Displaying 1 - 21 of 21
-
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O. and 61 moreDemontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Howrigan, D. P., Huang, H., Maller, J. B., Martin, A. R., Martin, N. G., Moran, J., Pallesen, J., Palmer, D. S., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., Ripke, S., Robinson, E. B., Satterstrom, F. K., Stefansson, H., Stevens, C., Turley, P., Walters, G. B., Won, H., Wright, M. J., ADHD Working Group of the Psychiatric Genomics Consortium (PGC), EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, 23andme Research Team, Andreassen, O. A., Asherson, P., Burton, C. L., Boomsma, D. I., Cormand, B., Dalsgaard, S., Franke, B., Gelernter, J., Geschwind, D., Hakonarson, H., Haavik, J., Kranzler, H. R., Kuntsi, J., Langley, K., Lesch, K.-P., Middeldorp, C., Reif, A., Rohde, L. A., Roussos, P., Schachar, R., Sklar, P., Sonuga-Barke, E. J. S., Sullivan, P. F., Thapar, A., Tung, J. Y., Waldman, I. D., Medland, S. E., Stefansson, K., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Daly, M. J., Faraone, S. V., Børglum, A. D., & Neale, B. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51, 63-75. doi:10.1038/s41588-018-0269-7.
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits. -
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D. and 25 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Brandler, W., Honbolygó, F., Tóth, D., Csépe, V., Huguet, G., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(1): 77. doi:10.1038/s41398-019-0402-0.
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468). We observed a genome-wide significant effect (p < 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10−8) and with all the cognitive traits tested (p = 3.07 × 10−8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~ [10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.Additional information
https://www.nature.com/articles/s41398-019-0402-0#Sec17 -
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K. and 55 moreGrove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., Churchhouse, C., Dellenvall, K., Demontis, D., De Rubeis, S., Devlin, B., Djurovic, S., Dumont, A., Goldstein, J., Hansen, C. S., Hauberg, M. E., Hollegaard, M. V., Hope, S., Howrigan, D. P., Huang, H., Hultman, C., Klei, L., Maller, J., Martin, J., Martin, A. R., Moran, J., Nyegaard, M., Nærland, T., Palmer, D. S., Palotie, A., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., St Pourcain, B., Qvist, P., Rehnström, K., Reichenberg, A., Reichert, J., Robinson, E. B., Roeder, K., Roussos, P., Saemundsen, E., Sandin, S., Satterstrom, F. K., Smith, G. D., Stefansson, H., Stefansson, K., Steinberg, S., Stevens, C., Sullivan, P. F., Turley, P., Walters, G. B., Xu, X., Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, BUPGEN, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Me Research Team, Geschwind, D., Nordentoft, M., Hougaard, D. M., Werge, T., Mors, O., Mortensen, P. B., Neale, B. M., Daly, M. J., & Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51, 431-444. doi:10.1038/s41588-019-0344-8.
Abstract
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Additional information
Supplementary Text and Figures -
Gunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J. and 7 moreGunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., Van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernandez, G., Brunner, H., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., Kelso, J., St Pourcain, B., Hublin, J.-J., Franke, B., Pääbo, S., Macciardi, F., Grabe, H. J., & Fisher, S. E. (2019). Neandertal introgression sheds light on modern human endocranial globularity. Current Biology, 29(1), 120-127. doi:10.1016/j.cub.2018.10.065.
Abstract
One of the features that distinguishes modern humans from our extinct relatives
and ancestors is a globular shape of the braincase [1-4]. As the endocranium
closely mirrors the outer shape of the brain, these differences might reflect
altered neural architecture [4,5]. However, in the absence of fossil brain tissue the
underlying neuroanatomical changes as well as their genetic bases remain
elusive. To better understand the biological foundations of modern human
endocranial shape, we turn to our closest extinct relatives, the Neandertals.
Interbreeding between modern humans and Neandertals has resulted in
introgressed fragments of Neandertal DNA in the genomes of present-day non-
Africans [6,7]. Based on shape analyses of fossil skull endocasts, we derive a
measure of endocranial globularity from structural magnetic resonance imaging
(MRI) scans of thousands of modern humans, and study the effects of
introgressed fragments of Neandertal DNA on this phenotype. We find that
Neandertal alleles on chromosomes 1 and 18 are associated with reduced
endocranial globularity. These alleles influence expression of two nearby genes,
UBR4 and PHLPP1, which are involved in neurogenesis and myelination,
respectively. Our findings show how integration of fossil skull data with archaic
genomics and neuroimaging can suggest developmental mechanisms that may
contribute to the unique modern human endocranial shape. -
Haworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L. and 15 moreHaworth, S., Shapland, C. Y., Hayward, C., Prins, B. P., Felix, J. F., Medina-Gomez, C., Rivadeneira, F., Wang, C., Ahluwalia, T. S., Vrijheid, M., Guxens, M., Sunyer, J., Tachmazidou, I., Walter, K., Iotchkova, V., Jackson, A., Cleal, L., Huffmann, J., Min, J. L., Sass, L., Timmers, P. R. H. J., UK10K consortium, Davey Smith, G., Fisher, S. E., Wilson, J. F., Cole, T. J., Fernandez-Orth, D., Bønnelykke, K., Bisgaard, H., Pennell, C. E., Jaddoe, V. W. V., Dedoussis, G., Timpson, N. J., Zeggini, E., Vitart, V., & St Pourcain, B. (2019). Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nature Communications, 10: 357. doi:10.1038/s41467-018-07863-x.
Abstract
Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences affecting these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic influences and low-frequency genetic variation. To understand these influences, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV+HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development.Additional information
Supplementary Information -
Howe, L., Lawson, D. J., Davies, N. M., St Pourcain, B., Lewis, S. J., Smith, G. D., & Hemani, G. (2019). Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nature Communications, 10: 5039. doi:10.1038/s41467-019-12424-x.
Abstract
Alcohol use is correlated within spouse-pairs, but it is difficult to disentangle effects of alcohol consumption on mate-selection from social factors or the shared spousal environment. We hypothesised that genetic variants related to alcohol consumption may, via their effect on alcohol behaviour, influence mate selection. Here, we find strong evidence that an individual’s self-reported alcohol consumption and their genotype at rs1229984, a missense variant in ADH1B, are associated with their partner’s self-reported alcohol use. Applying Mendelian randomization, we estimate that a unit increase in an individual’s weekly alcohol consumption increases partner’s alcohol consumption by 0.26 units (95% C.I. 0.15, 0.38; P = 8.20 × 10−6). Furthermore, we find evidence of spousal genotypic concordance for rs1229984, suggesting that spousal concordance for alcohol consumption existed prior to cohabitation. Although the SNP is strongly associated with ancestry, our results suggest some concordance independent of population stratification. Our findings suggest that alcohol behaviour directly influences mate selection. -
Howe, L. J., Richardson, T. G., Arathimos, R., Alvizi, L., Passos-Bueno, M. R., Stanier, P., Nohr, E., Ludwig, K. U., Mangold, E., Knapp, M., Stergiakouli, E., St Pourcain, B., Smith, G. D., Sandy, J., Relton, C. L., Lewis, S. J., Hemani, G., & Sharp, G. C. (2019). Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate. Epigenomics, 11(2), 133-145. doi:10.2217/epi-2018-0091.
Abstract
Aim: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. Materials & methods: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. Results & conclusion: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms.Additional information
Supplementary material -
Linnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P., Abdellaoui, A., Hammerschlag, A. R., Nivard, M. G., Okbay, A., Rietveld, C. A., Timshel, P. N., Trzaskowski, M., De Vlaming, R., Zünd, C. L., Bao, Y., Buzdugan, L., Caplin, A. H. and 72 moreLinnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P., Abdellaoui, A., Hammerschlag, A. R., Nivard, M. G., Okbay, A., Rietveld, C. A., Timshel, P. N., Trzaskowski, M., De Vlaming, R., Zünd, C. L., Bao, Y., Buzdugan, L., Caplin, A. H., Chen, C.-Y., Eibich, P., Fontanillas, P., Gonzalez, J. R., Joshi, P. K., Karhunen, V., Kleinman, A., Levin, R. Z., Lill, C. M., Meddens, G. A., Muntané, G., Sanchez-Roige, S., Van Rooij, F. J., Taskesen, E., Wu, Y., Zhang, F., 23and Me Research Team, eQTLgen Consortium, International Cannabis Consortium, Social Science Genetic Association Consortium, Auton, A., Boardman, J. D., Clark, D. W., Conlin, A., Dolan, C. C., Fischbacher, U., Groenen, P. J. F., Harris, K. M., Hasler, G., Hofman, A., Ikram, M. A., Jain, S., Karlsson, R., Kessler, R. C., Kooyman, M., MacKillop, J., Männikkö, M., Morcillo-Suarez, C., McQueen, M. B., Schmidt, K. M., Smart, M. C., Sutter, M., Thurik, A. R., Uitterlinden, A. G., White, J., De Wit, H., Yang, J., Bertram, L., Boomsma, D. I., Esko, T., Fehr, E., Hinds, D. A., Johannesson, M., Kumari, M., Laibson, D., Magnusson, P. K. E., Meyer, M. N., Navarro, A., Palmer, A. A., Pers, T. H., Posthuma, D., Schunk, D., Stein, M. B., Svento, R., Tiemeier, H., Timmers, P. R. H. J., Turley, P., Ursano, R. J., Wagner, G. G., Wilson, J. F., Gratten, J., Lee, J. J., Cesarini, D., Benjamin, D. J., Koellinger, P. D., & Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51, 245-257. doi:10.1038/s41588-018-0309-3.
-
Middeldorp, C. M., Felix, J. F., Mahajan, A., EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium, Early Growth Genetics (EGG) consortium, & McCarthy, M. I. (2019). The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: Design, results and future prospects. European Journal of Epidemiology, 34(3), 279-300. doi:10.1007/s10654-019-00502-9.
Abstract
The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites. -
Tilot, A. K., Vino, A., Kucera, K. S., Carmichael, D. A., Van den Heuvel, L., Den Hoed, J., Sidoroff-Dorso, A. V., Campbell, A., Porteous, D. J., St Pourcain, B., Van Leeuwen, T. M., Ward, J., Rouw, R., Simner, J., & Fisher, S. E. (2019). Investigating genetic links between grapheme-colour synaesthesia and neuropsychiatric traits. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374: 20190026. doi:10.1098/rstb.2019.0026.
Abstract
Synaesthesia is a neurological phenomenon affecting perception, where triggering stimuli (e.g. letters and numbers) elicit unusual secondary sensory experiences (e.g. colours). Family-based studies point to a role for genetic factors in the development of this trait. However, the contributions of common genomic variation to synaesthesia have not yet been investigated. Here, we present the SynGenes cohort, the largest genotyped collection of unrelated people with grapheme–colour synaesthesia (n = 723). Synaesthesia has been associated with a range of other neuropsychological traits, including enhanced memory and mental imagery, as well as greater sensory sensitivity. Motivated by the prior literature on putative trait overlaps, we investigated polygenic scores derived from published genome-wide scans of schizophrenia and autism spectrum disorder (ASD), comparing our SynGenes cohort to 2181 non-synaesthetic controls. We found a very slight association between schizophrenia polygenic scores and synaesthesia (Nagelkerke's R2 = 0.0047, empirical p = 0.0027) and no significant association for scores related to ASD (Nagelkerke's R2 = 0.00092, empirical p = 0.54) or body mass index (R2 = 0.00058, empirical p = 0.60), included as a negative control. As sample sizes for studying common genomic variation continue to increase, genetic investigations of the kind reported here may yield novel insights into the shared biology between synaesthesia and other traits, to complement findings from neuropsychology and brain imaging.Files private
Request files -
Verhoef, E., Demontis, D., Burgess, S., Shapland, C. Y., Dale, P. S., Okbay, A., Neale, B. M., Faraone, S. V., iPSYCH-Broad-PGC ADHD Consortium, Stergiakouli, E., Davey Smith, G., Fisher, S. E., Borglum, A., & St Pourcain, B. (2019). Disentangling polygenic associations between Attention-Deficit/Hyperactivity Disorder, educational attainment, literacy and language. Translational Psychiatry, 9: 35. doi:10.1038/s41398-018-0324-2.
Abstract
Interpreting polygenic overlap between ADHD and both literacy-related and language-related impairments is challenging as genetic associations might be influenced by indirectly shared genetic factors. Here, we investigate genetic overlap between polygenic ADHD risk and multiple literacy-related and/or language-related abilities (LRAs), as assessed in UK children (N ≤ 5919), accounting for genetically predictable educational attainment (EA). Genome-wide summary statistics on clinical ADHD and years of schooling were obtained from large consortia (N ≤ 326,041). Our findings show that ADHD-polygenic scores (ADHD-PGS) were inversely associated with LRAs in ALSPAC, most consistently with reading-related abilities, and explained ≤1.6% phenotypic variation. These polygenic links were then dissected into both ADHD effects shared with and independent of EA, using multivariable regressions (MVR). Conditional on EA, polygenic ADHD risk remained associated with multiple reading and/or spelling abilities, phonemic awareness and verbal intelligence, but not listening comprehension and non-word repetition. Using conservative ADHD-instruments (P-threshold < 5 × 10−8), this corresponded, for example, to a 0.35 SD decrease in pooled reading performance per log-odds in ADHD-liability (P = 9.2 × 10−5). Using subthreshold ADHD-instruments (P-threshold < 0.0015), these effects became smaller, with a 0.03 SD decrease per log-odds in ADHD risk (P = 1.4 × 10−6), although the predictive accuracy increased. However, polygenic ADHD-effects shared with EA were of equal strength and at least equal magnitude compared to those independent of EA, for all LRAs studied, and detectable using subthreshold instruments. Thus, ADHD-related polygenic links with LRAs are to a large extent due to shared genetic effects with EA, although there is evidence for an ADHD-specific association profile, independent of EA, that primarily involves literacy-related impairments.Additional information
41398_2018_324_MOESM1_ESM.docx -
Howe, L. J., Lee, M. K., Sharp, G. C., Smith, G. D. W., St Pourcain, B., Shaffer, J. R., Ludwig, K. U., Mangold, E., Marazita, M. L., Feingold, E., Zhurov, A., Stergiakouli, E., Sandy, J., Richmond, S., Weinberg, S. M., Hemani, G., & Lewis, S. J. (2018). Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology. PLoS Genetics, 14(8): e1007501. doi:10.1371/journal.pgen.1007501.
Abstract
There is increasing evidence that genetic risk variants for non-syndromic cleft lip/palate (nsCL/P) are also associated with normal-range variation in facial morphology. However, previous analyses are mostly limited to candidate SNPs and findings have not been consistently replicated. Here, we used polygenic risk scores (PRS) to test for genetic overlap between nsCL/P and seven biologically relevant facial phenotypes. Where evidence was found of genetic overlap, we used bidirectional Mendelian randomization (MR) to test the hypothesis that genetic liability to nsCL/P is causally related to implicated facial phenotypes. Across 5,804 individuals of European ancestry from two studies, we found strong evidence, using PRS, of genetic overlap between nsCL/P and philtrum width; a 1 S.D. increase in nsCL/P PRS was associated with a 0.10 mm decrease in philtrum width (95% C.I. 0.054, 0.146; P = 2x10-5). Follow-up MR analyses supported a causal relationship; genetic variants for nsCL/P homogeneously cause decreased philtrum width. In addition to the primary analysis, we also identified two novel risk loci for philtrum width at 5q22.2 and 7p15.2 in our Genome-wide Association Study (GWAS) of 6,136 individuals. Our results support a liability threshold model of inheritance for nsCL/P, related to abnormalities in development of the philtrum.Additional information
6887519.zip http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007501#s… -
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Linnér, R. K., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., Yengo, L. and 57 moreLee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Linnér, R. K., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., Yengo, L., 23andMe Research Team, COGENT (Cognitive Genomics Consortium), Social Science Genetic Association Consortium, Alver, M., Bao, Y., Clark, D. W., Day, F. R., Furlotte, N. A., Joshi, P. K., Kemper, K. E., Kleinman, A., Langenberg, C., Mägi, R., Trampush, J. W., Verma, S. S., Wu, Y., Lam, M., Zhao, J. H., Zheng, Z., Boardman, J. D., Campbell, H., Freese, J., Harris, K. M., Hayward, C., Herd, P., Kumari, M., Lencz, T., Luan, J., Malhotra, A. K., Metspalu, A., Milani, L., Ong, K. K., Perry, J. R. B., Porteous, D. J., Ritchie, M. D., Smart, M. C., Smith, B. H., Tung, J. Y., Wareham, N. J., Wilson, J. F., Beauchamp, J. P., Conley, D. C., Esko, T., Lehrer, S. F., Magnusson, P. K. E., Oskarsson, S., Pers, T. H., Robinson, M. R., Thom, K., Watson, C., Chabris, C. F., Meyer, M. N., Laibson, D. I., Yang, J., Johannesson, M., Koellinger, P. D., Turley, P., Visscher, P. M., Benjamin, D. J., & Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 1112-1121. doi:10.1038/s41588-018-0147-3.
Abstract
Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance in educational attainment and 7–10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research. -
Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., De Vries, P. S., Prins, B. P., Van der Most, P. J., Tanaka, T., Naderi, E., Rose, L. M., Wu, Y., Karlsson, R., Barbalic, M., Lin, H., Pool, R., Zhu, G., Macé, A., Sidore, C., Trompet, S., Mangino, M. and 267 moreLigthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., De Vries, P. S., Prins, B. P., Van der Most, P. J., Tanaka, T., Naderi, E., Rose, L. M., Wu, Y., Karlsson, R., Barbalic, M., Lin, H., Pool, R., Zhu, G., Macé, A., Sidore, C., Trompet, S., Mangino, M., Sabater-Lleal, M., Kemp, J. P., Abbasi, A., Kacprowski, T., Verweij, N., Smith, A. V., Huang, T., Marzi, C., Feitosa, M. F., Lohman, K. K., Kleber, M. E., Milaneschi, Y., Mueller, C., Huq, M., Vlachopoulou, E., Lyytikäinen, L.-P., Oldmeadow, C., Deelen, J., Perola, M., Zhao, J. H., Feenstra, B., LifeLines Cohort Study, Amini, M., CHARGE Inflammation Working Group, Lahti, J., Schraut, K. E., Fornage, M., Suktitipat, B., Chen, W.-M., Li, X., Nutile, T., Malerba, G., Luan, J., Bak, T., Schork, N., Del Greco M., F., Thiering, E., Mahajan, A., Marioni, R. E., Mihailov, E., Eriksson, J., Ozel, A. B., Zhang, W., Nethander, M., Cheng, Y.-C., Aslibekyan, S., Ang, W., Gandin, I., Yengo, L., Portas, L., Kooperberg, C., Hofer, E., Rajan, K. B., Schurmann, C., Den Hollander, W., Ahluwalia, T. S., Zhao, J., Draisma, H. H. M., Ford, I., Timpson, N., Teumer, A., Huang, H., Wahl, S., Liu, Y., Huang, J., Uh, H.-W., Geller, F., Joshi, P. K., Yanek, L. R., Trabetti, E., Lehne, B., Vozzi, D., Verbanck, M., Biino, G., Saba, Y., Meulenbelt, I., O’Connell, J. R., Laakso, M., Giulianini, F., Magnusson, P. K. E., Ballantyne, C. M., Hottenga, J. J., Montgomery, G. W., Rivadineira, F., Rueedi, R., Steri, M., Herzig, K.-H., Stott, D. J., Menni, C., Franberg, M., St Pourcain, B., Felix, S. B., Pers, T. H., Bakker, S. J. L., Kraft, P., Peters, A., Vaidya, D., Delgado, G., Smit, J. H., Großmann, V., Sinisalo, J., Seppälä, I., Williams, S. R., Holliday, E. G., Moed, M., Langenberg, C., Räikkönen, K., Ding, J., Campbell, H., Sale, M. M., Chen, Y.-D.-I., James, A. L., Ruggiero, D., Soranzo, N., Hartman, C. A., Smith, E. N., Berenson, G. S., Fuchsberger, C., Hernandez, D., Tiesler, C. M. T., Giedraitis, V., Liewald, D., Fischer, K., Mellström, D., Larsson, A., Wang, Y., Scott, W. R., Lorentzon, M., Beilby, J., Ryan, K. A., Pennell, C. E., Vuckovic, D., Balkau, B., Concas, M. P., Schmidt, R., Mendes de Leon, C. F., Bottinger, E. P., Kloppenburg, M., Paternoster, L., Boehnke, M., Musk, A. W., Willemsen, G., Evans, D. M., Madden, P. A. F., Kähönen, M., Kutalik, Z., Zoledziewska, M., Karhunen, V., Kritchevsky, S. B., Sattar, N., Lachance, G., Clarke, R., Harris, T. B., Raitakari, O. T., Attia, J. R., Van Heemst, D., Kajantie, E., Sorice, R., Gambaro, G., Scott, R. A., Hicks, A. A., Ferrucci, L., Standl, M., Lindgren, C. M., Starr, J. M., Karlsson, M., Lind, L., Li, J. Z., Chambers, J. C., Mori, T. A., De Geus, E. J. C. N., Heath, A. C., Martin, N. G., Auvinen, J., Buckley, B. M., De Craen, A. J. M., Waldenberger, M., Strauch, K., Meitinger, T., Scott, R. J., McEvoy, M., Beekman, M., Bombieri, C., Ridker, P. M., Mohlke, K. L., Pedersen, N. L., Morrison, A. C., Boomsma, D. I., Whitfield, J. B., Strachan, D. P., Hofman, A., Vollenweider, P., Cucca, F., Jarvelin, M.-R., Jukema, J. W., Spector, T. D., Hamsten, A., Zeller, T., Uitterlinden, A. G., Nauck, M., Gudnason, V., Qi, L., Grallert, H., Borecki, I. B., Rotter, J. I., März, W., Wild, P. S., Lokki, M.-L., Boyle, M., Salomaa, V., Melbye, M., Eriksson, J. G., Wilson, J. F., Penninx, B. W. J. H., Becker, D. M., Worrall, B. B., Gibson, G., Krauss, R. M., Ciullo, M., Zaza, G., Wareham, N. J., Oldehinkel, A. J., Palmer, L. J., Murray, S. S., Pramstaller, P. P., Bandinelli, S., Heinrich, J., Ingelsson, E., Deary, I. J., Ma¨gi, R., Vandenput, L., Van der Harst, P., Desch, K. C., Kooner, J. S., Ohlsson, C., Hayward, C., Lehtima¨ki, T., Shuldiner, A. R., Arnett, D. K., Beilin, L. J., Robino, A., Froguel, P., Pirastu, M., Jess, T., Koenig, W., Loos, R. J. F., Evans, D. A., Schmidt, H., Smith, G. D., Slagboom, P. E., Eiriksdottir, G., Morris, A. P., Psaty, B. M., Tracy, R. P., Nolte, I. M., Boerwinkle, E., Visvikis-Siest, S., Reiner, A. P., Gross, M., Bis, J. C., Franke, L., Franco, O. H., Benjamin, E. J., Chasman, D. I., Dupuis, J., Snieder, H., Dehghan, A., & Alizadeh, B. Z. (2018). Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. The American Journal of Human Genetics, 103(5), 691-706. doi:10.1016/j.ajhg.2018.09.009.
Abstract
C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10−8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences. -
Mandy, W., Pellicano, L., St Pourcain, B., Skuse, D., & Heron, J. (2018). The development of autistic social traits across childhood and adolescence in males and females. The Journal of Child Psychology and Psychiatry, 59(11), 1143-1151. doi:10.1111/jcpp.12913.
Abstract
Background
Autism is a dimensional condition, representing the extreme end of a continuum of social competence that extends throughout the general population. Currently, little is known about how autistic social traits (ASTs), measured across the full spectrum of severity, develop during childhood and adolescence, including whether there are developmental differences between boys and girls. Therefore, we sought to chart the trajectories of ASTs in the general population across childhood and adolescence, with a focus on gender differences.
Methods
Participants were 9,744 males (n = 4,784) and females (n = 4,960) from ALSPAC, a UK birth cohort study. ASTs were assessed when participants were aged 7, 10, 13 and 16 years, using the parent‐report Social Communication Disorders Checklist. Data were modelled using latent growth curve analysis.
Results
Developmental trajectories of males and females were nonlinear, showing a decline from 7 to 10 years, followed by an increase between 10 and 16 years. At 7 years, males had higher levels of ASTs than females (mean raw score difference = 0.88, 95% CI [.72, 1.04]), and were more likely (odds ratio [OR] = 1.99; 95% CI, 1.82, 2.16) to score in the clinical range on the SCDC. By 16 years this gender difference had disappeared: males and females had, on average, similar levels of ASTs (mean difference = 0.00, 95% CI [−0.19, 0.19]) and were equally likely to score in the SCDC's clinical range (OR = 0.91, 95% CI, 0.73, 1.10). This was the result of an increase in females’ ASTs between 10 and 16 years.
Conclusions
There are gender‐specific trajectories of autistic social impairment, with females more likely than males to experience an escalation of ASTs during early‐ and midadolescence. It remains to be discovered whether the observed female adolescent increase in ASTs represents the genuine late onset of social difficulties or earlier, subtle, pre‐existing difficulties becoming more obvious.
Additional information
jcpp12913-sup-0001-supinfo.docx -
St Pourcain, B., Eaves, L. J., Ring, S. M., Fisher, S. E., Medland, S., Evans, D. M., & Smith, G. D. (2018). Developmental changes within the genetic architecture of social communication behaviour: A multivariate study of genetic variance in unrelated individuals. Biological Psychiatry, 83(7), 598-606. doi:10.1016/j.biopsych.2017.09.020.
Abstract
Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions may relate to distinct sets of genes that exert their maximum influence during different periods of development. This includes analyses of social-communciation difficulties that share, depending on their developmental stage, stronger genetic links with either Autism Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in unrelated individuals to model directly the developmental profile of genetic influences contributing to complex traits, such as social-communication difficulties, during a ~10-year period spanning childhood and adolescence. Methods: Longitudinally assessed quantitative social-communication problems (N ≤ 5,551) were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using standardised measures, genetic architectures were investigated with novel multivariate genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome genotyping information. Analogous to twin research, GSEM included Cholesky decomposition, common pathway and independent pathway models. Results: A 2-factor Cholesky decomposition model described the data best. One genetic factor was common to SCDC measures across development, the other accounted for independent variation at 11 years and later, consistent with distinct developmental profiles in trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% of the genetic variation at 17 years. Conclusion: Using latent factor models, we identified developmental changes in the genetic architecture of social-communication difficulties that enhance the understanding of ASD and schizophrenia-related dimensions. More generally, GSEM present a framework for modelling shared genetic aetiologies between phenotypes and can provide prior information with respect to patterns and continuity of trait-disorder overlapAdditional information
https://ars.els-cdn.com/content/image/1-s2.0-S0006322317320085-mmc1.pdf -
St Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D. and 3 moreSt Pourcain, B., Robinson, E. B., Anttila, V., Sullivan, B. B., Maller, J., Golding, J., Skuse, D., Ring, S., Evans, D. M., Zammit, S., Fisher, S. E., Neale, B. M., Anney, R., Ripke, S., Hollegaard, M. V., Werge, T., iPSYCH-SSI-Broad Autism Group, Ronald, A., Grove, J., Hougaard, D. M., Børglum, A. D., Mortensen, P. B., Daly, M., & Davey Smith, G. (2018). ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties. Molecular Psychiatry, 23, 263-270. doi:10.1038/mp.2016.198.
Abstract
Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and
schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on
the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth
(Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social
Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases,
11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the
Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social
communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of
genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptomsAdditional information
mp2016198x1.docx -
Glaser, B., Nikolov, I., Chubb, D., Hamshere, M. L., Segurado, R., Moskvina, V., & Holmans, P. (2007). Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests. BMC Proceedings, 1(Suppl 1): 54.
Abstract
Using parametric and nonparametric techniques, our study investigated the presence of single locus and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2), analyzing 463 independent patients and 855 controls. Specifically, our work examined the correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction effects, and random forest (RF) single and joint importance measures. For this comparison, we selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their importance measures and those by RFs grown on 5000 trees. Both RF importance measures captured most of the LR single-locus and pairwise interaction effects, while joint importance measures also corresponded to full LR models containing main and interaction effects. We furthermore showed that RF measures were particularly sensitive to data imputation. The most consistent pairwise effect on rheumatoid arthritis was found between two markers within MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels. Within a hypothetical two-stage design, pairwise LR analysis of all markers with significant RF single importance would have reduced the number of possible combinations in our small data set by 61%, whereas joint importance measures would have been less efficient for marker pair reduction. This suggests that RF single importance measures, which are able to detect a wide range of interaction effects and are computationally very efficient, might be exploited as pre-screening tool for larger association studies. Follow-up analysis, such as by LR, is required since RFs do not indicate highrisk genotype combinations. -
Hamshere, M. L., Segurado, R., Moskvina, V., Nikolov, I., Glaser, B., & Holmans, P. A. (2007). Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proceedings, 1 (Suppl 1), S100.
Abstract
Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p <} 0.001) and rheumatoid factor (RF) IgM (p {< 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates. -
Segurado, R., Hamshere, M. L., Glaser, B., Nikolov, I., Moskvina, V., & Holmans, P. A. (2007). Combining linkage data sets for meta-analysis and mega-analysis: the GAW15 rheumatoid arthritis data set. BMC Proceedings, 1(Suppl 1): S104.
Abstract
We have used the genome-wide marker genotypes from Genetic Analysis Workshop 15 Problem 2 to explore joint evidence for genetic linkage to rheumatoid arthritis across several samples. The data consisted of four high-density genome scans on samples selected for rheumatoid arthritis. We cleaned the data, removed intermarker linkage disequilibrium, and assembled the samples onto a common genetic map using genome sequence positions as a reference for map interpolation. The individual studies were combined first at the genotype level (mega-analysis) prior to a multipoint linkage analysis on the combined sample, and second using the genome scan meta-analysis method after linkage analysis of each sample. The two approaches were compared, and give strong support to the HLA locus on chromosome 6 as a susceptibility locus. Other regions of interest include loci on chromosomes 11, 2, and 12. -
Ziegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y. and 7 moreZiegler, A., DeStefano, A. L., König, I. R., Bardel, C., Brinza, D., Bull, S., Cai, Z., Glaser, B., Jiang, W., Lee, K. E., Li, C. X., Li, J., Li, X., Majoram, P., Meng, Y., Nicodemus, K. K., Platt, A., Schwarz, D. F., Shi, W., Shugart, Y. Y., Stassen, H. H., Sun, Y. V., Won, S., Wang, W., Wahba, G., Zagaar, U. A., & Zhao, Z. (2007). Data mining, neural nets, trees–problems 2 and 3 of Genetic Analysis Workshop 15. Genetic Epidemiology, 31(Suppl 1), S51-S60. doi:10.1002/gepi.20280.
Abstract
Genome-wide association studies using thousands to hundreds of thousands of single nucleotide polymorphism (SNP) markers and region-wide association studies using a dense panel of SNPs are already in use to identify disease susceptibility genes and to predict disease risk in individuals. Because these tasks become increasingly important, three different data sets were provided for the Genetic Analysis Workshop 15, thus allowing examination of various novel and existing data mining methods for both classification and identification of disease susceptibility genes, gene by gene or gene by environment interaction. The approach most often applied in this presentation group was random forests because of its simplicity, elegance, and robustness. It was used for prediction and for screening for interesting SNPs in a first step. The logistic tree with unbiased selection approach appeared to be an interesting alternative to efficiently select interesting SNPs. Machine learning, specifically ensemble methods, might be useful as pre-screening tools for large-scale association studies because they can be less prone to overfitting, can be less computer processor time intensive, can easily include pair-wise and higher-order interactions compared with standard statistical approaches and can also have a high capability for classification. However, improved implementations that are able to deal with hundreds of thousands of SNPs at a time are required.
Share this page