James McQueen

Publications

Displaying 1 - 27 of 27
  • Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., & Eisner, F. (2019). Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 72(10), 2371-2379. doi:10.1177/1747021819838939.

    Abstract

    Previous research on the effect of perturbed auditory feedback in speech production has focused on two types of responses. In the short term, speakers generate compensatory motor commands in response to unexpected perturbations. In the longer term, speakers adapt feedforward motor programmes in response to feedback perturbations, to avoid future errors. The current study investigated the relation between these two types of responses to altered auditory feedback. Specifically, it was hypothesised that consistency in previous feedback perturbations would influence whether speakers adapt their feedforward motor programmes. In an altered auditory feedback paradigm, formant perturbations were applied either across all trials (the consistent condition) or only to some trials, whereas the others remained unperturbed (the inconsistent condition). The results showed that speakers’ responses were affected by feedback consistency, with stronger speech changes in the consistent condition compared with the inconsistent condition. Current models of speech-motor control can explain this consistency effect. However, the data also suggest that compensation and adaptation are distinct processes, which are not in line with all current models.
  • Grey, S., Schubel, L. C., McQueen, J. M., & Van Hell, J. G. (2019). Processing foreign-accented speech in a second language: Evidence from ERPs during sentence comprehension in bilinguals. Bilingualism: Language and Cognition, 22(5), 912-929. doi:10.1017/S1366728918000937.

    Abstract

    This study examined electrophysiological correlates of sentence comprehension of native-accented and foreign-accented
    speech in a second language (L2), for sentences produced in a foreign accent different from that associated with the listeners’
    L1. Bilingual speaker-listeners process different accents in their L2 conversations, but the effects on real-time L2 sentence
    comprehension are unknown. Dutch–English bilinguals listened to native American-English accented sentences and foreign
    (and for them unfamiliarly-accented) Chinese-English accented sentences while EEG was recorded. Behavioral sentence
    comprehension was highly accurate for both native-accented and foreign-accented sentences. ERPs showed different patterns
    for L2 grammar and semantic processing of native- and foreign-accented speech. For grammar, only native-accented speech
    elicited an Nref. For semantics, both native- and foreign-accented speech elicited an N400 effect, but with a delayed onset
    across both accent conditions. These findings suggest that the way listeners comprehend native- and foreign-accented
    sentences in their L2 depends on their familiarity with the accent.
  • Janssen, C., Segers, E., McQueen, J. M., & Verhoeven, L. (2019). Comparing effects of instruction on word meaning and word form on early literacy abilities in kindergarten. Early Education and Development, 30(3), 375-399. doi:10.1080/10409289.2018.1547563.

    Abstract

    Research Findings: The present study compared effects of explicit instruction on and practice with the phonological form of words (form-focused instruction) versus explicit instruction on and practice with the meaning of words (meaning-focused instruction). Instruction was given via interactive storybook reading in the kindergarten classroom of children learning Dutch. We asked whether the 2 types of instruction had different effects on vocabulary development and 2 precursors of reading ability—phonological awareness and letter knowledge—and we examined effects on these measures of the ability to learn new words with minimal acoustic-phonetic differences. Learners showed similar receptive target-word vocabulary gain after both types of instruction, but learners who received form-focused vocabulary instruction showed more gain in semantic knowledge of target vocabulary, phonological awareness, and letter knowledge than learners who received meaning-focused vocabulary instruction. Level of ability to learn pairs of words with minimal acoustic-phonetic differences predicted gain in semantic knowledge of target vocabulary and in letter knowledge in the form-focused instruction group only. Practice or Policy: A focus on the form of words during instruction appears to have benefits for young children learning vocabulary.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Mickan, A., McQueen, J. M., & Lemhöfer, K. (2019). Bridging the gap between second language acquisition research and memory science: The case of foreign language attrition. Frontiers in Human Neuroscience, 13: 397. doi:10.3389/fnhum.2019.00397.

    Abstract

    The field of second language acquisition (SLA) is by nature of its subject a highly interdisciplinary area of research. Learning a (foreign) language, for example, involves encoding new words, consolidating and committing them to long-term memory, and later retrieving them. All of these processes have direct parallels in the domain of human memory and have been thoroughly studied by researchers in that field. Yet, despite these clear links, the two fields have largely developed in parallel and in isolation from one another. The present paper aims to promote more cross-talk between SLA and memory science. We focus on foreign language (FL) attrition as an example of a research topic in SLA where the parallels with memory science are especially apparent. We discuss evidence that suggests that competition between languages is one of the mechanisms of FL attrition, paralleling the interference process thought to underlie forgetting in other domains of human memory. Backed up by concrete suggestions, we advocate the use of paradigms from the memory literature to study these interference effects in the language domain. In doing so, we hope to facilitate future cross-talk between the two fields, and to further our understanding of FL attrition as a memory phenomenon.
  • Schuerman, W. L., McQueen, J. M., & Meyer, A. S. (2019). Speaker statistical averageness modulates word recognition in adverse listening conditions. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1203-1207). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    We tested whether statistical averageness (SA) at the level of the individual speaker could predict a speaker’s intelligibility. 28 female and 21 male speakers of Dutch were recorded producing 336 sentences,
    each containing two target nouns. Recordings were compared to those of all other same-sex speakers using dynamic time warping (DTW). For each sentence, the DTW distance constituted a metric
    of phonetic distance from one speaker to all other speakers. SA comprised the average of these distances. Later, the same participants performed a word recognition task on the target nouns in the same sentences, under three degraded listening conditions. In all three conditions, accuracy increased with SA. This held even when participants listened to their own utterances. These findings suggest that listeners process speech with respect to the statistical
    properties of the language spoken in their community, rather than using their own speech as a reference
  • Solberg Økland, H., Todorović, A., Lüttke, C. S., McQueen, J. M., & De Lange, F. P. (2019). Combined predictive effects of sentential and visual constraints in early audiovisual speech processing. Scientific Reports, 9: 7870. doi:10.1038/s41598-019-44311-2.

    Abstract

    In language comprehension, a variety of contextual cues act in unison to render upcoming words more or less predictable. As a sentence unfolds, we use prior context (sentential constraints) to predict what the next words might be. Additionally, in a conversation, we can predict upcoming sounds through observing the mouth movements of a speaker (visual constraints). In electrophysiological studies, effects of visual constraints have typically been observed early in language processing, while effects of sentential constraints have typically been observed later. We hypothesized that the visual and the sentential constraints might feed into the same predictive process such that effects of sentential constraints might also be detectable early in language processing through modulations of the early effects of visual salience. We presented participants with audiovisual speech while recording their brain activity with magnetoencephalography. Participants saw videos of a person saying sentences where the last word was either sententially constrained or not, and began with a salient or non-salient mouth movement. We found that sentential constraints indeed exerted an early (N1) influence on language processing. Sentential modulations of the N1 visual predictability effect were visible in brain areas associated with semantic processing, and were differently expressed in the two hemispheres. In the left hemisphere, visual and sentential constraints jointly suppressed the auditory evoked field, while the right hemisphere was sensitive to visual constraints only in the absence of strong sentential constraints. These results suggest that sentential and visual constraints can jointly influence even very early stages of audiovisual speech comprehension.
  • Takashima, A., Bakker-Marshall, I., Van Hell, J. G., McQueen, J. M., & Janzen, G. (2019). Neural correlates of word learning in children. Developmental Cognitive Neuroscience, 37: 100647. doi:10.1016/j.dcn.2019.100649.

    Abstract

    Memory representations of words are thought to undergo changes with consolidation: Episodic memories of novel words are transformed into lexical representations that interact with other words in the mental dictionary. Behavioral studies have shown that this lexical integration process is enhanced when there is more time for consolidation. Neuroimaging studies have further revealed that novel word representations are initially represented in a hippocampally-centered system, whereas left posterior middle temporal cortex activation increases with lexicalization. In this study, we measured behavioral and brain responses to newly-learned words in children. Two groups of Dutch children, aged between 8-10 and 14-16 years, were trained on 30 novel Japanese words depicting novel concepts. Children were tested on word-forms, word-meanings, and the novel words’ influence on existing word processing immediately after training, and again after a week. In line with the adult findings, hippocampal involvement decreased with time. Lexical integration, however, was not observed immediately or after a week, neither behaviorally nor neurally. It appears that time alone is not always sufficient for lexical integration to occur. We suggest that other factors (e.g., the novelty of the concepts and familiarity with the language the words are derived from) might also influence the integration process.

    Additional information

    Supplementary data
  • Van Goch, M. M., Verhoeven, L., & McQueen, J. M. (2019). Success in learning similar-sounding words predicts vocabulary depth above and beyond vocabulary breadth. Journal of Child Language, 46(1), 184-197. doi:10.1017/S0305000918000338.

    Abstract

    In lexical development, the specificity of phonological representations is important. The ability to build phonologically specific lexical representations predicts the number of words a child knows (vocabulary breadth), but it is not clear if it also fosters how well words are known (vocabulary depth). Sixty-six children were studied in kindergarten (age 5;7) and first grade (age 6;8). The predictive value of the ability to learn phonologically similar new words, phoneme discrimination ability, and phonological awareness on vocabulary breadth and depth were assessed using hierarchical regression. Word learning explained unique variance in kindergarten and first-grade vocabulary depth, over the other phonological factors. It did not explain unique variance in vocabulary breadth. Furthermore, even after controlling for kindergarten vocabulary breadth, kindergarten word learning still explained unique variance in first-grade vocabulary depth. Skill in learning phonologically similar words appears to predict knowledge children have about what words mean.
  • Wagner, M. A., Broersma, M., McQueen, J. M., & Lemhöfer, K. (2019). Imitating speech in an unfamiliar language and an unfamiliar non-native accent in the native language. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1362-1366). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    This study concerns individual differences in speech imitation ability and the role that lexical representations play in imitation. We examined 1) whether imitation of sounds in an unfamiliar language (L0) is related to imitation of sounds in an unfamiliar
    non-native accent in the speaker’s native language (L1) and 2) whether it is easier or harder to imitate speech when you know the words to be imitated. Fifty-nine native Dutch speakers imitated words with target vowels in Basque (/a/ and /e/) and Greekaccented
    Dutch (/i/ and /u/). Spectral and durational
    analyses of the target vowels revealed no relationship between the success of L0 and L1 imitation and no difference in performance between tasks (i.e., L1
    imitation was neither aided nor blocked by lexical knowledge about the correct pronunciation). The results suggest instead that the relationship of the vowels to native phonological categories plays a bigger role in imitation
  • Cho, T., & McQueen, J. M. (2005). Prosodic influences on consonant production in Dutch: Effects of prosodic boundaries, phrasal accent and lexical stress. Journal of Phonetics, 33(2), 121-157. doi:10.1016/j.wocn.2005.01.001.

    Abstract

    Prosodic influences on phonetic realizations of four Dutch consonants (/t d s z/) were examined. Sentences were constructed containing these consonants in word-initial position; the factors lexical stress, phrasal accent and prosodic boundary were manipulated between sentences. Eleven Dutch speakers read these sentences aloud. The patterns found in acoustic measurements of these utterances (e.g., voice onset time (VOT), consonant duration, voicing during closure, spectral center of gravity, burst energy) indicate that the low-level phonetic implementation of all four consonants is modulated by prosodic structure. Boundary effects on domain-initial segments were observed in stressed and unstressed syllables, extending previous findings which have been on stressed syllables alone. Three aspects of the data are highlighted. First, shorter VOTs were found for /t/ in prosodically stronger locations (stressed, accented and domain-initial), as opposed to longer VOTs in these positions in English. This suggests that prosodically driven phonetic realization is bounded by language-specific constraints on how phonetic features are specified with phonetic content: Shortened VOT in Dutch reflects enhancement of the phonetic feature {−spread glottis}, while lengthened VOT in English reflects enhancement of {+spread glottis}. Prosodic strengthening therefore appears to operate primarily at the phonetic level, such that prosodically driven enhancement of phonological contrast is determined by phonetic implementation of these (language-specific) phonetic features. Second, an accent effect was observed in stressed and unstressed syllables, and was independent of prosodic boundary size. The domain of accentuation in Dutch is thus larger than the foot. Third, within a prosodic category consisting of those utterances with a boundary tone but no pause, tokens with syntactically defined Phonological Phrase boundaries could be differentiated from the other tokens. This syntactic influence on prosodic phrasing implies the existence of an intermediate-level phrase in the prosodic hierarchy of Dutch.
  • Cutler, A., McQueen, J. M., & Norris, D. (2005). The lexical utility of phoneme-category plasticity. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 103-107).
  • Eisner, F., & McQueen, J. M. (2005). The specificity of perceptual learning in speech processing. Perception & Psychophysics, 67(2), 224-238.

    Abstract

    We conducted four experiments to investigate the specificity of perceptual adjustments made to unusual speech sounds. Dutch listeners heard a female talker produce an ambiguous fricative [?] (between [f] and [s]) in [f]- or [s]-biased lexical contexts. Listeners with [f]-biased exposure (e.g., [witlo?]; from witlof, “chicory”; witlos is meaningless) subsequently categorized more sounds on an [εf]–[εs] continuum as [f] than did listeners with [s]-biased exposure. This occurred when the continuum was based on the exposure talker's speech (Experiment 1), and when the same test fricatives appeared after vowels spoken by novel female and male talkers (Experiments 1 and 2). When the continuum was made entirely from a novel talker's speech, there was no exposure effect (Experiment 3) unless fricatives from that talker had been spliced into the exposure talker's speech during exposure (Experiment 4). We conclude that perceptual learning about idiosyncratic speech is applied at a segmental level and is, under these exposure conditions, talker specific.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • McQueen, J. M., & Sereno, J. (2005). Cleaving automatic processes from strategic biases in phonological priming. Memory & Cognition, 33(7), 1185-1209.

    Abstract

    In a phonological priming experiment using spoken Dutch words, Dutch listeners were taught varying expectancies and relatedness relations about the phonological form of target words, given particular primes. They learned to expect that, after a particular prime, if the target was a word, it would be from a specific phonological category. The expectancy either involved phonological overlap (e.g., honk-vonk, “base-spark”; expected related) or did not (e.g., nest-galm, “nest-boom”; expected unrelated, where the learned expectation after hearing nest was a word rhyming in -alm). Targets were occasionally inconsistent with expectations. In these inconsistent expectancy trials, targets were either unrelated (e.g., honk-mest, “base-manure”; unexpected unrelated), where the listener was expecting a related target, or related (e.g., nest-pest, “nest-plague”; unexpected related), where the listener was expecting an unrelated target. Participant expectations and phonological relatedness were thus manipulated factorially for three types of phonological overlap (rhyme, one onset phoneme, and three onset phonemes) at three interstimulus intervals (ISIs; 50, 500, and 2,000 msec). Lexical decisions to targets revealed evidence of expectancy-based strategies for all three types of overlap (e.g., faster responses to expected than to unexpected targets, irrespective of phonological relatedness) and evidence of automatic phonological processes, but only for the rhyme and three-phoneme onset overlap conditions and, most strongly, at the shortest ISI (e.g., faster responses to related than to unrelated targets, irrespective of expectations). Although phonological priming thus has both automatic and strategic components, it is possible to cleave them apart.
  • McQueen, J. M., & Mitterer, H. (2005). Lexically-driven perceptual adjustments of vowel categories. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 233-236).
  • Scharenborg, O., Norris, D., Ten Bosch, L., & McQueen, J. M. (2005). How should a speech recognizer work? Cognitive Science, 29(6), 867-918. doi:10.1207/s15516709cog0000_37.

    Abstract

    Although researchers studying human speech recognition (HSR) and automatic speech recognition (ASR) share a common interest in how information processing systems (human or machine) recognize spoken language, there is little communication between the two disciplines. We suggest that this lack of communication follows largely from the fact that research in these related fields has focused on the mechanics of how speech can be recognized. In Marr's (1982) terms, emphasis has been on the algorithmic and implementational levels rather than on the computational level. In this article, we provide a computational-level analysis of the task of speech recognition, which reveals the close parallels between research concerned with HSR and ASR. We illustrate this relation by presenting a new computational model of human spoken-word recognition, built using techniques from the field of ASR that, in contrast to current existing models of HSR, recognizes words from real speech input.
  • Warner, N., Smits, R., McQueen, J. M., & Cutler, A. (2005). Phonological and statistical effects on timing of speech perception: Insights from a database of Dutch diphone perception. Speech Communication, 46(1), 53-72. doi:10.1016/j.specom.2005.01.003.

    Abstract

    We report detailed analyses of a very large database on timing of speech perception collected by Smits et al. (Smits, R., Warner, N., McQueen, J.M., Cutler, A., 2003. Unfolding of phonetic information over time: A database of Dutch diphone perception. J. Acoust. Soc. Am. 113, 563–574). Eighteen listeners heard all possible diphones of Dutch, gated in portions of varying size and presented without background noise. The present report analyzes listeners’ responses across gates in terms of phonological features (voicing, place, and manner for consonants; height, backness, and length for vowels). The resulting patterns for feature perception differ from patterns reported when speech is presented in noise. The data are also analyzed for effects of stress and of phonological context (neighboring vowel vs. consonant); effects of these factors are observed to be surprisingly limited. Finally, statistical effects, such as overall phoneme frequency and transitional probabilities, along with response biases, are examined; these too exercise only limited effects on response patterns. The results suggest highly accurate speech perception on the basis of acoustic information alone.
  • Cutler, A., McQueen, J. M., & Zondervan, R. (2000). Proceedings of SWAP (Workshop on Spoken Word Access Processes). Nijmegen: MPI for Psycholinguistics.
  • Cutler, A., Norris, D., & McQueen, J. M. (2000). Tracking TRACE’s troubles. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 63-66). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of acoustic-phonetic mismatches in word forms. The source of TRACE's failure lay not in its interactive connectivity, not in the presence of interword competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Feedback on feedback on feedback: It’s feedforward. (Response to commentators). Behavioral and Brain Sciences, 23, 352-370.

    Abstract

    The central thesis of the target article was that feedback is never necessary in spoken word recognition. The commentaries present no new data and no new theoretical arguments which lead us to revise this position. In this response we begin by clarifying some terminological issues which have lead to a number of significant misunderstandings. We provide some new arguments to support our case that the feedforward model Merge is indeed more parsimonious than the interactive alternatives, and that it provides a more convincing account of the data than alternative models. Finally, we extend the arguments to deal with new issues raised by the commentators such as infant speech perception and neural architecture.
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-325.

    Abstract

    Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).

Share this page