Beate St Pourcain

Publications

Displaying 1 - 23 of 23
  • Ahluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C. and 106 moreAhluwalia, T. S., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., De Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., Lu, C., Marioni, R. E., McLachlan, S., Milaneschi, Y., Nolte, I. M., Petrelis, A. M., Porcu, E., Sabater-Lleal, M., Naderi, E., Seppälä, I., Shah, T., Singhal, G., Standl, M., Teumer, A., Thalamuthu, A., Thiering, E., Trompet, S., Ballantyne, C. M., Benjamin, E. J., Casas, J. P., Toben, C., Dedoussis, G., Deelen, J., Durda, P., Engmann, J., Feitosa, M. F., Grallert, H., Hammarstedt, A., Harris, S. E., Homuth, G., Hottenga, J.-J., Jalkanen, S., Jamshidi, Y., Jawahar, M. C., Jess, T., Kivimaki, M., Kleber, M. E., Lahti, J., Liu, Y., Marques-Vidal, P., Mellström, D., Mooijaart, S. P., Müller-Nurasyid, M., Penninx, B., Revez, J. A., Rossing, P., Räikkönen, K., Sattar, N., Scharnagl, H., Sennblad, B., Silveira, A., St Pourcain, B., Timpson, N. J., Trollor, J., CHARGE Inflammation Working Group, Van Dongen, J., Van Heemst, D., Visvikis-Siest, S., Vollenweider, P., Völker, U., Waldenberger, M., Willemsen, G., Zabaneh, D., Morris, R. W., Arnett, D. K., Baune, B. T., Boomsma, D. I., Chang, Y.-P.-C., Deary, I. J., Deloukas, P., Eriksson, J. G., Evans, D. M., Ferreira, M. A., Gaunt, T., Gudnason, V., Hamsten, A., Heinrich, J., Hingorani, A., Humphries, S. E., Jukema, J. W., Koenig, W., Kumari, M., Kutalik, Z., Lawlor, D. A., Lehtimäki, T., März, W., Mather, K. A., Naitza, S., Nauck, M., Ohlsson, C., Price, J. F., Raitakari, O., Rice, K., Sachdev, P. S., Slagboom, E., Sørensen, T. I. A., Spector, T., Stacey, D., Stathopoulou, M. G., Tanaka, T., Wannamethee, S. G., Whincup, P., Rotter, J. I., Dehghan, A., Boerwinkle, E., Psaty, B. M., Snieder, H., & Alizadeh, B. Z. (2021). Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics, 5(1), 393-409. doi:10.1093/hmg/ddab023.

    Abstract

    Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10−11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10−10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10−122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
  • Cuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M. and 98 moreCuellar-Partida, G., Tung, J. Y., Eriksson, N., Albrecht, E., Aliev, F., Andreassen, O. A., Barroso, I., Beckmann, J. S., Boks, M. P., Boomsma, D. I., Boyd, H. A., Breteler, M. M. B., Campbell, H., Chasman, D. I., Cherkas, L. F., Davies, G., De Geus, E. J. C., Deary, I. J., Deloukas, P., Dick, D. M., Duffy, D. L., Eriksson, J. G., Esko, T., Feenstra, B., Geller, F., Gieger, C., Giegling, I., Gordon, S. D., Han, J., Hansen, T. F., Hartmann, A. M., Hayward, C., Heikkilä, K., Hicks, A. A., Hirschhorn, J. N., Hottenga, J.-J., Huffman, J. E., Hwang, L.-D., Ikram, M. A., Kaprio, J., Kemp, J. P., Khaw, K.-T., Klopp, N., Konte, B., Kutalik, Z., Lahti, J., Li, X., Loos, R. J. F., Luciano, M., Magnusson, S. H., Mangino, M., Marques-Vidal, P., Martin, N. G., McArdle, W. L., McCarthy, M. I., Medina-Gomez, C., Melbye, M., Melville, S. A., Metspalu, A., Milani, L., Mooser, V., Nelis, M., Nyholt, D. R., O'Connell, K. S., Ophoff, R. A., Palmer, C., Palotie, A., Palviainen, T., Pare, G., Paternoster, L., Peltonen, L., Penninx, B. W. J. H., Polasek, O., Pramstaller, P. P., Prokopenko, I., Raikkonen, K., Ripatti, S., Rivadeneira, F., Rudan, I., Rujescu, D., Smit, J. H., Smith, G. D., Smoller, J. W., Soranzo, N., Spector, T. D., St Pourcain, B., Starr, J. M., Stefánsson, H., Steinberg, S., Teder-Laving, M., Thorleifsson, G., Stefansson, K., Timpson, N. J., Uitterlinden, A. G., Van Duijn, C. M., Van Rooij, F. J. A., Vink, J. M., Vollenweider, P., Vuoksimaa, E., Waeber, G., Wareham, N. J., Warrington, N., Waterworth, D., Werge, T., Wichmann, H.-E., Widen, E., Willemsen, G., Wright, A. F., Wright, M. J., Xu, M., Zhao, J. H., Kraft, P., Hinds, D. A., Lindgren, C. M., Magi, R., Neale, B. M., Evans, D. M., & Medland, S. E. (2021). Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 5, 59-70. doi:10.1038/s41562-020-00956-y.

    Abstract

    Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10−8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.

    Additional information

    supplementary tables
  • Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C. and 29 moreGialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., Ludwig, K. U., Czamara, D., St Pourcain, B., Honbolygó, F., Tóth, D., Csépe, V., Huguet, H., Chaix, Y., Iannuzzi, S., Demonet, J.-F., Morris, A. P., Hulslander, J., Willcutt, E. G., DeFries, J. C., Olson, R. K., Smith, S. D., Pennington, B. F., Vaessen, A., Maurer, U., Lyytinen, H., Peyrard-Janvid, M., Leppänen, P. H. T., Brandeis, D., Bonte, M., Stein, J. F., Talcott, J. B., Fauchereau, F., Wilcke, A., Kirsten, H., Müller, B., Francks, C., Bourgeron, T., Monaco, A. P., Ramus, F., Landerl, K., Kere, J., Scerri, T. S., Paracchini, S., Fisher, S. E., Schumacher, J., Nöthen, M. M., Müller-Myhsok, B., & Schulte-Körne, G. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 3004-3017. doi:10.1038/s41380-020-00898-x.

    Abstract

    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40–60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p  < 2.8 × 10−6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20–25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p  = 8 × 10−13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10−43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10−22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10−12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10−4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10−7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10−29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
  • Shapland, C. Y., Verhoef, E., Smith, G. D., Fisher, S. E., Verhulst, B., Dale, P. S., & St Pourcain, B. (2021). Multivariate genome-wide covariance analyses of literacy, language and working memory skills reveal distinct etiologies. npj Science of Learning, 6: 23. doi:10.1038/s41539-021-00101-y.

    Abstract

    Several abilities outside literacy proper are associated with reading and spelling, both phenotypically and genetically, though our knowledge of multivariate genomic covariance structures is incomplete. Here, we introduce structural models describing genetic and residual influences between traits to study multivariate links across measures of literacy, phonological awareness, oral language, and phonological working memory (PWM) in unrelated UK youth (8-13 years, N=6,453). We find that all phenotypes share a large proportion of underlying genetic variation, although especially oral language and PWM reveal substantial differences in their genetic variance composition with substantial trait-specific genetic influences. Multivariate genetic and residual trait covariance showed concordant patterns, except for marked differences between oral language and literacy/phonological awareness, where strong genetic links contrasted near-zero residual overlap. These findings suggest differences in etiological mechanisms, acting beyond a pleiotropic set of genetic variants, and implicate variation in trait modifiability even among phenotypes that have high genetic correlations.

    Additional information

    supplementary information
  • Ip, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E. and 129 moreIp, H. F., Van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., Adkins, D. E., Border, R., Peterson, R. E., Prinz, J. A., Thiering, E., Seppälä, I., Vilor-Tejedor, N., Ahluwalia, T. S., Day, F. R., Hottenga, J.-J., Allegrini, A. G., Rimfeld, K., Chen, Q., Lu, Y., Martin, J., Soler Artigas, M., Rovira, P., Bosch, R., Español, G., Ramos Quiroga, J. A., Neumann, A., Ensink, J., Grasby, K., Morosoli, J. J., Tong, X., Marrington, S., Middeldorp, C., Scott, J. G., Vinkhuyzen, A., Shabalin, A. A., Corley, R., Evans, L. M., Sugden, K., Alemany, S., Sass, L., Vinding, R., Ruth, K., Tyrrell, J., Davies, G. E., Ehli, E. A., Hagenbeek, F. A., De Zeeuw, E., Van Beijsterveldt, T. C., Larsson, H., Snieder, H., Verhulst, F. C., Amin, N., Whipp, A. M., Korhonen, T., Vuoksimaa, E., Rose, R. J., Uitterlinden, A. G., Heath, A. C., Madden, P., Haavik, J., Harris, J. R., Helgeland, Ø., Johansson, S., Knudsen, G. P. S., Njolstad, P. R., Lu, Q., Rodriguez, A., Henders, A. K., Mamun, A., Najman, J. M., Brown, S., Hopfer, C., Krauter, K., Reynolds, C., Smolen, A., Stallings, M., Wadsworth, S., Wall, T. L., Silberg, J. L., Miller, A., Keltikangas-Järvinen, L., Hakulinen, C., Pulkki-Råback, L., Havdahl, A., Magnus, P., Raitakari, O. T., Perry, J. R. B., Llop, S., Lopez-Espinosa, M.-J., Bønnelykke, K., Bisgaard, H., Sunyer, J., Lehtimäki, T., Arseneault, L., Standl, M., Heinrich, J., Boden, J., Pearson, J., Horwood, L. J., Kennedy, M., Poulton, R., Eaves, L. J., Maes, H. H., Hewitt, J., Copeland, W. E., Costello, E. J., Williams, G. M., Wray, N., Järvelin, M.-R., McGue, M., Iacono, W., Caspi, A., Moffitt, T. E., Whitehouse, A., Pennell, C. E., Klump, K. L., Burt, S. A., Dick, D. M., Reichborn-Kjennerud, T., Martin, N. G., Medland, S. E., Vrijkotte, T., Kaprio, J., Tiemeier, H., Davey Smith, G., Hartman, C. A., Oldehinkel, A. J., Casas, M., Ribasés, M., Lichtenstein, P., Lundström, S., Plomin, R., Bartels, M., Nivard, M. G., & Boomsma, D. I. (2021). Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 11: 413. doi:10.1038/s41398-021-01480-x.
  • Verhoef, E., Grove, J., Shapland, C. Y., Demontis, D., Burgess, S., Rai, D., Børglum, A. D., & St Pourcain, B. (2021). Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nature Communications, 12: 6534. doi:10.1038/s41467-021-26755-1.

    Abstract

    Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610–766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.

    Additional information

    supplementary information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental origins of genetic factors influencing language and literacy: Associations with early-childhood vocabulary. Journal of Child Psychology and Psychiatry, 62(6), 728-738. doi:10.1111/jcpp.13327.

    Abstract

    Background

    The heritability of language and literacy skills increases from early‐childhood to adolescence. The underlying mechanisms are little understood and may involve (a) the amplification of genetic influences contributing to early language abilities, and/or (b) the emergence of novel genetic factors (innovation). Here, we investigate the developmental origins of genetic factors influencing mid‐childhood/early‐adolescent language and literacy. We evaluate evidence for the amplification of early‐childhood genetic factors for vocabulary, in addition to genetic innovation processes.
    Methods

    Expressive and receptive vocabulary scores at 38 months, thirteen language‐ and literacy‐related abilities and nonverbal cognition (7–13 years) were assessed in unrelated children from the Avon Longitudinal Study of Parents and Children (ALSPAC, Nindividuals ≤ 6,092). We investigated the multivariate genetic architecture underlying early‐childhood expressive and receptive vocabulary, and each of 14 mid‐childhood/early‐adolescent language, literacy or cognitive skills with trivariate structural equation (Cholesky) models as captured by genome‐wide genetic relationship matrices. The individual path coefficients of the resulting structural models were finally meta‐analysed to evaluate evidence for overarching patterns.
    Results

    We observed little support for the emergence of novel genetic sources for language, literacy or cognitive abilities during mid‐childhood or early adolescence. Instead, genetic factors of early‐childhood vocabulary, especially those unique to receptive skills, were amplified and represented the majority of genetic variance underlying many of these later complex skills (≤99%). The most predictive early genetic factor accounted for 29.4%(SE = 12.9%) to 45.1%(SE = 7.6%) of the phenotypic variation in verbal intelligence and literacy skills, but also for 25.7%(SE = 6.4%) in performance intelligence, while explaining only a fraction of the phenotypic variation in receptive vocabulary (3.9%(SE = 1.8%)).
    Conclusions

    Genetic factors contributing to many complex skills during mid‐childhood and early adolescence, including literacy, verbal cognition and nonverbal cognition, originate developmentally in early‐childhood and are captured by receptive vocabulary. This suggests developmental genetic stability and overarching aetiological mechanisms.

    Additional information

    supporting information
  • Verhoef, E., Shapland, C. Y., Fisher, S. E., Dale, P. S., & St Pourcain, B. (2021). The developmental genetic architecture of vocabulary skills during the first three years of life: Capturing emerging associations with later-life reading and cognition. PLoS Genetics, 17(2): e1009144. doi:10.1371/journal.pgen.1009144.

    Abstract

    Individual differences in early-life vocabulary measures are heritable and associated with subsequent reading and cognitive abilities, although the underlying mechanisms are little understood. Here, we (i) investigate the developmental genetic architecture of expressive and receptive vocabulary in early-life and (ii) assess timing of emerging genetic associations with mid-childhood verbal and non-verbal skills. We studied longitudinally assessed early-life vocabulary measures (15–38 months) and later-life verbal and non-verbal skills (7–8 years) in up to 6,524 unrelated children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We dissected the phenotypic variance of rank-transformed scores into genetic and residual components by fitting multivariate structural equation models to genome-wide genetic-relationship matrices. Our findings show that the genetic architecture of early-life vocabulary involves multiple distinct genetic factors. Two of these genetic factors are developmentally stable and also contribute to genetic variation in mid-childhood skills: One genetic factor emerging with expressive vocabulary at 24 months (path coefficient: 0.32(SE = 0.06)) was also related to later-life reading (path coefficient: 0.25(SE = 0.12)) and verbal intelligence (path coefficient: 0.42(SE = 0.13)), explaining up to 17.9% of the phenotypic variation. A second, independent genetic factor emerging with receptive vocabulary at 38 months (path coefficient: 0.15(SE = 0.07)), was more generally linked to verbal and non-verbal cognitive abilities in mid-childhood (reading path coefficient: 0.57(SE = 0.07); verbal intelligence path coefficient: 0.60(0.10); performance intelligence path coefficient: 0.50(SE = 0.08)), accounting for up to 36.1% of the phenotypic variation and the majority of genetic variance in these later-life traits (≥66.4%). Thus, the genetic foundations of mid-childhood reading and cognitive abilities are diverse. They involve at least two independent genetic factors that emerge at different developmental stages during early language development and may implicate differences in cognitive processes that are already detectable during toddlerhood.

    Additional information

    supporting information
  • Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. E. M., Abdellaoui, A., Bartels, M., Baselmans, B. M. L., Ligthart, L., St Pourcain, B., Boomsma, D. I., Munafò, M. R., & Middeldorp, C. M. (2017). Genetic overlap between schizophrenia and developmental psychopathology: Longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. Schizophrenia Bulletin, 43(6), 1197-1207. doi:10.1093/schbul/sbx031.

    Abstract

    Background: Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Methods: Polygenic risk scores (PRS), reflecting an individual’s genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Results: Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. Conclusion: By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology.
  • Nivard, M. G., Lubke, G. H., Dolan, C. V., Evans, D. M., St Pourcain, B., Munafo, M. R., & Middeldorp, C. M. (2017). Joint developmental trajectories of internalizing and externalizing disorders between childhood and adolescence. Development and Psychopathology, 29(3), 919-928. doi:10.1017/S0954579416000572.

    Abstract

    This study sought to identify trajectories of DSM-IV based internalizing (INT) and externalizing (EXT) problem scores across childhood and adolescence and to provide insight into the comorbidity by modeling the co-occurrence of INT and EXT trajectories. INT and EXT were measured repeatedly between age 7 and age 15 years in over 7,000 children and analyzed using growth mixture models. Five trajectories were identified for both INT and EXT, including very low, low, decreasing, and increasing trajectories. In addition, an adolescent onset trajectory was identified for INT and a stable high trajectory was identified for EXT. Multinomial regression showed that similar EXT and INT trajectories were associated. However, the adolescent onset INT trajectory was independent of high EXT trajectories, and persisting EXT was mainly associated with decreasing INT. Sex and early life environmental risk factors predicted EXT and, to a lesser extent, INT trajectories. The association between trajectories indicates the need to consider comorbidity when a child presents with INT or EXT disorders, particularly when symptoms start early. This is less necessary when INT symptoms start at adolescence. Future studies should investigate the etiology of co-occurring INT and EXT and the specific treatment needs of these severely affected children.
  • Stergiakouli, E., Martin, J., Hamshere, M. L., Heron, J., St Pourcain, B., Timpson, N. J., Thapar, A., & Smith, G. D. (2017). Association between polygenic risk scores for attention-deficit hyperactivity disorder and educational and cognitive outcomes in the general population. International Journal of Epidemiology, 46(2), 421-428. doi:10.1093/ije/dyw216.

    Abstract

    Background: Children with a diagnosis of attention-deficit hyperactivity disorder (ADHD) have lower cognitive ability and are at risk of adverse educational outcomes; ADHD genetic risks have been found to predict childhood cognitive ability and other neurodevelopmental traits in the general population; thus genetic risks might plausibly also contribute to cognitive ability later in development and to educational underachievement.

    Methods: We generated ADHD polygenic risk scores in the Avon Longitudinal Study of Parents and Children participants (maximum N: 6928 children and 7280 mothers) based on the results of a discovery clinical sample, a genome-wide association study of 727 cases with ADHD diagnosis and 5081 controls. We tested if ADHD polygenic risk scores were associated with educational outcomes and IQ in adolescents and their mothers.

    Results: High ADHD polygenic scores in adolescents were associated with worse educational outcomes at Key Stage 3 [national tests conducted at age 13–14 years; β = −1.4 (−2.0 to −0.8), P = 2.3 × 10−6), at General Certificate of Secondary Education exams at age 15–16 years (β = −4.0 (−6.1 to −1.9), P = 1.8 × 10−4], reduced odds of sitting Key Stage 5 examinations at age 16–18 years [odds ratio (OR) = 0.90 (0.88 to 0.97), P = 0.001] and lower IQ scores at age 15.5 [β = −0.8 (−1.2 to −0.4), P = 2.4 × 10−4]. Moreover, maternal ADHD polygenic scores were associated with lower maternal educational achievement [β = −0.09 (−0.10 to −0.06), P = 0.005] and lower maternal IQ [β = −0.6 (−1.2 to −0.1), P = 0.03].

    Conclusions: ADHD diagnosis risk alleles impact on functional outcomes in two generations (mother and child) and likely have intergenerational environmental effects.
  • Stergiakouli, E., Smith, G. D., Martin, J., Skuse, D. H., Viechtbauer, W., Ring, S. M., Ronald, A., Evans, D. E., Fisher, S. E., Thapar, A., & St Pourcain, B. (2017). Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development. Molecular Autism, 8: 18. doi:10.1186/s13229-017-0131-2.

    Abstract

    Background: Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and
    autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however,
    subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD
    and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and
    cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk.
    Methods: Social-communication difficulties (N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and
    combined hyperactive-impulsive/inattentive ADHD symptoms (N ≤ 5678, Strengths and Difficulties Questionnaire,
    SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary
    statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls)
    were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between
    phenotypes were estimated using genome-wide data.
    Results: In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout
    development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait rg ≤ 1,
    pmin = 3 × 10−4) as those between repeated measures of the same trait (within-trait rg ≤ 0.94, pmin = 7 × 10−4).
    Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling
    upregulated genes (p-meta = 6.4 × 10−4).
    Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles
    for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression
    R2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during
    childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores
    were linked to genetic risk for disorder.
    Conclusions: In the general population, genetic aetiologies between social-communication difficulties and ADHD
    symptoms are shared throughout child and adolescent development and may implicate similar biological pathways
    that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked
    to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional
    trait-disorder relationships.
  • Tachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G. and 83 moreTachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter, K., Iotchkova, V., Schwartzentruber, J., Huang, J., Memari, Y., McCarthy, S., Crawford, A. A., Bombieri, C., Cocca, M., Farmaki, A.-E., Gaunt, T. R., Jousilahti, P., Kooijman, M. N., Lehne, B., Malerba, G., Männistö, S., Matchan, A., Medina-Gomez, C., Metrustry, S. J., Nag, A., Ntalla, I., Paternoster, L., Rayner, N. W., Sala, C., Scott, W. R., Shihab, H. A., Southam, L., St Pourcain, B., Traglia, M., Trajanoska, K., Zaza, G., Zhang, W., Artigas, M. S., Bansal, N., Benn, M., Chen, Z., Danecek, P., Lin, W.-Y., Locke, A., Luan, J., Manning, A. K., Mulas, A., Sidore, C., Tybjaerg-Hansen, A., Varbo, A., Zoledziewska, M., Finan, C., Hatzikotoulas, K., Hendricks, A. E., Kemp, J. P., Moayyeri, A., Panoutsopoulou, K., Szpak, M., Wilson, S. G., Boehnke, M., Cucca, F., Di Angelantonio, E., Langenberg, C., Lindgren, C., McCarthy, M. I., Morris, A. P., Nordestgaard, B. G., Scott, R. A., Tobin, M. D., Wareham, N. J., Burton, P., Chambers, J. C., Smith, G. D., Dedoussis, G., Felix, J. F., Franco, O. H., Gambaro, G., Gasparini, P., Hammond, C. J., Hofman, A., Jaddoe, V. W. V., Kleber, M., Kooner, J. S., Perola, M., Relton, C., Ring, S. M., Rivadeneira, F., Salomaa, V., Spector, T. D., Stegle, O., Toniolo, D., Uitterlinden, A. G., Barroso, I., Greenwood, C. M. T., Perry, J. R. B., Walker, B. R., Butterworth, A. S., Xue, Y., Durbin, R., Small, K. S., Soranzo, N., Timpson, N. J., & Zeggini, E. (2017). Whole-Genome Sequencing coupled to imputation discovers genetic signals for anthropometric traits. The American Journal of Human Genetics, 100(6), 865-884. doi:10.1016/j.ajhg.2017.04.014.

    Abstract

    Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.
  • Benyamin, B., St Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M.-J., Kirkpatrick, R. M., Cents, R. A. M., Franić, S., Miller, M. B., Haworth, C. M. A., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., Yang, J. and 23 moreBenyamin, B., St Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M.-J., Kirkpatrick, R. M., Cents, R. A. M., Franić, S., Miller, M. B., Haworth, C. M. A., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., Yang, J., Harris, S. E., Liewald, D. C., Scheet, P., Xiao, X., Hudziak, J. J., de Geus, E. J. C., Jaddoe, V. W. V., Starr, J. M., Verhulst, F. C., Pennell, C., Tiemeier, H., Iacono, W. G., Palmer, L. J., Montgomery, G. W., Martin, N. G., Boomsma, D. I., Posthuma, D., McGue, M., Wright, M. J., Davey Smith, G., Deary, I. J., Plomin, R., & Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19(2), 253-258. doi:10.1038/mp.2012.184.

    Abstract

    Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6–18 years) from 17 989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22–46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10−15, 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10−5), 3.5% (P=10−3) and 0.5% (P=6 × 10−5) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.
  • Bolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., Anderson, A., Huffman, J., Wilson, J. F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S. H., Velders, F. P., Hofman, A., Uitterlinden, A. G., Lahti, J., Räikkönen, K., Kajantie, E. and 37 moreBolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., Anderson, A., Huffman, J., Wilson, J. F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S. H., Velders, F. P., Hofman, A., Uitterlinden, A. G., Lahti, J., Räikkönen, K., Kajantie, E., Widen, E., Palotie, A., Eriksson, J. G., Kaakinen, M., Järvelin, M.-R., Timpson, N. J., Davey Smith, G., Ring, S. M., Evans, D. M., St Pourcain, B., Tanaka, T., Milaneschi, Y., Bandinelli, S., Ferrucci, L., van der Harst, P., Rosmalen, J. G. M., Bakker, S. J. L., Verweij, N., Dullaart, R. P. F., Mahajan, A., Lindgren, C. M., Morris, A., Lind, L., Ingelsson, E., Anderson, L. N., Pennell, C. E., Lye, S. J., Matthews, S. G., Eriksson, J., Mellstrom, D., Ohlsson, C., Price, J. F., Strachan, M. W. J., Reynolds, R. M., Tiemeier, H., Walker, B. R., & CORtisol NETwork (CORNET) Consortium (2014). Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin. PLoS Genetics, 10(7): e1004474. doi:10.1371/journal.pgen.1004474.

    Abstract

    Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30-60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.
  • Eaves, L. J., St Pourcain, B., Smith, G. D., York, T. P., & Evans, D. M. (2014). Resolving the Effects of Maternal and Offspring Genotype on Dyadic Outcomes in Genome Wide Complex Trait Analysis (“M-GCTA”). Behavior Genetics, 44(5), 445-455. doi:10.1007/s10519-014-9666-6.

    Abstract

    Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the maternal genotype on offspring phenotype (“maternal effects”, M-GCTA). The model includes parameters for the direct effects of the offspring genotype, maternal effects and the covariance between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed that model parameters could be recovered by full information maximum likelihood (FIML) and evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored. Estimates derived from FIML in OpenMx showed very close agreement to those obtained by restricted maximum likelihood using the published algorithm for GCTA. The method was also applied to illustrative perinatal phenotypes from ~4,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to quantitative genetic approaches based on analyzing the phenotypic covariance structure of kinships are considered.
  • Guggenheim, J. A., Williams, C., Northstone, K., Howe, L. D., Tilling, K., St Pourcain, B., McMahon, G., & Lawlor, D. A. (2014). Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology & Visual Science, 55(12), 8550-8558. doi:10.1167/iovs.14-15839.
  • Kemp, J. P., Sayers, A., Paternoster, L., Evans, D. M., Deere, K., St Pourcain, B., Timpson, N. J., Ring, S. M., Lorentzon, M., Lehtimäki, T., Eriksson, J., Kähönen, M., Raitakari, O., Laaksonen, M., Sievänen, H., Viikari, J., Lyytikäinen, L.-P., Smith, G. D., Fraser, W. D., Vandenput, L. and 2 moreKemp, J. P., Sayers, A., Paternoster, L., Evans, D. M., Deere, K., St Pourcain, B., Timpson, N. J., Ring, S. M., Lorentzon, M., Lehtimäki, T., Eriksson, J., Kähönen, M., Raitakari, O., Laaksonen, M., Sievänen, H., Viikari, J., Lyytikäinen, L.-P., Smith, G. D., Fraser, W. D., Vandenput, L., Ohlsson, C., & Tobias, J. H. (2014). Does Bone Resorption Stimulate Periosteal Expansion? A Cross-Sectional Analysis of β-C-telopeptides of Type I Collagen (CTX), Genetic Markers of the RANKL Pathway, and Periosteal Circumference as Measured by pQCT. Journal of Bone and Mineral Research, 29(4), 1015-1024. doi:10.1002/jbmr.2093.

    Abstract

    We hypothesized that bone resorption acts to increase bone strength through stimulation of periosteal expansion. Hence, we examined whether bone resorption, as reflected by serum β-C-telopeptides of type I collagen (CTX), is positively associated with periosteal circumference (PC), in contrast to inverse associations with parameters related to bone remodeling such as cortical bone mineral density (BMDC ). CTX and mid-tibial peripheral quantitative computed tomography (pQCT) scans were available in 1130 adolescents (mean age 15.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Analyses were adjusted for age, gender, time of sampling, tanner stage, lean mass, fat mass, and height. CTX was positively related to PC (β=0.19 [0.13, 0.24]) (coefficient=SD change per SD increase in CTX, 95% confidence interval)] but inversely associated with BMDC (β=-0.46 [-0.52,-0.40]) and cortical thickness [β=-0.11 (-0.18, -0.03)]. CTX was positively related to bone strength as reflected by the strength-strain index (SSI) (β=0.09 [0.03, 0.14]). To examine the causal nature of this relationship, we then analyzed whether single-nucleotide polymorphisms (SNPs) within key osteoclast regulatory genes, known to reduce areal/cortical BMD, conversely increase PC. Fifteen such genetic variants within or proximal to genes encoding receptor activator of NF-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) were identified by literature search. Six of the 15 alleles that were inversely related to BMD were positively related to CTX (p<}0.05 cut-off) (n=2379). Subsequently, we performed a meta-analysis of associations between these SNPs and PC in ALSPAC (n=3382), Gothenburg Osteoporosis and Obesity Determinants (GOOD) (n=938), and the Young Finns Study (YFS) (n=1558). Five of the 15 alleles that were inversely related to BMD were positively related to PC (p{<0.05 cut-off). We conclude that despite having lower BMD, individuals with a genetic predisposition to higher bone resorption have greater bone size, suggesting that higher bone resorption is permissive for greater periosteal expansion.
  • Kemp, J. P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D. H. M., Warrington, N. M., Oei, L., Ring, S. M., Kruithof, C. J., Timpson, N. J., Wolber, L. E., Reppe, S., Gautvik, K., Grundberg, E., Ge, B., van der Eerden, B., van de Peppel, J., Hibbs, M. A., Ackert-Bicknell, C. L., Choi, K. and 13 moreKemp, J. P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D. H. M., Warrington, N. M., Oei, L., Ring, S. M., Kruithof, C. J., Timpson, N. J., Wolber, L. E., Reppe, S., Gautvik, K., Grundberg, E., Ge, B., van der Eerden, B., van de Peppel, J., Hibbs, M. A., Ackert-Bicknell, C. L., Choi, K., Koller, D. L., Econs, M. J., Williams, F. M. K., Foroud, T., Zillikens, M. C., Ohlsson, C., Hofman, A., Uitterlinden, A. G., Davey Smith, G., Jaddoe, V. W. V., Tobias, J. H., Rivadeneira, F., & Evans, D. M. (2014). Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genetics, 10(6): e1004423. doi:10.1371/journal.pgen.1004423.

    Abstract

    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
  • St Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., O’Reilly, P. F., Roulstone, S., Wren, Y., Ang, Q. W., Velders, F. P., Evans, D. M., Kemp, J. P., Warrington, N. M., Miller, L., Timpson, N. J., Ring, S. M., Verhulst, F. C., Hofman, A., Rivadeneira, F., Meaburn, E. L. and 12 moreSt Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., O’Reilly, P. F., Roulstone, S., Wren, Y., Ang, Q. W., Velders, F. P., Evans, D. M., Kemp, J. P., Warrington, N. M., Miller, L., Timpson, N. J., Ring, S. M., Verhulst, F. C., Hofman, A., Rivadeneira, F., Meaburn, E. L., Price, T. S., Dale, P. S., Pillas, D., Yliherva, A., Rodriguez, A., Golding, J., Jaddoe, V. W., Jarvelin, M.-R., Plomin, R., Pennell, C. E., Tiemeier, H., & Davey Smith, G. (2014). Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nature Communications, 5: 4831. doi:10.1038/ncomms5831.
  • St Pourcain, B., Skuse, D. H., Mandy, W. P., Wang, K., Hakonarson, H., Timpson, N. J., Evans, D. M., Kemp, J. P., Ring, S. M., McArdle, W. L., Golding, J., & Smith, G. D. (2014). Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Molecular Autism, 5: 18. doi:10.1186/2040-2392-5-18.

    Abstract

    Background Social-communication abilities are heritable traits, and their impairments overlap with the autism continuum. To characterise the genetic architecture of social-communication difficulties developmentally and identify genetic links with the autistic dimension, we conducted a genome-wide screen of social-communication problems at multiple time-points during childhood and adolescence. Methods Social-communication difficulties were ascertained at ages 8, 11, 14 and 17 years in a UK population-based birth cohort (Avon Longitudinal Study of Parents and Children; N ≤ 5,628) using mother-reported Social Communication Disorder Checklist scores. Genome-wide Complex Trait Analysis (GCTA) was conducted for all phenotypes. The time-points with the highest GCTA heritability were subsequently analysed for single SNP association genome-wide. Type I error in the presence of measurement relatedness and the likelihood of observing SNP signals near known autism susceptibility loci (co-location) were assessed via large-scale, genome-wide permutations. Association signals (P ≤ 10−5) were also followed up in Autism Genetic Resource Exchange pedigrees (N = 793) and the Autism Case Control cohort (Ncases/Ncontrols = 1,204/6,491). Results GCTA heritability was strongest in childhood (h2(8 years) = 0.24) and especially in later adolescence (h2(17 years) = 0.45), with a marked drop during early to middle adolescence (h2(11 years) = 0.16 and h2(14 years) = 0.08). Genome-wide screens at ages 8 and 17 years identified for the latter time-point evidence for association at 3p22.2 near SCN11A (rs4453791, P = 9.3 × 10−9; genome-wide empirical P = 0.011) and suggestive evidence at 20p12.3 at PLCB1 (rs3761168, P = 7.9 × 10−8; genome-wide empirical P = 0.085). None of these signals contributed to risk for autism. However, the co-location of population-based signals and autism susceptibility loci harbouring rare mutations, such as PLCB1, is unlikely to be due to chance (genome-wide empirical Pco-location = 0.007). Conclusions Our findings suggest that measurable common genetic effects for social-communication difficulties vary developmentally and that these changes may affect detectable overlaps with the autism spectrum.

    Additional information

    13229_2013_113_MOESM1_ESM.docx
  • Stergiakouli, E., Gaillard, R., Tavaré, J. M., Balthasar, N., Loos, R. J., Taal, H. R., Evans, D. M., Rivadeneira, F., St Pourcain, B., Uitterlinden, A. G., Kemp, J. P., Hofman, A., Ring, S. M., Cole, T. J., Jaddoe, V. W. V., Davey Smith, G., & Timpson, N. J. (2014). Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity, 22(10), 2252-2259. doi:10.1002/oby.20840.

    Abstract

    OBJECTIVE: Genome-wide association studies (GWAS) of BMI are mostly undertaken under the assumption that "kg/m(2) " is an index of weight fully adjusted for height, but in general this is not true. The aim here was to assess the contribution of common genetic variation to a adjusted version of that phenotype which appropriately accounts for covariation in height in children. METHODS: A GWAS of height-adjusted BMI (BMI[x] = weight/height(x) ), calculated to be uncorrelated with height, in 5809 participants (mean age 9.9 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC) was performed. RESULTS: GWAS based on BMI[x] yielded marked differences in genomewide results profile. SNPs in ADCY3 (adenylate cyclase 3) were associated at genome-wide significance level (rs11676272 (0.28 kg/m(3.1) change per allele G (0.19, 0.38), P = 6 × 10(-9) ). In contrast, they showed marginal evidence of association with conventional BMI [rs11676272 (0.25 kg/m(2) (0.15, 0.35), P = 6 × 10(-7) )]. Results were replicated in an independent sample, the Generation R study. CONCLUSIONS: Analysis of BMI[x] showed differences to that of conventional BMI. The association signal at ADCY3 appeared to be driven by a missense variant and it was strongly correlated with expression of this gene. Our work highlights the importance of well understood phenotype use (and the danger of convention) in characterising genetic contributions to complex traits.

    Additional information

    oby20840-sup-0001-suppinfo.docx
  • Ward, M. E., McMahon, G., St Pourcain, B., Evans, D. M., Rietveld, C. A., Benjamin, D. J., Koellinger, P. D., Cesarini, D., Smith, G. D., Timpson, N. J., & Consortium}, {. S. G. A. (2014). Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children. PLoS ONE, 9(7): e100248. doi:10.1371/journal.pone.0100248.

    Abstract

    Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and where educational performance is more routinely and more precisely assessed. Single nucleotide polymorphisms exhibiting genome-wide significant associations with adult educational attainment were combined to derive an unweighted allele score in 5,979 and 6,145 young participants from the Avon Longitudinal Study of Parents and Children with key stage 3 national curriculum test results (SATS results) available at age 13 to 14 years in English and mathematics respectively. Standardised (z-scored) results for English and mathematics showed an expected relationship with sex, with girls exhibiting an advantage over boys in English (0.433 SD (95%CI 0.395, 0.470), p<10-10) with more similar results (though in the opposite direction) in mathematics (0.042 SD (95%CI 0.004, 0.080), p = 0.030). Each additional adult educational attainment increasing allele was associated with 0.041 SD (95%CI 0.020, 0.063), p = 1.79×10-04 and 0.028 SD (95%CI 0.007, 0.050), p = 0.01 increases in standardised SATS score for English and mathematics respectively. Educational attainment is a complex multifactorial behavioural trait which has not had heritable contributions to it fully characterised. We were able to apply the results from a large study of adult educational attainment to a study of child exam performance marking events in the process of learning rather than realised adult end product. Our results support evidence for common, small genetic contributions to educational attainment, but also emphasise the likely lifecourse nature of this genetic effect. Results here also, by an alternative route, suggest that existing methods for child examination are able to recognise early life variation likely to be related to ultimate educational attainment.

Share this page