Publications

Displaying 1 - 5 of 5
  • Rapado-Tamarit, B., Méndez-Aróstegui, M., de Reus, K., Sarraude, T., Pen, I., & Groothuis, T. G. G. (2024). Age estimation and growth patterns in young harbor seals (Phoca vitulina vitulina) during rehabilitation. Journal of Mammalogy. Advance online publication. doi:10.1093/jmammal/gyae128.

    Abstract

    To study patterns in behavior, fitness, and population dynamics, estimating the age of the individuals is often a necessity. Specifically, age estimation of young animals is very important for animal rehabilitation centers because it may determine if the animal should be taken in and, if so, what care is optimal for its rehabilitation. Accurate age estimation is also important to determine the growth pattern of an individual, and it is needed to correctly interpret the influence of early body condition on its growth trajectories. The purpose of our study was to find body measurements that function as good age estimators in young (up to 3 months old) harbor seals (Phoca vitulina vitulina), placing emphasis on noninvasive techniques that can be used in the field. To meet this goal, body mass (BM), dorsal standard length (DSL), upper canine length (CL), body condition (BC), and sex were determined from 45 Harbor Seal pups of known age. Generalized additive mixed models were fitted to find how well these morphometric measures predicted age, and the results from the selected model were used to compute growth curves and to create a practical table to determine the age of young animals in the field. We found that both DSL and CL—and to some extent sex—were useful predictors for estimating age in young harbor seals and that the growth rate of pups raised in captivity is significantly lower than for those raised in the wild. In addition, we found no evidence for compensatory growth, given that animals that arrived at the center with a poor BM or BC continued to show lower BM or BC throughout almost the entire rehabilitation period.

    Additional information

    Data availability
  • de Reus, K., Benítez-Burraco, A., Hersh, T. A., Groot, N., Lambert, M. L., Slocombe, K. E., Vernes, S. C., & Raviv, L. (2024). Self-domestication traits in vocal learning mammals. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 105-108). Nijmegen: The Evolution of Language Conferences.
  • de Reus, K., Carlson, D., Lowry, A., Gross, S., Garcia, M., Rubio-García, A., Salazar-Casals, A., & Ravignani, A. (2022). Body size predicts vocal tract size in a mammalian vocal learner. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (Eds.), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 154-156). Nijmegen: Joint Conference on Language Evolution (JCoLE).
  • de Reus, K., Carlson, D., Lowry, A., Gross, S., Garcia, M., Rubio-Garcia, A., Salazar-Casals, A., & Ravignani, A. (2022). Vocal tract allometry in a mammalian vocal learner. Journal of Experimental Biology, 225(8): jeb243766. doi:10.1242/jeb.243766.

    Abstract

    Acoustic allometry occurs when features of animal vocalisations can be predicted from body size measurements. Despite this being considered the norm, allometry sometimes breaks, resulting in species sounding smaller or larger than expected. A recent hypothesis suggests that allometry-breaking animals cluster into two groups: those with anatomical adaptations to their vocal tracts and those capable of learning new sounds (vocal learners). Here we test this hypothesis by probing vocal tract allometry in a proven mammalian vocal learner, the harbour seal (Phoca vitulina). We test whether vocal tract structures and body size scale allometrically in 68 individuals. We find that both body length and body weight accurately predict vocal tract length and one tracheal dimension. Independently, body length predicts vocal fold length while body weight predicts a second tracheal dimension. All vocal tract measures are larger in weaners than in pups and some structures are sexually dimorphic within age classes. We conclude that harbour seals do comply with allometric constraints, lending support to our hypothesis. However, allometry between body size and vocal fold length seems to emerge after puppyhood, suggesting that ontogeny may modulate the anatomy-learning distinction previously hypothesised as clear-cut. Species capable of producing non-allometric signals while their vocal tract scales allometrically, like seals, may then use non-morphological allometry-breaking mechanisms. We suggest that seals, and potentially other vocal learning mammals, may achieve allometry-breaking through developed neural control over their vocal organs.
  • Salazar-Casals, A., de Reus, K., Greskewitz, N., Havermans, J., Geut, M., Villanueva, S., & Rubio-Garcia, A. (2022). Increased incidence of entanglements and ingested marine debris in Dutch seals from 2010 to 2020. Oceans, 3(3), 389-400. doi:10.3390/oceans3030026.

    Abstract

    In recent decades, the amount of marine debris has increased in our oceans. As wildlife interactions with debris increase, so does the number of entangled animals, impairing normal behavior and potentially affecting the survival of these individuals. The current study summarizes data on two phocid species, harbor (Phoca vitulina) and gray seals (Halichoerus grypus), affected by marine debris in Dutch waters from 2010 to 2020. The findings indicate that the annual entanglement rate (13.2 entanglements/year) has quadrupled compared with previous studies. Young seals, particularly gray seals, are the most affected individuals, with most animals found or sighted with fishing nets wrapped around their necks. Interestingly, harbor seals showed a higher incidence of ingested debris. Species differences with regard to behavior, foraging strategies, and habitat preferences may explain these findings. The lack of consistency across reports suggests that it is important to standardize data collection from now on. Despite increased public awareness about the adverse environmental effects of marine debris, more initiatives and policies are needed to ensure the protection of the marine environment in the Netherlands.

Share this page