James McQueen

Publications

Displaying 1 - 12 of 12
  • Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.

    Abstract

    Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed.
  • McQueen, J. M., Eisner, F., & Norris, D. (2016). When brain regions talk to each other during speech processing, what are they talking about? Commentary on Gow and Olson (2015). Language, Cognition and Neuroscience, 31(7), 860-863. doi:10.1080/23273798.2016.1154975.

    Abstract

    This commentary on Gow and Olson [2015. Sentential influences on acoustic-phonetic processing: A Granger causality analysis of multimodal imaging data. Language, Cognition and Neuroscience. doi:10.1080/23273798.2015.1029498] questions in three ways their conclusion that speech perception is based on interactive processing. First, it is not clear that the data presented by Gow and Olson reflect normal speech recognition. Second, Gow and Olson's conclusion depends on still-debated assumptions about the functions performed by specific brain regions. Third, the results are compatible with feedforward models of speech perception and appear inconsistent with models in which there are online interactions about phonological content. We suggest that progress in the neuroscience of speech perception requires the generation of testable hypotheses about the function(s) performed by inter-regional connections
  • Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition and Neuroscience, 31(1), 4-18. doi:10.1080/23273798.2015.1081703.

    Abstract

    Speech perception involves prediction, but how is that prediction implemented? In cognitive models prediction has often been taken to imply that there is feedback of activation from lexical to pre-lexical processes as implemented in interactive-activation models (IAMs). We show that simple activation feedback does not actually improve speech recognition. However, other forms of feedback can be beneficial. In particular, feedback can enable the listener to adapt to changing input, and can potentially help the listener to recognise unusual input, or recognise speech in the presence of competing sounds. The common feature of these helpful forms of feedback is that they are all ways of optimising the performance of speech recognition using Bayesian inference. That is, listeners make predictions about speech because speech recognition is optimal in the sense captured in Bayesian models.
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.

Share this page