., Van Duijn, C. M., Lopez, O. L., Fornage, M., Wardlaw, J. A., Schmidt, R., DeCarli, C., De Jager, P. L., Villringer, A., Debette, S., Gudnason, V., Medland, S. E., Shulman, J. M., Thompson, P. M., Seshadri, S., & Ikram, M. A. (2019). Genetic architecture of subcortical brain structures in 38,854 individuals worldwide. Nature Genetics, 51, 1624-1636. doi:10.1038/s41588-019-0511-y.

    Abstract

    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  • Truong, D. T., Adams, A. K., Paniagua, S., Frijters, J. C., Boada, R., Hill, D. E., Lovett, M. W., Mahone, E. M., Willcutt, E. G., Wolf, M., Defries, J. C., Gialluisi, A., Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., Bosson-Heenan, J., & Gruen, J. R. (2019). Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African–American youth. Journal of Medical Genetics, 56(8), 557-566. doi:10.1136/jmedgenet-2018-105874.

    Abstract

    Background Rapid automatised naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of reading disability. The underlying biology of reading disability is poorly understood. However, the high correlation among RAN, RAS and reading could be attributable to shared genetic factors that contribute to common biological mechanisms.

    Objective To identify shared genetic factors that contribute to RAN and RAS performance using a multivariate approach.

    Methods We conducted a multivariate genome-wide association analysis of RAN Objects, RAN Letters and RAS Letters/Numbers in a sample of 1331 Hispanic American and African–American youth. Follow-up neuroimaging genetic analysis of cortical regions associated with reading ability in an independent sample and epigenetic examination of extant data predicting tissue-specific functionality in the brain were also conducted.

    Results Genome-wide significant effects were observed at rs1555839 (p=4.03×10−8) and replicated in an independent sample of 318 children of European ancestry. Epigenetic analysis and chromatin state models of the implicated 70 kb region of 10q23.31 support active transcription of the gene RNLS in the brain, which encodes a catecholamine metabolising protein. Chromatin contact maps of adult hippocampal tissue indicate a potential enhancer–promoter interaction regulating RNLS expression. Neuroimaging genetic analysis in an independent, multiethnic sample (n=690) showed that rs1555839 is associated with structural variation in the right inferior parietal lobule.

    Conclusion This study provides support for a novel trait locus at chromosome 10q23.31 and proposes a potential gene–brain–behaviour relationship for targeted future functional analysis to understand underlying biological mechanisms for reading disability.

    Additional information

    Supplementary data
  • Fisher, S. E., Francks, C., McCracken, J. T., McGough, J. J., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Crawford, L. R., Palmer, C. G. S., Woodward, J. A., Del’Homme, M., Cantwell, D. P., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2002). A genomewide scan for loci involved in Attention-Deficit/Hyperactivity Disorder. American Journal of Human Genetics, 70(5), 1183-1196. doi:10.1086/340112.

    Abstract

    Attention deficit/hyperactivity disorder (ADHD) is a common heritable disorder with a childhood onset. Molecular genetic studies of ADHD have previously focused on examining the roles of specific candidate genes, primarily those involved in dopaminergic pathways. We have performed the first systematic genomewide linkage scan for loci influencing ADHD in 126 affected sib pairs, using a ∼10-cM grid of microsatellite markers. Allele-sharing linkage methods enabled us to exclude any loci with a λs of ⩾3 from 96% of the genome and those with a λs of ⩾2.5 from 91%, indicating that there is unlikely to be a major gene involved in ADHD susceptibility in our sample. Under a strict diagnostic scheme we could exclude all screened regions of the X chromosome for a locus-specific λs of ⩾2 in brother-brother pairs, demonstrating that the excess of affected males with ADHD is probably not attributable to a major X-linked effect. Qualitative trait maximum LOD score analyses pointed to a number of chromosomal sites that may contain genetic risk factors of moderate effect. None exceeded genomewide significance thresholds, but LOD scores were >1.5 for regions on 5p12, 10q26, 12q23, and 16p13. Quantitative-trait analysis of ADHD symptom counts implicated a region on 12p13 (maximum LOD 2.6) that also yielded a LOD >1 when qualitative methods were used. A survey of regions containing 36 genes that have been proposed as candidates for ADHD indicated that 29 of these genes, including DRD4 and DAT1, could be excluded for a λs of 2. Only three of the candidates—DRD5, 5HTT, and CALCYON—coincided with sites of positive linkage identified by our screen. Two of the regions highlighted in the present study, 2q24 and 16p13, coincided with the top linkage peaks reported by a recent genome-scan study of autistic sib pairs.
  • Fisher, S. E., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Cardon, L. R., Ishikawa-Brush, Y., Richardson, A. J., Talcott, J. B., Gayán, J., Olson, R. K., Pennington, B. F., Smith, S. D., DeFries, J. C., Stein, J. F., & Monaco, A. P. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30(1), 86-91. doi:10.1038/ng792.

    Abstract

    Developmental dyslexia is defined as a specific and significant impairment in reading ability that cannot be explained by deficits in intelligence, learning opportunity, motivation or sensory acuity. It is one of the most frequently diagnosed disorders in childhood, representing a major educational and social problem. It is well established that dyslexia is a significantly heritable trait with a neurobiological basis. The etiological mechanisms remain elusive, however, despite being the focus of intensive multidisciplinary research. All attempts to map quantitative-trait loci (QTLs) influencing dyslexia susceptibility have targeted specific chromosomal regions, so that inferences regarding genetic etiology have been made on the basis of very limited information. Here we present the first two complete QTL-based genome-wide scans for this trait, in large samples of families from the United Kingdom and United States. Using single-point analysis, linkage to marker D18S53 was independently identified as being one of the most significant results of the genome in each scan (P< or =0.0004 for single word-reading ability in each family sample). Multipoint analysis gave increased evidence of 18p11.2 linkage for single-word reading, yielding top empirical P values of 0.00001 (UK) and 0.0004 (US). Measures related to phonological and orthographic processing also showed linkage at this locus. We replicated linkage to 18p11.2 in a third independent sample of families (from the UK), in which the strongest evidence came from a phoneme-awareness measure (most significant P value=0.00004). A combined analysis of all UK families confirmed that this newly discovered 18p QTL is probably a general risk factor for dyslexia, influencing several reading-related processes. This is the first report of QTL-based genome-wide scanning for a human cognitive trait.
  • Francks, C., Fisher, S. E., MacPhie, I. L., Richardson, A. J., Marlow, A. J., Stein, J. F., & Monaco, A. P. (2002). A genomewide linkage screen for relative hand skill in sibling pairs. American Journal of Human Genetics, 70(3), 800-805. doi:10.1086/339249.

    Abstract

    Genomewide quantitative-trait locus (QTL) linkage analysis was performed using a continuous measure of relative hand skill (PegQ) in a sample of 195 reading-disabled sibling pairs from the United Kingdom. This was the first genomewide screen for any measure related to handedness. The mean PegQ in the sample was equivalent to that of normative data, and PegQ was not correlated with tests of reading ability (correlations between −0.13 and 0.05). Relative hand skill could therefore be considered normal within the sample. A QTL on chromosome 2p11.2-12 yielded strong evidence for linkage to PegQ (empirical P=.00007), and another suggestive QTL on 17p11-q23 was also identified (empirical P=.002). The 2p11.2-12 locus was further analyzed in an independent sample of 143 reading-disabled sibling pairs, and this analysis yielded an empirical P=.13. Relative hand skill therefore is probably a complex multifactorial phenotype with a heterogeneous background, but nevertheless is amenable to QTL-based gene-mapping approaches.
  • Francks, C., Fisher, S. E., Olson, R. K., Pennington, B. F., Smith, S. D., DeFries, J. C., & Monaco, A. P. (2002). Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: Quantitative association analysis and positional candidate genes SEMA4F and OTX1. Psychiatric Genetics, 12(1), 35-41.

    Abstract

    A locus on chromosome 2p12-16 has been implicated in dyslexia susceptibility by two independent linkage studies, including our own study of 119 nuclear twin-based families, each with at least one reading-disabled child. Nonetheless, no variant of any gene has been reported to show association with dyslexia, and no consistent clinical evidence exists to identify candidate genes with any strong a priori logic. We used 21 microsatellite markers spanning 2p12-16 to refine our 1-LOD unit linkage support interval to 12cM between D2S337 and D2S286. Then, in quantitative association analysis, two microsatellites yielded P values<0.05 across a range of reading-related measures (D2S2378 and D2S2114). The exon/intron borders of two positional candidate genes within the region were characterized, and the exons were screened for polymorphisms. The genes were Semaphorin4F (SEMA4F), which encodes a protein involved in axonal growth cone guidance, and OTX1, encoding a homeodomain transcription factor involved in forebrain development. Two non-synonymous single nucleotide polymorphisms were found in SEMA4F, each with a heterozygosity of 0.03. One intronic single nucleotide polymorphism between exons 12 and 13 of SEMA4F was tested for quantitative association, but no significant association was found. Only one single nucleotide polymorphism was found in OTX1, which was exonic but silent. Our data therefore suggest that linkage with reading disability at 2p12-16 is not caused by coding variants of SEMA4F or OTX1. Our study outlines the approach necessary for the identification of genetic variants causing dyslexia susceptibility in an epidemiological population of dyslexics.
  • Francks, C., MacPhie, I. L., & Monaco, A. P. (2002). The genetic basis of dyslexia. The Lancet Neurology, 1(8), 483-490. doi:10.1016/S1474-4422(02)00221-1.

    Abstract

    Dyslexia, a disorder of reading and spelling, is a heterogeneous neurological syndrome with a complex genetic and environmental aetiology. People with dyslexia differ in their individual profiles across a range of cognitive, physiological, and behavioural measures related to reading disability. Some or all of the subtypes of dyslexia might have partly or wholly distinct genetic causes. An understanding of the role of genetics in dyslexia could help to diagnose and treat susceptible children more effectively and rapidly than is currently possible and in ways that account for their individual disabilities. This knowledge will also give new insights into the neurobiology of reading and language cognition. Genetic linkage analysis has identified regions of the genome that might harbour inherited variants that cause reading disability. In particular, loci on chromosomes 6 and 18 have shown strong and replicable effects on reading abilities. These genomic regions contain tens or hundreds of candidate genes, and studies aimed at the identification of the specific causal genetic variants are underway.
  • Marlow, A. J., Fisher, S. E., Richardson, A. J., Francks, C., Talcott, J. B., Monaco, A. P., Stein, J. F., & Cardon, L. R. (2002). Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. Behavior Genetics, 31(2), 219-230. doi:10.1023/A:1010209629021.

    Abstract

    We describe a family-based sample of individuals with reading disability collected as part of a quantitative trait loci (QTL) mapping study. Eighty-nine nuclear families (135 independent sib-pairs) were identified through a single proband using a traditional discrepancy score of predicted/actual reading ability and a known family history. Eight correlated psychometric measures were administered to each sibling, including single word reading, spelling, similarities, matrices, spoonerisms, nonword and irregular word reading, and a pseudohomophone test. Summary statistics for each measure showed a reduced mean for the probands compared to the co-sibs, which in turn was lower than that of the population. This partial co-sib regression back to the mean indicates that the measures are influenced by familial factors and therefore, may be suitable for a mapping study. The variance of each of the measures remained largely unaffected, which is reassuring for the application of a QTL approach. Multivariate genetic analysis carried out to explore the relationship between the measures identified a common factor between the reading measures that accounted for 54% of the variance. Finally the familiality estimates (range 0.32–0.73) obtained for the reading measures including the common factor (0.68) supported their heritability. These findings demonstrate the viability of this sample for QTL mapping, and will assist in the interpretation of any subsequent linkage findings in an ongoing genome scan.
  • Smalley, S. L., Kustanovich, V., Minassian, S. L., Stone, J. L., Ogdie, M. N., McGough, J. J., McCracken, J. T., MacPhie, I. L., Francks, C., Fisher, S. E., Cantor, R. M., Monaco, A. P., & Nelson, S. F. (2002). Genetic linkage of Attention-Deficit/Hyperactivity Disorder on chromosome 16p13, in a region implicated in autism. American Journal of Human Genetics, 71(4), 959-963. doi:10.1086/342732.

    Abstract

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed behavioral disorder in childhood and likely represents an extreme of normal behavior. ADHD significantly impacts learning in school-age children and leads to impaired functioning throughout the life span. There is strong evidence for a genetic etiology of the disorder, although putative alleles, principally in dopamine-related pathways suggested by candidate-gene studies, have very small effect sizes. We use affected-sib-pair analysis in 203 families to localize the first major susceptibility locus for ADHD to a 12-cM region on chromosome 16p13 (maximum LOD score 4.2; P=.000005), building upon an earlier genomewide scan of this disorder. The region overlaps that highlighted in three genome scans for autism, a disorder in which inattention and hyperactivity are common, and physically maps to a 7-Mb region on 16p13. These findings suggest that variations in a gene on 16p13 may contribute to common deficits found in both ADHD and autism.

Share this page