James McQueen

Publications

Displaying 1 - 23 of 23
  • Cutler, A., Otake, T., & McQueen, J. M. (2009). Vowel devoicing and the perception of spoken Japanese words. Journal of the Acoustical Society of America, 125(3), 1693-1703. doi:10.1121/1.3075556.

    Abstract

    Three experiments, in which Japanese listeners detected Japanese words embedded in nonsense sequences, examined the perceptual consequences of vowel devoicing in that language. Since vowelless sequences disrupt speech segmentation [Norris et al. (1997). Cognit. Psychol. 34, 191– 243], devoicing is potentially problematic for perception. Words in initial position in nonsense sequences were detected more easily when followed by a sequence containing a vowel than by a vowelless segment (with or without further context), and vowelless segments that were potential devoicing environments were no easier than those not allowing devoicing. Thus asa, “morning,” was easier in asau or asazu than in all of asap, asapdo, asaf, or asafte, despite the fact that the /f/ in the latter two is a possible realization of fu, with devoiced [u]. Japanese listeners thus do not treat devoicing contexts as if they always contain vowels. Words in final position in nonsense sequences, however, produced a different pattern: here, preceding vowelless contexts allowing devoicing impeded word detection less strongly (so, sake was detected less accurately, but not less rapidly, in nyaksake—possibly arising from nyakusake—than in nyagusake). This is consistent with listeners treating consonant sequences as potential realizations of parts of existing lexical candidates wherever possible.
  • McQueen, J. M. (2009). Al sprekende leert men [Inaugural lecture]. Arnhem: Drukkerij Roos en Roos.

    Abstract

    Rede uitgesproken bij de aanvaarding van het ambt van hoogleraar Leren en plasticiteit aan de Faculteit der Sociale Wetenschappen van de Radboud Universiteit Nijmegen op donderdag 1 oktober 2009
  • McQueen, J. M., Jesse, A., & Norris, D. (2009). No lexical–prelexical feedback during speech perception or: Is it time to stop playing those Christmas tapes? Journal of Memory and Language, 61, 1-18. doi:10.1016/j.jml.2009.03.002.

    Abstract

    The strongest support for feedback in speech perception comes from evidence of apparent lexical influence on prelexical fricative-stop compensation for coarticulation. Lexical knowledge (e.g., that the ambiguous final fricative of Christma? should be [s]) apparently influences perception of following stops. We argue that all such previous demonstrations can be explained without invoking lexical feedback. In particular, we show that one demonstration [Magnuson, J. S., McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2003). Lexical effects on compensation for coarticulation: The ghost of Christmash past. Cognitive Science, 27, 285–298] involved experimentally-induced biases (from 16 practice trials) rather than feedback. We found that the direction of the compensation effect depended on whether practice stimuli were words or nonwords. When both were used, there was no lexically-mediated compensation. Across experiments, however, there were lexical effects on fricative identification. This dissociation (lexical involvement in the fricative decisions but not in the following stop decisions made on the same trials) challenges interactive models in which feedback should cause both effects. We conclude that the prelexical level is sensitive to experimentally-induced phoneme-sequence biases, but that there is no feedback during speech perception.
  • Mitterer, H., & McQueen, J. M. (2009). Foreign subtitles help but native-language subtitles harm foreign speech perception. PLoS ONE, 4(11), e7785. doi:10.1371/journal.pone.0007785.

    Abstract

    Understanding foreign speech is difficult, in part because of unusual mappings between sounds and words. It is known that listeners in their native language can use lexical knowledge (about how words ought to sound) to learn how to interpret unusual speech-sounds. We therefore investigated whether subtitles, which provide lexical information, support perceptual learning about foreign speech. Dutch participants, unfamiliar with Scottish and Australian regional accents of English, watched Scottish or Australian English videos with Dutch, English or no subtitles, and then repeated audio fragments of both accents. Repetition of novel fragments was worse after Dutch-subtitle exposure but better after English-subtitle exposure. Native-language subtitles appear to create lexical interference, but foreign-language subtitles assist speech learning by indicating which words (and hence sounds) are being spoken.
  • Mitterer, H., & McQueen, J. M. (2009). Processing reduced word-forms in speech perception using probabilistic knowledge about speech production. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 244-263. doi:10.1037/a0012730.

    Abstract

    Two experiments examined how Dutch listeners deal with the effects of connected-speech processes, specifically those arising from word-final /t/ reduction (e.g., whether Dutch [tas] is tas, bag, or a reduced-/t/ version of tast, touch). Eye movements of Dutch participants were tracked as they looked at arrays containing 4 printed words, each associated with a geometrical shape. Minimal pairs (e.g., tas/tast) were either both above (boven) or both next to (naast) different shapes. Spoken instructions (e.g., “Klik op het woordje tas boven de ster,” [Click on the word bag above the star]) thus became unambiguous only on their final words. Prior to disambiguation, listeners' fixations were drawn to /t/-final words more when boven than when naast followed the ambiguous sequences. This behavior reflects Dutch speech-production data: /t/ is reduced more before /b/ than before /n/. We thus argue that probabilistic knowledge about the effect of following context in speech production is used prelexically in perception to help resolve lexical ambiguities caused by continuous-speech processes.
  • Orfanidou, E., Adam, R., McQueen, J. M., & Morgan, G. (2009). Making sense of nonsense in British Sign Language (BSL): The contribution of different phonological parameters to sign recognition. Memory & Cognition, 37(3), 302-315. doi:10.3758/MC.37.3.302.

    Abstract

    Do all components of a sign contribute equally to its recognition? In the present study, misperceptions in the sign-spotting task (based on the word-spotting task; Cutler & Norris, 1988) were analyzed to address this question. Three groups of deaf signers of British Sign Language (BSL) with different ages of acquisition (AoA) saw BSL signs combined with nonsense signs, along with combinations of two nonsense signs. They were asked to spot real signs and report what they had spotted. We will present an analysis of false alarms to the nonsense-sign combinations—that is, misperceptions of nonsense signs as real signs (cf. van Ooijen, 1996). Participants modified the movement and handshape parameters more than the location parameter. Within this pattern, however, there were differences as a function of AoA. These results show that the theoretical distinctions between form-based parameters in sign-language models have consequences for online processing. Vowels and consonants have different roles in speech recognition; similarly, it appears that movement, handshape, and location parameters contribute differentially to sign recognition.
  • Cho, T., & McQueen, J. M. (2005). Prosodic influences on consonant production in Dutch: Effects of prosodic boundaries, phrasal accent and lexical stress. Journal of Phonetics, 33(2), 121-157. doi:10.1016/j.wocn.2005.01.001.

    Abstract

    Prosodic influences on phonetic realizations of four Dutch consonants (/t d s z/) were examined. Sentences were constructed containing these consonants in word-initial position; the factors lexical stress, phrasal accent and prosodic boundary were manipulated between sentences. Eleven Dutch speakers read these sentences aloud. The patterns found in acoustic measurements of these utterances (e.g., voice onset time (VOT), consonant duration, voicing during closure, spectral center of gravity, burst energy) indicate that the low-level phonetic implementation of all four consonants is modulated by prosodic structure. Boundary effects on domain-initial segments were observed in stressed and unstressed syllables, extending previous findings which have been on stressed syllables alone. Three aspects of the data are highlighted. First, shorter VOTs were found for /t/ in prosodically stronger locations (stressed, accented and domain-initial), as opposed to longer VOTs in these positions in English. This suggests that prosodically driven phonetic realization is bounded by language-specific constraints on how phonetic features are specified with phonetic content: Shortened VOT in Dutch reflects enhancement of the phonetic feature {−spread glottis}, while lengthened VOT in English reflects enhancement of {+spread glottis}. Prosodic strengthening therefore appears to operate primarily at the phonetic level, such that prosodically driven enhancement of phonological contrast is determined by phonetic implementation of these (language-specific) phonetic features. Second, an accent effect was observed in stressed and unstressed syllables, and was independent of prosodic boundary size. The domain of accentuation in Dutch is thus larger than the foot. Third, within a prosodic category consisting of those utterances with a boundary tone but no pause, tokens with syntactically defined Phonological Phrase boundaries could be differentiated from the other tokens. This syntactic influence on prosodic phrasing implies the existence of an intermediate-level phrase in the prosodic hierarchy of Dutch.
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Eisner, F., & McQueen, J. M. (2005). The specificity of perceptual learning in speech processing. Perception & Psychophysics, 67(2), 224-238.

    Abstract

    We conducted four experiments to investigate the specificity of perceptual adjustments made to unusual speech sounds. Dutch listeners heard a female talker produce an ambiguous fricative [?] (between [f] and [s]) in [f]- or [s]-biased lexical contexts. Listeners with [f]-biased exposure (e.g., [witlo?]; from witlof, “chicory”; witlos is meaningless) subsequently categorized more sounds on an [εf]–[εs] continuum as [f] than did listeners with [s]-biased exposure. This occurred when the continuum was based on the exposure talker's speech (Experiment 1), and when the same test fricatives appeared after vowels spoken by novel female and male talkers (Experiments 1 and 2). When the continuum was made entirely from a novel talker's speech, there was no exposure effect (Experiment 3) unless fricatives from that talker had been spliced into the exposure talker's speech during exposure (Experiment 4). We conclude that perceptual learning about idiosyncratic speech is applied at a segmental level and is, under these exposure conditions, talker specific.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • McQueen, J. M., & Sereno, J. (2005). Cleaving automatic processes from strategic biases in phonological priming. Memory & Cognition, 33(7), 1185-1209.

    Abstract

    In a phonological priming experiment using spoken Dutch words, Dutch listeners were taught varying expectancies and relatedness relations about the phonological form of target words, given particular primes. They learned to expect that, after a particular prime, if the target was a word, it would be from a specific phonological category. The expectancy either involved phonological overlap (e.g., honk-vonk, “base-spark”; expected related) or did not (e.g., nest-galm, “nest-boom”; expected unrelated, where the learned expectation after hearing nest was a word rhyming in -alm). Targets were occasionally inconsistent with expectations. In these inconsistent expectancy trials, targets were either unrelated (e.g., honk-mest, “base-manure”; unexpected unrelated), where the listener was expecting a related target, or related (e.g., nest-pest, “nest-plague”; unexpected related), where the listener was expecting an unrelated target. Participant expectations and phonological relatedness were thus manipulated factorially for three types of phonological overlap (rhyme, one onset phoneme, and three onset phonemes) at three interstimulus intervals (ISIs; 50, 500, and 2,000 msec). Lexical decisions to targets revealed evidence of expectancy-based strategies for all three types of overlap (e.g., faster responses to expected than to unexpected targets, irrespective of phonological relatedness) and evidence of automatic phonological processes, but only for the rhyme and three-phoneme onset overlap conditions and, most strongly, at the shortest ISI (e.g., faster responses to related than to unrelated targets, irrespective of expectations). Although phonological priming thus has both automatic and strategic components, it is possible to cleave them apart.
  • McQueen, J. M., & Mitterer, H. (2005). Lexically-driven perceptual adjustments of vowel categories. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 233-236).
  • Scharenborg, O., Norris, D., Ten Bosch, L., & McQueen, J. M. (2005). How should a speech recognizer work? Cognitive Science, 29(6), 867-918. doi:10.1207/s15516709cog0000_37.

    Abstract

    Although researchers studying human speech recognition (HSR) and automatic speech recognition (ASR) share a common interest in how information processing systems (human or machine) recognize spoken language, there is little communication between the two disciplines. We suggest that this lack of communication follows largely from the fact that research in these related fields has focused on the mechanics of how speech can be recognized. In Marr's (1982) terms, emphasis has been on the algorithmic and implementational levels rather than on the computational level. In this article, we provide a computational-level analysis of the task of speech recognition, which reveals the close parallels between research concerned with HSR and ASR. We illustrate this relation by presenting a new computational model of human spoken-word recognition, built using techniques from the field of ASR that, in contrast to current existing models of HSR, recognizes words from real speech input.
  • Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and statistical effects on timing of speech perception: Insights from a database of Dutch diphone perception. Speech Communication, 46(1), 53-72. doi:10.1016/j.specom.2005.01.003.

    Abstract

    We report detailed analyses of a very large database on timing of speech perception collected by Smits et al. (Smits, R., Warner, N., McQueen, J.M., Cutler, A., 2003. Unfolding of phonetic information over time: A database of Dutch diphone perception. J. Acoust. Soc. Am. 113, 563–574). Eighteen listeners heard all possible diphones of Dutch, gated in portions of varying size and presented without background noise. The present report analyzes listeners’ responses across gates in terms of phonological features (voicing, place, and manner for consonants; height, backness, and length for vowels). The resulting patterns for feature perception differ from patterns reported when speech is presented in noise. The data are also analyzed for effects of stress and of phonological context (neighboring vowel vs. consonant); effects of these factors are observed to be surprisingly limited. Finally, statistical effects, such as overall phoneme frequency and transitional probabilities, along with response biases, are examined; these too exercise only limited effects on response patterns. The results suggest highly accurate speech perception on the basis of acoustic information alone.
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).

Share this page