Displaying 1 - 9 of 9
-
Artigas, M. S., Loth, D. W., Wain, L. V., Gharib, S. A., Obeidat, M., Tang, W., Zhai, G., Zhao, J. H., Smith, A. V., Huffman, J. E., Albrecht, E., Jackson, C. M., Evans, D. M., Cadby, G., Fornage, M., Manichaikul, A., Lopez, L. M., Johnson, T., Aldrich, M. C., Aspelund, T. and 149 moreArtigas, M. S., Loth, D. W., Wain, L. V., Gharib, S. A., Obeidat, M., Tang, W., Zhai, G., Zhao, J. H., Smith, A. V., Huffman, J. E., Albrecht, E., Jackson, C. M., Evans, D. M., Cadby, G., Fornage, M., Manichaikul, A., Lopez, L. M., Johnson, T., Aldrich, M. C., Aspelund, T., Barroso, I., Campbell, H., Cassano, P. A., Couper, D. J., Eiriksdottir, G., Franceschini, N., Garcia, M., Gieger, C., Gislason, G. K., Grkovic, I., Hammond, C. J., Hancock, D. B., Harris, T. B., Ramasamy, A., Heckbert, S. R., Heliövaara, M., Homuth, G., Hysi, P. G., James, A. L., Jankovic, S., Joubert, B. R., Karrasch, S., Klopp, N., Koch, B., Kritchevsky, S. B., Launer, L. J., Liu, Y., Loehr, L. R., Lohman, K., Loos, R. J., Lumley, T., Al Balushi, K. A., Ang, W. Q., Barr, R. G., Beilby, J., Blakey, J. D., Boban, M., Boraska, V., Brisman, J., Britton, J. R., Brusselle, G., Cooper, C., Curjuric, I., Dahgam, S., Deary, I. J., Ebrahim, S., Eijgelsheim, M., Francks, C., Gaysina, D., Granell, R., Gu, X., Hankinson, J. L., Hardy, R., Harris, S. E., Henderson, J., Henry, A., Hingorani, A. D., Hofman, A., Holt, P. G., Hui, J., Hunter, M. L., Imboden, M., Jameson, K. A., Kerr, S. M., Kolcic, I., Kronenberg, F., Liu, J. Z., Marchini, J., McKeever, T., Morris, A. D., Olin, A. C., Porteous, D. J., Postma, D. S., Rich, S. S., Ring, S. M., Rivadeneira, F., Rochat, T., Sayer, A. A., Sayers, I., Sly, P. D., Smith, G. D., Sood, A., Starr, J. M., Uitterlinden, A. G., Vonk, J. M., Wannamethee, S. G., Whincup, P. H., Wijmenga, C., Williams, O. D., Wong, A., Mangino, M., Marciante, K. D., McArdle, W. L., Meibohm, B., Morrison, A. C., North, K. E., Omenaas, E., Palmer, L. J., Pietiläinen, K. H., Pin, I., Pola Sbreve Ek, O., Pouta, A., Psaty, B. M., Hartikainen, A. L., Rantanen, T., Ripatti, S., Rotter, J. I., Rudan, I., Rudnicka, A. R., Schulz, H., Shin, S. Y., Spector, T. D., Surakka, I., Vitart, V., Völzke, H., Wareham, N. J., Warrington, N. M., Wichmann, H. E., Wild, S. H., Wilk, J. B., Wjst, M., Wright, A. F., Zgaga, L., Zemunik, T., Pennell, C. E., Nyberg, F., Kuh, D., Holloway, J. W., Boezen, H. M., Lawlor, D. A., Morris, R. W., Probst-Hensch, N., The International Lung Cancer Consortium, Giant consortium, Kaprio, J., Wilson, J. F., Hayward, C., Kähönen, M., Heinrich, J., Musk, A. W., Jarvis, D. L., Gläser, S., Järvelin, M. R., Ch Stricker, B. H., Elliott, P., O'Connor, G. T., Strachan, D. P., London, S. J., Hall, I. P., Gudnason, V., & Tobin, M. D. (2011). Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nature Genetics, 43, 1082-1090. doi:10.1038/ng.941.
Abstract
Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.Additional information
Artigas_et_al_Supplementary_Information.pdf -
Dow, D. J., Huxley-Jones, J., Hall, J. M., Francks, C., Maycox, P. R., Kew, J. N., Gloger, I. S., Mehta, N. A., Kelly, F. M., Muglia, P., Breen, G., Jugurnauth, S., Pederoso, I., St.Clair, D., Rujescu, D., & Barnes, M. R. (2011). ADAMTSL3 as a candidate gene for schizophrenia: Gene sequencing and ultra-high density association analysis by imputation. Schizophrenia Research, 127(1-3), 28-34. doi:10.1016/j.schres.2010.12.009.
Abstract
We previously reported an association with a putative functional variant in the ADAMTSL3 gene, just below genome-wide significance in a genome-wide association study of schizophrenia. As variants impacting the function of ADAMTSL3 (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs-like-3) could illuminate a novel disease mechanism and a potentially specific target, we have used complementary approaches to further evaluate the association. We imputed genotypes and performed high density association analysis using data from the HapMap and 1000 genomes projects. To review all variants that could potentially cause the association, and to identify additional possible pathogenic rare variants, we sequenced ADAMTSL3 in 92 schizophrenics. A total of 71 ADAMTSL3 variants were identified by sequencing, many were also seen in the 1000 genomes data, but 26 were novel. None of the variants identified by re-sequencing was in strong linkage disequilibrium (LD) with the associated markers. Imputation analysis refined association between ADAMTSL3 and schizophrenia, and highlighted additional common variants with similar levels of association. We evaluated the functional consequences of all variants identified by sequencing, or showing direct or imputed association. The strongest evidence for function remained with the originally associated variant, rs950169, suggesting that this variant may be causal of the association. Rare variants were also identified with possible functional impact. Our study confirms ADAMTSL3 as a candidate for further investigation in schizophrenia, using the variants identified here. The utility of imputation analysis is demonstrated, and we recommend wider use of this method to re-evaluate the existing canon of suggestive schizophrenia associations. -
Francks, C. (2011). Leucine-rich repeat genes and the fine-tuning of synapses. Biological Psychiatry, 69, 820-821. doi:10.1016/j.biopsych.2010.12.018.
-
Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P. H., Buizer-Voskamp, J. E., Strengman, E., Francks, C., Muglia, P., Gylfason, A., Gustafsson, O., Olason, P. I., Steinberg, S., Hansen, T., Jakobsen, K. D., Rasmussen, H. B., Giegling, I., Möller, H.-J., Hartmann, A. and 28 moreIngason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P. H., Buizer-Voskamp, J. E., Strengman, E., Francks, C., Muglia, P., Gylfason, A., Gustafsson, O., Olason, P. I., Steinberg, S., Hansen, T., Jakobsen, K. D., Rasmussen, H. B., Giegling, I., Möller, H.-J., Hartmann, A., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Bramon, E., Kiemeney, L. A., Franke, B., Murray, R., Vassos, E., Toulopoulou, T., Mühleisen, T. W., Tosato, S., Ruggeri, M., Djurovic, S., Andreassen, O. A., Zhang, Z., Werge, T., Ophoff, R. A., Rietschel, M., Nöthen, M. M., Petursson, H., Stefansson, H., Peltonen, L., Collier, D., Stefansson, K., & St Clair, D. M. (2011). Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Molecular Psychiatry, 16, 17-25. doi:10.1038/mp.2009.101.
Abstract
Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients and 35 079 controls from 8 European populations for duplications and deletions at the 16p13.1 locus, using microarray data. We found a threefold excess of duplications and deletions in schizophrenia cases compared with controls, with duplications present in 0.30% of cases versus 0.09% of controls (P=0.007) and deletions in 0.12 % of cases and 0.04% of controls (P>0.05). The region can be divided into three intervals defined by flanking low copy repeats. Duplications spanning intervals I and II showed the most significant (P=0.00010) association with schizophrenia. The age of onset in duplication and deletion carriers among cases ranged from 12 to 35 years, and the majority were males with a family history of psychiatric disorders. In a single Icelandic family, a duplication spanning intervals I and II was present in two cases of schizophrenia, and individual cases of alcoholism, attention deficit hyperactivity disorder and dyslexia. Candidate genes in the region include NTAN1 and NDE1. We conclude that duplications and perhaps also deletions of chromosome 16p13.1, previously reported to be associated with autism and MR, also confer risk of schizophrenia.Additional information
http://www.nature.com/mp/journal/vaop/ncurrent/suppinfo/mp2009101s1.html?url=/m… -
Francks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B. and 22 moreFrancks, C., Maegawa, S., Laurén, J., Abrahams, B. S., Velayos-Baeza, A., Medland, S. E., Colella, S., Groszer, M., McAuley, E. Z., Caffrey, T. M., Timmusk, T., Pruunsild, P., Koppel, I., Lind, P. A., Matsumoto-Itaba, N., Nicod, J., Xiong, L., Joober, R., Enard, W., Krinsky, B., Nanba, E., Richardson, A. J., Riley, B. P., Martin, N. G., Strittmatter, S. M., Möller, H.-J., Rujescu, D., St Clair, D., Muglia, P., Roos, J. L., Fisher, S. E., Wade-Martins, R., Rouleau, G. A., Stein, J. F., Karayiorgou, M., Geschwind, D. H., Ragoussis, J., Kendler, K. S., Airaksinen, M. S., Oshimura, M., DeLisi, L. E., & Monaco, A. P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129-1139. doi:10.1038/sj.mp.4002053.
Abstract
Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.Additional information
http://www.nature.com/mp/journal/v12/n12/suppinfo/4002053s1.html?url=/mp/journa… -
Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., Marlow, A. J., MacPhie, I. L., Walter, J., Pennington, B. F., Fisher, S. E., Olson, R. K., DeFries, J. C., Stein, J. F., & Monaco, A. P. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75(6), 1046-1058. doi:10.1086/426404.
Abstract
Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of ∼12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability. -
Loo, S. K., Fisher, S. E., Francks, C., Ogdie, M. N., MacPhie, I. L., Yang, M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2004). Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: Unique and shared genetic effects. Molecular Psychiatry, 9, 485-493. doi:10.1038/sj.mp.4001450.
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and reading disability (RD) are common highly heritable disorders of childhood, which frequently co-occur. Data from twin and family studies suggest that this overlap is, in part, due to shared genetic underpinnings. Here, we report the first genome-wide linkage analysis of measures of reading ability in children with ADHD, using a sample of 233 affected sibling pairs who previously participated in a genome-wide scan for susceptibility loci in ADHD. Quantitative trait locus (QTL) analysis of a composite reading factor defined from three highly correlated reading measures identified suggestive linkage (multipoint maximum lod score, MLS>2.2) in four chromosomal regions. Two regions (16p, 17q) overlap those implicated by our previous genome-wide scan for ADHD in the same sample: one region (2p) provides replication for an RD susceptibility locus, and one region (10q) falls approximately 35 cM from a modestly highlighted region in an independent genome-wide scan of siblings with ADHD. Investigation of an individual reading measure of Reading Recognition supported linkage to putative RD susceptibility regions on chromosome 8p (MLS=2.4) and 15q (MLS=1.38). Thus, the data support the existence of genetic factors that have pleiotropic effects on ADHD and reading ability--as suggested by shared linkages on 16p, 17q and possibly 10q--but also those that appear to be unique to reading--as indicated by linkages on 2p, 8p and 15q that coincide with those previously found in studies of RD. Our study also suggests that reading measures may represent useful phenotypes in ADHD research. The eventual identification of genes underlying these unique and shared linkages may increase our understanding of ADHD, RD and the relationship between the two. -
Ogdie, M. N., Fisher, S. E., Yang, M., Ishii, J., Francks, C., Loo, S. K., Cantor, R. M., McCracken, J. T., McGough, J. J., Smalley, S. L., & Nelson, S. F. (2004). Attention Deficit Hyperactivity Disorder: Fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. American Journal of Human Genetics, 75(4), 661-668. doi:10.1086/424387.
Abstract
We completed fine mapping of nine positional candidate regions for attention-deficit/hyperactivity disorder (ADHD) in an extended population sample of 308 affected sibling pairs (ASPs), constituting the largest linkage sample of families with ADHD published to date. The candidate chromosomal regions were selected from all three published genomewide scans for ADHD, and fine mapping was done to comprehensively validate these positional candidate regions in our sample. Multipoint maximum LOD score (MLS) analysis yielded significant evidence of linkage on 6q12 (MLS 3.30; empiric P=.024) and 17p11 (MLS 3.63; empiric P=.015), as well as suggestive evidence on 5p13 (MLS 2.55; empiric P=.091). In conjunction with the previously reported significant linkage on the basis of fine mapping 16p13 in the same sample as this report, the analyses presented here indicate that four chromosomal regions—5p13, 6q12, 16p13, and 17p11—are likely to harbor susceptibility genes for ADHD. The refinement of linkage within each of these regions lays the foundation for subsequent investigations using association methods to detect risk genes of moderate effect size. -
Scerri, T. S., Fisher, S. E., Francks, C., MacPhie, I. L., Paracchini, S., Richardson, A. J., Stein, J. F., & Monaco, A. P. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK [Letter to JMG]. Journal of Medical Genetics, 41(11), 853-857. doi:10.1136/jmg.2004.018341.
Share this page