Displaying 1 - 13 of 13
-
Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
-
Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (
Eds. ), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.Abstract
Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model. -
McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (
Eds. ), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.Abstract
Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal. -
McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (
Eds. ), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.Abstract
We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner. -
Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.
Abstract
The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture. -
Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.
Abstract
Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition. -
Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (
Eds. ), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.Abstract
Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific. -
Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (
Eds. ), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.Abstract
Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity). -
Cutler, A., Norris, D., & McQueen, J. M. (1994). Modelling lexical access from continuous speech input. Dokkyo International Review, 7, 193-215.
Abstract
The recognition of speech involves the segmentation of continuous utterances into their component words. Cross-linguistic evidence is briefly reviewed which suggests that although there are language-specific solutions to this segmentation problem, they have one thing in common: they are all based on language rhythm. In English, segmentation is stress-based: strong syllables are postulated to be the onsets of words. Segmentation, however, can also be achieved by a process of competition between activated lexical hypotheses, as in the Shortlist model. A series of experiments is summarised showing that segmentation of continuous speech depends on both lexical competition and a metrically-guided procedure. In the final section, the implementation of metrical segmentation in the Shortlist model is described: the activation of lexical hypotheses matching strong syllables in the input is boosted and that of hypotheses mismatching strong syllables in the input is penalised. -
Cutler, A., McQueen, J. M., Baayen, R. H., & Drexler, H. (1994). Words within words in a real-speech corpus. In R. Togneri (
Ed. ), Proceedings of the 5th Australian International Conference on Speech Science and Technology: Vol. 1 (pp. 362-367). Canberra: Australian Speech Science and Technology Association.Abstract
In a 50,000-word corpus of spoken British English the occurrence of words embedded within other words is reported. Within-word embedding in this real speech sample is common, and analogous to the extent of embedding observed in the vocabulary. Imposition of a syllable boundary matching constraint reduces but by no means eliminates spurious embedding. Embedded words are most likely to overlap with the beginning of matrix words, and thus may pose serious problems for speech recognisers. -
McQueen, J. M., Norris, D., & Cutler, A. (1994). Competition in spoken word recognition: Spotting words in other words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 621-638.
Abstract
Although word boundaries are rarely clearly marked, listeners can rapidly recognize the individual words of spoken sentences. Some theories explain this in terms of competition between multiply activated lexical hypotheses; others invoke sensitivity to prosodic structure. We describe a connectionist model, SHORTLIST, in which recognition by activation and competition is successful with a realistically sized lexicon. Three experiments are then reported in which listeners detected real words embedded in nonsense strings, some of which were themselves the onsets of longer words. Effects both of competition between words and of prosodic structure were observed, suggesting that activation and competition alone are not sufficient to explain word recognition in continuous speech. However, the results can be accounted for by a version of SHORTLIST that is sensitive to prosodic structure. -
Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.
Abstract
This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data. -
McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (
Eds. ), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.Abstract
This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
Share this page