Tineke Snijders

Publications

Displaying 1 - 7 of 7
  • Menn, K. H., Ward, E., Braukmann, R., Van den Boomen, C., Buitelaar, J., Hunnius, S., & Snijders, T. M. (2022). Neural tracking in infancy predicts language development in children with and without family history of autism. Neurobiology of Language, 3(3), 495-514. doi:10.1162/nol_a_00074.

    Abstract

    During speech processing, neural activity in non-autistic adults and infants tracks the speech envelope. Recent research in adults indicates that this neural tracking relates to linguistic knowledge and may be reduced in autism. Such reduced tracking, if present already in infancy, could impede language development. In the current study, we focused on children with a family history of autism, who often show a delay in first language acquisition. We investigated whether differences in tracking of sung nursery rhymes during infancy relate to language development and autism symptoms in childhood. We assessed speech-brain coherence at either 10 or 14 months of age in a total of 22 infants with high likelihood of autism due to family history and 19 infants without family history of autism. We analyzed the relationship between speech-brain coherence in these infants and their vocabulary at 24 months as well as autism symptoms at 36 months. Our results showed significant speech-brain coherence in the 10- and 14-month-old infants. We found no evidence for a relationship between speech-brain coherence and later autism symptoms. Importantly, speech-brain coherence in the stressed syllable rate (1–3 Hz) predicted later vocabulary. Follow-up analyses showed evidence for a relationship between tracking and vocabulary only in 10-month-olds but not 14-month-olds and indicated possible differences between the likelihood groups. Thus, early tracking of sung nursery rhymes is related to language development in childhood.
  • Vanden Bosch der Nederlanden, C. M., Joanisse, M. F., Grahn, J. A., Snijders, T. M., & Schoffelen, J.-M. (2022). Familiarity modulates neural tracking of sung and spoken utterances. NeuroImage, 252: 119049. doi:10.1016/j.neuroimage.2022.119049.

    Abstract

    Music is often described in the laboratory and in the classroom as a beneficial tool for memory encoding and retention, with a particularly strong effect when words are sung to familiar compared to unfamiliar melodies. However, the neural mechanisms underlying this memory benefit, especially for benefits related to familiar music are not well understood. The current study examined whether neural tracking of the slow syllable rhythms of speech and song is modulated by melody familiarity. Participants became familiar with twelve novel melodies over four days prior to MEG testing. Neural tracking of the same utterances spoken and sung revealed greater cerebro-acoustic phase coherence for sung compared to spoken utterances, but did not show an effect of familiar melody when stimuli were grouped by their assigned (trained) familiarity. When participant's subjective ratings of perceived familiarity during the MEG testing session were used to group stimuli, however, a large effect of familiarity was observed. This effect was not specific to song, as it was observed in both sung and spoken utterances. Exploratory analyses revealed some in-session learning of unfamiliar and spoken utterances, with increased neural tracking for untrained stimuli by the end of the MEG testing session. Our results indicate that top-down factors like familiarity are strong modulators of neural tracking for music and language. Participants’ neural tracking was related to their perception of familiarity, which was likely driven by a combination of effects from repeated listening, stimulus-specific melodic simplicity, and individual differences. Beyond simply the acoustic features of music, top-down factors built into the music listening experience, like repetition and familiarity, play a large role in the way we attend to and encode information presented in a musical context.

    Additional information

    supplementary materials
  • Hahn, L. E., Ten Buuren, M., De Nijs, M., Snijders, T. M., & Fikkert, P. (2019). Acquiring novel words in a second language through mutual play with child songs - The Noplica Energy Center. In L. Nijs, H. Van Regenmortel, & C. Arculus (Eds.), MERYC19 Counterpoints of the senses: Bodily experiences in musical learning (pp. 78-87). Ghent, Belgium: EuNet MERYC 2019.

    Abstract

    Child songs are a great source for linguistic learning. Here we explore whether children can acquire novel words in a second language by playing a game featuring child songs in a playhouse. We present data from three studies that serve as scientific proof for the functionality of one game of the playhouse: the Energy Center. For this game, three hand-bikes were mounted on a panel. When children start moving the hand-bikes, child songs start playing simultaneously. Once the children produce enough energy with the hand-bikes, the songs are additionally accompanied with the sounds of musical instruments. In our studies, children executed a picture-selection task to evaluate whether they acquired new vocabulary from the songs presented during the game. Two of our studies were run in the field, one at a Dutch and one at an Indian pre-school. The third study features data from a more controlled laboratory setting. Our results partly confirm that the Energy Center is a successful means to support vocabulary acquisition in a second language. More research with larger sample sizes and longer access to the Energy Center is needed to evaluate the overall functionality of the game. Based on informal observations at our test sites, however, we are certain that children do pick up linguistic content from the songs during play, as many of the children repeat words and phrases from songs they heard. We will pick up upon these promising observations during future studies
  • Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical gender in German influences how role-nouns are interpreted: Evidence from ERPs. Discourse Processes, 56(8), 643-654. doi:10.1080/0163853X.2018.1541382.

    Abstract

    Grammatically masculine role-nouns (e.g., Studenten-masc.‘students’) can refer to men and women, but may favor an interpretation where only men are considered the referent. If true, this has implications for a society aiming to achieve equal representation in the workplace since, for example, job adverts use such role descriptions. To investigate the interpretation of role-nouns, the present ERP study assessed grammatical gender processing in German. Twenty participants read sentences where a role-noun (masculine or feminine) introduced a group of people, followed by a congruent (masculine–men, feminine–women) or incongruent (masculine–women, feminine–men) continuation. Both for feminine-men and masculine-women continuations a P600 (500 to 800 ms) was observed; another positivity was already present from 300 to 500 ms for feminine-men continuations, but critically not for masculine-women continuations. The results imply a male-biased rather than gender-neutral interpretation of the masculine—despite widespread usage of the masculine as a gender-neutral form—suggesting masculine forms are inadequate for representing genders equally.
  • Van den Boomen, C., Fahrenfort, J. J., Snijders, T. M., & Kemner, C. (2019). Slow segmentation of faces in Autism Spectrum Disorder. Neuropsychologia, 127, 1-8. doi:10.1016/j.neuropsychologia.2019.02.005.

    Abstract

    Atypical visual segmentation, affecting object perception, might contribute to face processing problems in Autism Spectrum Disorder (ASD). The current study investigated impairments in visual segmentation of faces in ASD. Thirty participants (ASD: 16; Control: 14) viewed texture-defined faces, houses, and homogeneous images, while electroencephalographic and behavioral responses were recorded. The ASD group showed slower face-segmentation related brain activity and longer segmentation reaction times than the control group, but no difference in house-segmentation related activity or behavioral performance. Furthermore, individual differences in face-segmentation but not house-segmentation correlated with score on the Autism Quotient. Segmentation is thus selectively impaired for faces in ASD, and relates to the degree of ASD traits. Face segmentation relates to recurrent connectivity from the fusiform face area (FFA) to the visual cortex. These findings thus suggest that atypical connectivity from the FFA might contribute to delayed face processing in ASD.

    Additional information

    Supplementary material
  • Boersma, M., Kemner, C., de Reus, M. A., Collin, G., Snijders, T. M., Hofman, D., Buitelaar, J. K., Stam, C. J., & van den Heuvel, M. P. (2013). Disrupted functional brain networks in autistic toddlers. Brain Connectivity, 3(1), 41-49. doi:10.1089/brain.2012.0127.

    Abstract

    Communication and integration of information between brain regions plays a key role in healthy brain function. Conversely, disruption in brain communication may lead to cognitive and behavioral problems. Autism is a neurodevelopmental disorder that is characterized by impaired social interactions and aberrant basic information processing. Aberrant brain connectivity patterns have indeed been hypothesized to be a key neural underpinning of autism. In this study, graph analytical tools are used to explore the possible deviant functional brain network organization in autism at a very early stage of brain development. Electroencephalography (EEG) recordings in 12 toddlers with autism (mean age 3.5 years) and 19 control subjects were used to assess interregional functional brain connectivity, with functional brain networks constructed at the level of temporal synchronization between brain regions underlying the EEG electrodes. Children with autism showed a significantly increased normalized path length and reduced normalized clustering, suggesting a reduced global communication capacity already during early brain development. In addition, whole brain connectivity was found to be significantly reduced in these young patients suggesting an overall under-connectivity of functional brain networks in autism. Our findings support the hypothesis of abnormal neural communication in autism, with deviating effects already present at the early stages of brain development
  • Snijders, T. M., Milivojevic, B., & Kemner, C. (2013). Atypical excitation-inhibition balance in autism captured by the gamma response to contextual modulation. NeuroImage: Clinical, 3, 65-72. doi:10.1016/j.nicl.2013.06.015.

    Abstract

    Atypical visual perception in people with autism spectrum disorders (ASD) is hypothesized to stem from an imbalance in excitatory and inhibitory processes in the brain. We used neuronal oscillations in the gamma frequency range (30 – 90 Hz), which emerge from a balanced interaction of excitation and inhibition in the brain, to assess contextual modulation processes in early visual perception. Electroencephalography was recorded in 12 high-functioning adults with ASD and 12 age- and IQ-matched control participants. Oscilla- tions in the gamma frequency range were analyzed in response to stimuli consisting of small line-like elements. Orientation-speci fi c contextual modulation was manipulated by parametrically increasing the amount of homogeneously oriented elements in the stimuli. The stimuli elicited a strong steady-state gamma response around the refresh-rate of 60 Hz, which was larger for controls than for participants with ASD. The amount of orientation homogeneity (contextual modulation) in fl uenced the gamma response in control subjects, while for subjects with ASD this was not the case. The atypical steady-state gamma response to contextual modulation in subjects with ASD may capture the link between an imbalance in excitatory and inhibitory neuronal processing and atypical visual processing in ASD

Share this page